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mapping of phase transitions in
liquid-crystalline materials by X-ray birefringence
imaging†
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Benson M. Kariuki, a N. S. Saleesh Kumar,d Duncan W. Bruce, d
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and Kenneth D. M. Harris *a

The X-ray Birefringence Imaging (XBI) technique, first reported in 2014, is a sensitive method for spatially

resolved mapping of the local orientational properties of anisotropic materials. We report the first

application of the XBI technique to characterize molecular orientational ordering in a liquid crystalline

material, demonstrating significant potential for exploiting XBI measurements to advance structural

understanding of liquid crystal phases.
In many scientic disciplines, the phenomenon of optical
birefringence1 is used as a basis for studying structural anisot-
ropy of materials through the use of the polarizing optical
microscope,2,3 including the widespread application of this
technique in the characterization of liquid-crystalline phases.4,5

While optical birefringence is widely exploited in this way, the
opportunity to study birefringence of anisotropic materials
using linearly polarized X-rays6–14 has remained remarkably
neglected. Indeed, the rst denitive demonstration of X-ray
birefringence was reported only recently10 for a model mate-
rial that was shown to exhibit essentially ideal birefringence
behaviour at X-ray energies near the Br K-edge. While optical
birefringence depends on the overall symmetry properties of
a material, X-ray birefringence (when studied using an X-ray
energy corresponding to an absorption edge of an element in
the material) is sensitive to the local orientational properties of
individual molecules and/or bonds.

The phenomenon of X-ray birefringence is closely related to
the phenomenon of X-ray dichroism,15–19 both of which concern
the interaction of linearly polarized X-rays with anisotropic
materials. Specically, these phenomena relate to the way in
which X-ray absorption (in the case of dichroism) and the real
rk Place, Cardiff CF10 3AT, Wales, UK.

Innovation Campus, Didcot, Oxfordshire

n Institute of Science, Rehovot, 760001,

k, Heslington, York YO10 5DD, England,

tion (ESI) available. See DOI:

hemistry 2019
part of the complex refractive index (in the case of birefrin-
gence) depend on the orientation of the material relative to the
direction of linear polarization of the incident X-ray beam.
Although X-ray dichroism and X-ray birefringence give rise to
different effects on the propagation of linearly polarized radia-
tion through a material, they are related by a Kramers–Kronig
transform20 and the two phenomena depend on the same
structural and symmetry properties of the material.

The ability of X-ray birefringence to yield insights into
molecular orientational properties was rst exploited10 for
accurate determination of bond orientations and for estab-
lishing changes in molecular orientational distributions asso-
ciated with order–disorder phase transitions in solids.11

However, these early X-ray birefringence studies used a narrowly
focused incident X-ray beam and did not provide spatially
resolved mapping of X-ray birefringence across the material.
Subsequently, a new technique called X-ray Birefringence
Imaging (XBI) was developed21 to allow X-ray birefringence data
to be measured in a spatially resolved manner. In many
respects, the XBI technique represents the X-ray analogue of the
polarizing optical microscope, and it has been shown to be
a sensitive technique for imaging the local orientational prop-
erties of anisotropic materials, allowing orientationally distinct
domain structures to be identied and yielding information on
the size, spatial distribution, temperature dependence and
orientational relationships of such domains.

The experimental set-up for XBI (see Fig. 1 and Experi-
mental) uses a large (e.g. 4 mm � 4 mm) unfocused incident
linearly polarized X-ray beam, with energy tuned to an absorp-
tion edge of an element in the material. The X-rays transmitted
through the sample are interrogated using a diffraction-based
polarization analyzer (set at a Bragg angle as close as possible
Chem. Sci., 2019, 10, 3005–3011 | 3005

http://crossmark.crossref.org/dialog/?doi=10.1039/c8sc05285a&domain=pdf&date_stamp=2019-03-02
http://orcid.org/0000-0002-8658-3897
http://orcid.org/0000-0002-1365-2222
http://orcid.org/0000-0003-2635-5750
http://orcid.org/0000-0001-5120-0764
http://orcid.org/0000-0001-7855-8598
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sc05285a
https://rsc.66557.net/en/journals/journal/SC
https://rsc.66557.net/en/journals/journal/SC?issueid=SC010010


Fig. 1 Experimental set-up for XBI studies of liquid crystal samples
oriented in an applied magnetic field. The incident X-ray beam prop-
agates along the z-axis and is polarized almost entirely linearly along
the x-axis. The angle between the axis of the magnetic field and the
direction of linear polarization of the incident X-ray beam (horizontal)
is denoted c (corresponding to rotation about the z-axis).

Scheme 1
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to 2q ¼ 90�), and the resultant X-ray intensity is recorded in
a spatially resolved manner using an area detector. The XBI
technique was rst demonstrated21 using incident polarized
X-rays at the Br K-edge for a single crystal of the
1-bromoadamantane/thiourea inclusion compound18 in which
the C–Br bonds of all 1-bromoadamantane guest molecules are
aligned parallel to each other within the one-dimensional
tunnels of the thiourea host structure. The results demon-
strated uniaxial behaviour, and conrmed that the X-ray optic
axis corresponds to the C–Br bond orientation.22 XBI studies of
an order–disorder phase transition in a single crystal of the
bromocyclohexane/thiourea inclusion compound21 revealed the
existence of orientationally distinct domains in the low-
temperature phase, yielding new insights into the domain
sizes and the orientational relationship between domains. And
further XBI studies23 demonstrated that, for materials under-
going anisotropic molecular dynamics, the effective X-ray optic
axis is the time-averaged resultant of the orientational distri-
bution of the C–Br bonds.

As X-ray birefringence is sensitive to local molecular orien-
tational properties, there is no requirement for the sample to be
crystalline, and the XBI technique may be applied to probe the
distribution of molecular orientations in any anisotropic
material. In this paper, we report the rst application of XBI to
Fig. 2 Schematic of the sample assembly in XBI studies of liquid crystal
inside an outer sample holder made from graphite. The magnetic field is
direction of propagation of the incident X-ray beam. The angle between
the incident X-ray beam (horizontal) is denoted c. The region of each X
defined by the yellow parallelogram (in the images shown, the sample is

3006 | Chem. Sci., 2019, 10, 3005–3011
study molecular orientational ordering in liquid-crystalline
phases, using an experimental assembly designed specically
for themeasurement of XBI data for liquid crystals aligned in an
applied magnetic eld. In this set-up (Fig. 1 and Experimental),
the sample cell is mounted on the goniometer of the synchro-
tron beamline, allowing the orientation of the sample to be
changed relative to the direction of polarization (horizontal) of
the linearly polarized incident X-ray beam. The sample cell
includes a strong magnetic eld (Sm–Co magnet; eld strength
ca. 1.0 T) to align the liquid crystal phases and a variable
temperature capability, controlled by passing an electric current
through the graphite outer sample holder (Fig. 2), to which
a thermocouple is attached for temperature measurement. In
this set-up, the sample orientation is specied by the angle c

(see Fig. 1 and 2), which denes the angle between the applied
magnetic eld direction (the expected axis of molecular align-
ment in the liquid crystal phases) and the orientation of the
linearly polarized incident X-ray beam (horizontal). In the set-
up used in the present work, the value of c may be varied in
the range c ¼ 45� to c ¼ �45�.

The material selected for study was 40-octyloxy-[1,10-
biphenyl]-4-yl-4-bromobenzoate (Scheme 1).24 As XBI data
recorded at the Br K-edge are sensitive to the orientational
distribution of the C–Br bonds, the presence of the terminal
C–Br bond in this compound provides a basis for establishing
the distribution of molecular orientations in the liquid crystal
phases from analysis of the XBI data. This compound, which
melts on heating at 151 �C, is reported24 to have the following
phase sequence on cooling:

Iso$216 �C$N$215 �C$SmA$154 �C$SmB

where we use the common abbreviations: Iso, isotropic
liquid; N, nematic; SmA, smectic A; SmB, smectic B. The pres-
ence of the rather transient nematic phase offers the possibility
samples. The sample is placed inside a glass capillary, which is inserted
perpendicular to the long axis of the capillary and perpendicular to the
the axis of the magnetic field and the direction of linear polarization of
BI image corresponding to X-rays transmitted through the sample is
an isotropic liquid phase).

This journal is © The Royal Society of Chemistry 2019
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Fig. 4 Selected XBI images recorded as a function of the orientation
of the applied magnetic field (defined by angle c) at the following
temperatures: (a) 220 �C (isotropic liquid), (b) 214 �C (both nematic and
isotropic liquid phases are present on account of a temperature
gradient), and (c) 184 �C (smectic A phase). The scale of normalized X-
ray intensity is shown on the right-hand side. The region of each XBI
image representing the sample is defined by the yellow parallelogram.
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for alignment by an applied magnetic eld on cooling and it
would reasonably be expected that the terminal C–Br bond
would be coincident with, or at least extremely close to, the
director (n). Because the experimental set-up (Fig. 1) allows the
sample orientation to be varied with respect to the incident
beam polarization, then the magnetic alignment promises to
allow good-quality orientational information to be extracted
from the XBI data.

Differential scanning calorimetry (DSC) carried out in
the present work (Fig. 3) gives phase transition temperatures
(Iso$216 �C$N$214 �C$SmA$153 �C$SmB) inclose agreement
with those (see above) reported by Takeda et al.,24 which were
derived by optical microscopy. The observed temperature of the
transition from the smectic B phase to the crystalline phase
depends on the experimental conditions as a result of
supercooling.

Fig. 4 shows selected images from the XBI data recorded at
220 �C (isotropic liquid; Fig. 4a), 214 �C (nematic phase and
some isotropic liquid as a consequence of a small temperature
gradient; Fig. 4b) and 184 �C (smectic A phase; Fig. 4c) as
a function of the orientation of the sample relative to the inci-
dent X-ray beam, which was linearly polarized in the horizontal
direction and tuned to the Br K-edge (a more comprehensive set
of XBI images from this experiment is shown in Fig. S1 in ESI†).
Each XBI image shown in Fig. 4 represents a spatially resolved
map of transmitted X-ray intensity for a specic orientation of
the sample specied by angle c (dened in Fig. 1 and 2). The
magnetic eld was kept in the plane (xy-plane) perpendicular to
the propagation direction (z-axis) of the incident X-ray beam.
The angle c denotes rotation of the magnetic eld around the z-
axis, and thus species the direction of molecular alignment of
the liquid crystal phases relative to the direction of linear
polarization of the incident X-ray beam. For c ¼ 0�, the
magnetic eld is horizontal (parallel to the x-axis).

For the isotropic liquid phase, the XBI images (Fig. 4a) are
uniformly dark for all sample orientations, with no variation in
X-ray intensity as a function of sample orientation (Fig. 5) and
hence zero birefringence. These observations are fully
Fig. 3 DSC data recorded on cooling from the isotropic liquid phase at
1 �C min�1. The transition at 123 �C is a solid–solid phase transition
within the crystalline phase.

Fig. 5 Normalized X-ray intensity as a function of c for the XBI data
recorded at: 220 �C (blue; isotropic liquid); 214 �C (red; nematic
phase), and 184 �C (green; smectic A phase). Selected XBI images from
the same experiment are shown in Fig. 4, and a more complete set of
images are shown in Fig. S1.† X-ray intensity was measured as the
average intensity per pixel across a selected area of the sample region
in the XBI image. At 214 �C, the sample comprises a region of nematic
phase and a region of isotropic liquid (see Fig. 4b), and the intensity
was measured within the region of the image known to represent the
nematic phase. Measured intensities Imeas were normalized to give
a value in the range 0# IN# 1, with IN¼ (Imeas� Imin)/(Imax� Imin). Here,
Imax and Imin are the highest and lowest measured intensities in the
entire set of data (i.e. for all XBI images recorded at the three
temperatures shown).

This journal is © The Royal Society of Chemistry 2019
consistent with an isotropic distribution of C–Br bond orien-
tations in this phase.

Starting from the isotropic liquid, the sample was oriented at
c ¼ 45� and cooled in small increments in the temperature
Chem. Sci., 2019, 10, 3005–3011 | 3007
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Fig. 6 Top: Normalized X-ray intensity in XBI images recorded on
decreasing temperature from 218 �C to 108 �C at 1 �C min�1, with the
orientation of the applied magnetic field fixed at c ¼ 45�. The phase
transitions are associated with abrupt changes in intensity, as evident
from comparison to the DSC data (Fig. 3); the region corresponding to
the Iso / N / SmA transition sequence is discussed in the text.
Bottom: XBI images recorded at different stages of the cooling process
(the specific temperature and measured intensity for each XBI image,
numbered from 1 to 6, is identified from the plot at the top). The region
of each XBI image representing the sample is defined by the yellow
parallelogram.
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region near the phase transition to the nematic phase, until the
rst change in X-ray intensity was observed in the XBI data.25 At
214 �C, the XBI image recorded at c ¼ 45� (top image in Fig. 4b)
clearly contains both a bright region (upper le) and a dark
region (bottom right), representing the rst temperature during
cooling at which there was evidence of the orientationally
ordered nematic phase. From the changes in the XBI data as
a function of c (Fig. 4b), the region identied as the nematic
phase clearly exhibits signicant birefringence. In contrast, the
other region of the sample remains dark in the XBI images at all
values of c and is assigned as the isotropic liquid. The presence
of both nematic and isotropic liquid phases is a consequence of
a temperature gradient within the sample holder.26

For the nematic phase, the variation in X-ray intensity
measured from the XBI images as a function of c is shown in
Fig. 5, demonstrating (at least within experimental errors) the
type of sinusoidal behaviour27 expected for a uniaxial system in
which the optic axis is parallel to the magnetic eld direction
(i.e. with intensity minimum at c ¼ 0� and intensity maxima at
c ¼ 45� and c ¼�45�). As the effective optic axis for XBI studies
at the Br K-edge is dictated by the resultant direction of align-
ment of the C–Br bonds, the X-ray birefringence behaviour for
the nematic phase is clearly interpreted in terms of a high
degree of orientational ordering of the molecules, with a resul-
tant C–Br bond orientation effectively parallel to the magnetic
eld.

The XBI behaviour for the smectic A phase (184 �C; Fig. 4c) is
very similar to the nematic phase, exhibiting signicant varia-
tion in X-ray intensity as a function of c with minimum
brightness at c ¼ 0� and maximum brightness at c ¼ 45� and c

¼ �45�. As shown in Fig. 5, the X-ray intensity again exhibits
a sinusoidal variation as a function of c. Signicantly, the
maximum intensity is higher than the maximum intensity for
the nematic phase, indicating that, as expected for a more
ordered phase with partial translational ordering, the smectic A
phase has a higher degree of orientational ordering of the C–Br
bonds (i.e. a narrower orientational distribution of the C–Br
bonds) in the direction of the applied magnetic eld.

In this experiment, XBI data were also recorded at selected
lower temperatures, but did not include a measurement that
could be unambiguously identied as the smectic B phase.28

Instead, reliable intensity information for the smectic B phase
has been obtained from XBI images recorded in experiments
with xed sample orientation discussed below. XBI images
recorded at temperatures that are clearly within the crystalline
phase (Fig. S2 in ESI†) indicate that the sample exists in multi-
crystal domains. The X-ray intensity for the crystalline phase is
signicantly lower than that for the smectic A phase, which may
be a consequence of the X-ray beam passing through several
domains with different orientations on its path through the
polycrystalline sample and/or may reect a lower resultant
degree of alignment of the C–Br bonds in this phase (for
example, if there are two or more distinct orientations of the
C–Br bonds in the unit cell; we note, however, that the crystal
structure of this material has not been reported).

The type of experiment described above, in which XBI data
were measured by changing the sample orientation by c-scans
3008 | Chem. Sci., 2019, 10, 3005–3011
at selected xed temperatures was found to be problematic in
the case of liquid-crystalline phases, as it was oen observed in
such experiments that the domain structure could occasionally
change suddenly and unpredictably on changing the value of c,
reecting the uid nature of these phases under gravity. Under
such circumstances, it is difficult to extract reliable information
on the characteristic differences in X-ray intensity between the
different liquid crystal phases. Instead, we have found that
a much more reliable protocol for exploring the changes in the
degree of ordering in the liquid crystal phases as a function of
temperature is to record the XBI images with the orientation of
the applied magnetic eld xed at c ¼ 45� while scanning
through the temperature range of interest. The results from an
experiment of this type are shown in Fig. 6, in which the XBI
images were recorded on decreasing the temperature from
218 �C (i.e. starting in the isotropic liquid phase) to 108 �C at
a rate of 1 �Cmin�1, with the XBI images recorded continuously
This journal is © The Royal Society of Chemistry 2019
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during the cooling process (time per image, 5 s). At the highest
temperature, which is above the clearing temperature, the
intensity is very low as a result of the isotropic orientational
molecular distribution in the isotropic liquid phase. On
decreasing the temperature, the intensity increases substan-
tially between 216 �C and 205 �C, representing the transition
from the isotropic liquid into orientationally ordered phases
(from Iso / N / SmA). The upper part of Fig. 6 shows the
evolution of the X-ray intensity measured from the XBI images
as a function of temperature. In the range between 216 �C and
205 �C, the data show a ‘rst-order’ change in intensity at the
clearing point as the nematic phase forms, aer which there is
a small inection over the approximate temperature range
215 �C to 211 �C (corresponding to the intensity range from ca.
0.2 to 0.4). The fact that the sharp rise in intensity between
216 �C and 205 �C covers a signicantly wider temperature
range than the Iso / N / SmA events observed by DSC and
optical microscopy may reect a combination of the tempera-
ture gradient across the sample plus the kinetics of alignment
in the presence of the magnetic eld. On decreasing the
temperature within the SmA phase, the intensity shows
a gradual increase until a visible transition into the SmB phase
is observed from a further sharp (although relatively small)
increase in intensity, followed by a signicant decrease in
intensity upon crystallization.

The order in liquid crystal phases can be quantied by
a series of order parameters, of which the most commonly used
is the orientational order parameter, S¼ h12(3 cos2 q� 1)i, where
q is the angle between the director and the individual long
molecular axes. The value of S is oen determined by
measurement of the optical birefringence (S is proportional to
the birefringence). As an example, Fig. S3† shows the evolution
of the refractive index in a material that has the same phase
transition sequence as the compound under study here, albeit
with different phase ranges.29 The behaviour in Fig. S3† reveals
a steep initial increase in birefringence (and hence in the order
parameter) that attens as the sample is cooled away from the
clearing point, which is qualitatively the same as the evolution
of X-ray intensity with decreasing temperature in Fig. 6. Clearly,
the X-ray intensity in XBI data is related to the order parameter
S, and while our interpretations of the changes in X-ray intensity
as a function of temperature have invoked this relation at
a qualitative level, our future research will include the deriva-
tion of a more quantitative framework for determining values of
order parameters from XBI data.

The results reported in this paper represent the rst experi-
ments to study the orientational ordering of liquid crystal
phases using the XBI technique, and demonstrate clearly the
capability of the method to identify the direction of preferential
molecular alignment in these phases and to establish, at least
qualitatively, the relative degree of molecular orientational
ordering in the different liquid crystal phases observed. The
type of experiment reported in Fig. 6, involving the measure-
ment of XBI images as a detailed function of temperature for
a xed sample orientation, provides a clear indication of the
occurrence of phase transitions between the liquid crystal
phases as well as indicating the changes in the degree of
This journal is © The Royal Society of Chemistry 2019
orientational ordering associated with these phase transitions,
and we anticipate that this type of temperature-resolved XBI
measurement will prove to be particularly useful in the liquid
crystals eld. Our future research will extend these initial
studies to encompass a signicantly wider range of types of
liquid-crystalline material, including those containing metal
atoms that may be utilized as the X-ray absorbing element in the
XBI measurements. Our plans to further develop the sample cell
for carrying out XBI measurements on liquid crystal phases
(particularly focusing on improving the accuracy of temperature
control and reduction of temperature gradients) are likely to
allow structural information of a more quantitative nature to be
derived from our future studies.
Experimental

Synthesis of 40-octyloxy-[1,10-biphenyl]-4-yl-4-bromobenzoate
(Scheme 1) was carried out using the procedure reported
previously.24 Phase transitions were checked by optical
microscopy (Olympus BX50 polarizing microscope equipped
with a Linkam LTS350 heating stage, Linkam LNP2 cooling
pump and Linkam TMS92 controller) and by DSC (TA Instru-
ments Q100 differential scanning calorimeter). For the DSC
measurements, the powder sample was loaded into a hermeti-
cally sealed aluminium pan and heated to 250 �C to produce the
liquid phase; DSC data were then recorded on cooling to 100 �C
at 1 �C min�1 or 10 �C min�1.

All XBI experiments were carried out on beamline B16 at
Diamond Light Source with the sample mounted on a ve-
circle, vertical-scattering, Huber Eulerian diffractometer.30 The
incident X-ray energy was 13.490 keV, corresponding to the Br K-
edge. In the experimental set-up for XBI (Fig. 1), a wide unfo-
cused linearly-polarized incident X-ray beam is incident upon
the sample; the X-rays transmitted through the sample undergo
Bragg diffraction at the polarization analyzer, and the intensity
of the X-ray beam diffracted from the polarization analyzer is
recorded in a spatially resolved manner using an area detector.
In this work, the beam dimensions were dened by slits of
4 mm (vertical) and 4 mm (horizontal), and the polarization
analyzer was a Si(555) crystal. For the c-scans at xed temper-
ature (Fig. 4, S1 and S2†), the area detector was an SCMOS X-ray
camera from Photonic Science Ltd (pixel size, 3.25 mm; image
dimensions, 1920 � 1080 pixels) and the time to record each
XBI image was 2 s. For the XBI images recorded as a function of
temperature at xed sample orientation (Fig. 6), the area
detector was a 12-bit CCD miniFDS camera from Photonic
Science Ltd (pixel size, 6.5 mm; image dimensions, 1392 � 1040
pixels) and the time to record each XBI image was 5 s. For the
experimental set-up used in this work, the spatial resolution of
the XBI images was ca. 10 mm. The spatial resolution of the XBI
images in the vertical direction (ca. 13 mm) is limited by the
resolution of the CCD-based detector. The spatial resolution in
the horizontal direction is limited by the dynamical diffraction
extinction depth of the polarization analyzer. The background
intensity distribution in the XBI images is discussed
elsewhere.31
Chem. Sci., 2019, 10, 3005–3011 | 3009
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