Issue 15, 2019

Design rules for encapsulating proteins into complex coacervates

Abstract

We investigated the encapsulation of the model proteins bovine serum albumin (BSA), human hemoglobin (Hb), and hen egg white lysozyme (HEWL) into two-polymer complex coacervates as a function of polymer and solution conditions. Electrostatic parameters such as pH, protein net charge, salt concentration, and polymer charge density can be used to modulate protein uptake. While the use of a two-polymer coacervation system enables the encapsulation of weakly charged proteins that would otherwise require chemical modification to facilitate electrostatic complexation, we observed significantly higher uptake for proteins whose structure includes a cluster of like-charged residues on the protein surface. In addition to enhancing uptake, the presence of a charge patch also increased the sensitivity of the system to modulation by other parameters, including the length of the complexing polymers. Lastly, our results suggest that the distribution of charge on a protein surface may lead to different scaling behaviour for both the encapsulation efficiency and partition coefficient as a function of the absolute difference between the protein isoelectric point and the solution pH. These results provide insight into possible biophysical mechanisms whereby cells can control the uptake of proteins into coacervate-like granules, and suggest future utility in applications ranging from medicine and sensing to remediation and biocatalysis.

Graphical abstract: Design rules for encapsulating proteins into complex coacervates

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
20 Feb 2019
Accepted
18 Mar 2019
First published
19 Mar 2019

Soft Matter, 2019,15, 3089-3103

Author version available

Design rules for encapsulating proteins into complex coacervates

W. C. Blocher McTigue and S. L. Perry, Soft Matter, 2019, 15, 3089 DOI: 10.1039/C9SM00372J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements