Issue 1, 2019

Towards efficient calcium extraction from steel slag and carbon dioxide utilisation via pressure-swing mineral carbonation

Abstract

Production of precipitated calcium carbonate (PCC) via carbon dioxide (CO2) pressure-swing mineral carbonation is a potential way to utilise calcium-rich steel slag and carbon dioxide. Calcium supersaturation and slag surface passivation are two aspects of the calcium extraction step that strongly influence the choice of operating conditions necessary for rapid and complete calcium leaching, which are investigated in the present work. To investigate these aspects, slag dissolution characteristics were studied in a closed high-pressure batch-reactor taking care to eliminate gas–liquid mass transport limitations. This experimental design has two distinct advantages: (1) rapid CO2 absorption necessary for dissolution under acidic conditions and to gain insights into calcium dissolution kinetics and (2) the closed system allowing measurement of the drop in reactor pressure, which along with elemental analysis of leachate is sufficient to determine the ionic species concentration and solution saturation state. The results provide evidence against surface passivation of residual slag by silica or calcium carbonate layers. Further, the experiments confirm high supersaturation with respect to calcite during the dissolution step, which we hypothesise to be a consequence of unfavourable calcite precipitation kinetics due to the low pH and high calcium to carbonate ion ratio. The results show scope for further enhancement in calcium solubility, up to the solubility limit of amorphous calcium carbonate, which can substantially reduce the water volume and CO2 pressure required for dissolution. Pressure-swing to atmospheric pressure led to spontaneous co-precipitation of rhombohedral calcite and amorphous silica, also a paper-filler with similar optical properties to PCC, with impurities less than 1.5 wt%.

Graphical abstract: Towards efficient calcium extraction from steel slag and carbon dioxide utilisation via pressure-swing mineral carbonation

Supplementary files

Article information

Article type
Paper
Submitted
13 Aug 2018
Accepted
13 Nov 2018
First published
14 Nov 2018

React. Chem. Eng., 2019,4, 52-66

Towards efficient calcium extraction from steel slag and carbon dioxide utilisation via pressure-swing mineral carbonation

R. Ragipani, S. Bhattacharya and A. K. Suresh, React. Chem. Eng., 2019, 4, 52 DOI: 10.1039/C8RE00167G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements