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Diazaspirocycles: novel platforms for efficient
phosphorescent organic light-emitting diodes†
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Jian Fan *

Azafluorenone was discovered decades ago and its derivatives have received widespread attention in

various research fields. However, the application of azafluorenone and its derivatives in organic light-

emitting diode (OLED) materials is rarely reported and the related device performance is still not

satisfactory. In this work, 1,4-diazafluorenone and its two analogues were prepared as precursors and

three novel spiro compounds, SAIP, SAIQ, and SABIQ, were synthesized. The basic physical and chemical

properties of SAIP, SAIQ, and SABIQ were studied in detail. From SAIP to SAIQ and SABIQ, the triplet

energies (ETs) and optical band gaps (Egs) decrease gradually with the extension of the intramolecular

conjugation length. In addition, blue/green/red and green/red phosphorescent OLEDs (PHOLEDs) were

fabricated with SAIP and SAIQ as host materials, respectively. It is worth noting that all green and red

devices based on SAIP or SAIQ showed a relatively high device performance with maximum external

quantum efficiencies (EQEs) of 17.8% and 21.4%, respectively. These results further show the high potential

of azafluorenone and its analogues in the building of efficient host materials.

Introduction

The chemistry of azafluorenones (Fig. 1) has been well studied
in the early literature,1 and there has been significant develop-
ment in the synthetic methods for these fused ring systems over
the last four decades. A survey of the preparation of azafluore-
nones shows that there are three typical synthetic routes. The
first one is to make use of oxidative ring contractions of nitrogen-
containing fused compounds. For example, azafluorenone
derivatives can be obtained by oxidation of the corresponding
substituted azaphenanthrenes with potassium permanganate
(KMnO4).1b,2 The second method is to increase the number of
fused rings by annelation of the heterocycle. For instance, the
condensation of the indane–1,3-dione-aminocrotonate–aldehyde
three-component system is the most efficient and therefore
widely used for the synthesis of 1,4-dihydro-4-azafluorenes,3

which can be easily aromatized with oxidants or under UV
irradiation to obtain the corresponding 4-azafluorenones.4 The
third method is intramolecular cyclocondensation of aryl- or
aroyl pyridines. The availability of diverse pyridine derivatives
(phenylpyridinecarboxylic acids,5 and respective acid chlorides,6

nitriles, esters5e,f,7 and acid amides8) has offered broad

possibilities for the synthesis of all isomeric azafluorenones. The
corresponding cyclisation often requires sulfuric9 and polyphos-
phoric acids (PPAs),7d,10 aluminum chloride (AlCl3),11 and some
other compounds5e,f,8,12 as condensing agents. Other specific
methods such as the photochemical Pschorr cyclization of
2-diazoniodiaryl ketones,13 radical Pschorr cyclization of organo-
boronic acids and trifluoroborates,14 gas-phase thermolysis of diazo
compounds,1b intramolecular Heck reactions of 3-aroylpyridines,15

intramolecular carbonylation via oxidative C–H functionalization
of the methyl group,16 and C–H functionalization of the methyl/
hydroxymethyl/aldehyde group17 have also been reported.

Recently, various nitrogenated rigid molecular building
blocks18 such as carbazole,19 dibenzo[b,d]furan (DBF),20

dibenzo[b,d]thiophene (DBT),21 and 9,90-spirobifluorene (SBF)22 have

Fig. 1 The structures of isomeric azafluorenones.
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been extensively used as functional materials in organic light-
emitting diodes (OLEDs).19b–g,20,21,22a–e Many research studies have
illustrated that the introduction of an sp2 nitrogen atom into the
backbone of organic conjugated materials can improve their electron
transport ability.18 For this purpose, azafluorenones (Fig. 2) and
diazafluorenones (Fig. 3) are good starting materials to construct the
corresponding aza-SBF derivatives.23–25 It is worth noting that
4,5-diaza-SBF derivatives have been more extensively studied22c–f,23

relative to other diaza-SBF compounds. There are several reported
ways to synthesize diazafluorenones, including the ring contraction
reactions of phenanthrolinchinones,2d,26 the condensation reaction
of ninhydrin/aryl methyl ketone and hydrazine hydrate,23,27 the
condensation reaction of 1-(N,N-dimethylaminomethyliden)indan-
2-one and benzamidine hydrochloride hydrate,28 and the cyclocon-
densation reaction of ninhydrin and ethylenediamine.29

In OLEDs, phosphorescent emitters are normally doped into
suitable host materials to suppress the competitive decay process
such as triplet–triplet annihilation and triplet–polaron annihila-
tion.30 Therefore, the chemical and physical properties of the host
materials such as good thermal stability, suitable triplet energy,
and balance charge transfer properties are important for fabricat-
ing efficient phosphorescent OLEDs (PHOLEDs).31 Very recently,
plenty of work has been reported on the development of highly
efficient host materials for blue, green, and red PHOLEDs,32 as well

as the optimization of the device structure.33 For instance, Liao and
co-workers reported a novel thermally activated delayed fluores-
cence (TADF) material as the host material for a red PHOLED with
an external quantum efficiency (EQE) over 31%.32e So far, many
novel molecular platforms such as dispiro,32a propellane32a and
9-silafluorene32b have been used for the construction of highly
efficient host materials. On the other hand, high performance
PHOLEDs have also been realized via device optimization such
as applying a co-host,33a,b a double emission layer,33c and a
novel electron-transporting material.33d,e

To develop high performance host materials, several empirical
design strategies that would improve the charge transport capability
of aza-SBFs have been reported in recent years, such as introduction
of aromatic amine substituents (diphenylamine, carbazole, etc.) to
aza-SBF backbones34 and the replacement of fluorene with a tri-
phenylamine or diphenylsulfane unit.35 In this article, three novel
spirocycles, 10-phenyl-10H-spiro[acridine-9,90-indeno[1,2-b]pyrazine]
(SAIP), 10-phenyl-10H-spiro[acridine-9,110-indeno[1,2-b]quinoxaline]
(SAIQ) and 10-phenyl-10H-spiro[acridine-9,130-benzo[g]indeno[1,2-b]-
quinoxaline] (SABIQ), are constructed. Basic properties such as the
thermal and photophysical properties and the electrochemistry
behaviors of SAIP, SAIQ, and SABIQ were fully characterized. The
introduction of different electron acceptor segments has a great
influence on the basic physical and chemistry properties of these
spirocycles, but has a minor effect on their electroluminescence
performance. Blue, green, and red PHOLEDs were fabricated
with bis(4,6-(difluorophenyl)pyridinato-N,C20)picolinate iridium(III)
(FIrpic), bis(2-phenylpyridine)(acetylacetonate)iridium(III) (Ir(ppy)2-
(acac)), and bis(2-methyldibenzo-[f,h]-quinoxaline)iridium(III)
(acetylacetonate) (Ir(MDQ)2(acac)) as dopants, respectively.
To our great delight, the green and red devices demonstrated
moderate device performance with external quantum efficien-
cies above 17% and 21%, respectively.

Experimental section
Materials synthesis

The precursors 1,4-diazafluorenone (1),29 11H-indeno[1,2-b]quinox-
alin-11-one (2),36 and 13H-benzo[g]indeno[1,2-b]quinoxalin-13-one
(3)37 were prepared in accordance with literature methods.

Fig. 2 Reported structures of azafluorenones and the corresponding azaspirobifluorenes.

Fig. 3 Reported structures of diazafluorenones.
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1,4-Diazafluorenone (1). 1H NMR (400 MHz, chloroform-d)
d 8.56–8.52 (m, 1H), 8.50–8.47 (m, 1H), 7.89 (d, J = 7.5 Hz, 1H), 7.82
(d, J = 7.4 Hz, 1H), 7.68 (t, J = 7.6 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H) ppm.

11H-Indeno[1,2-b]quinoxalin-11-one (2). 1H NMR (400 MHz,
chloroform-d) d 8.24 (d, J = 8.3 Hz, 1H), 8.14–8.08 (m, 2H), 7.93
(d, J = 7.5 Hz, 1H), 7.87–7.71 (m, 3H), 7.61 (t, J = 7.5 Hz, 1H) ppm.

13H-Benzo[g]indeno[1,2-b]quinoxalin-13-one (3). 1H NMR
(400 MHz, chloroform-d) d 8.79 (s, 1H), 8.62 (s, 1H), 8.20 (d,
J = 7.6 Hz, 1H), 8.09 (t, J = 8.7 Hz, 2H), 7.98 (d, J = 7.6 Hz, 1H),
7.82 (t, J = 7.5 Hz, 1H), 7.69–7.55 (m, 3H) ppm.

10-Phenyl-10H-spiro[acridine-9,90-indeno[1,2-b]pyrazine] (SAIP).
2-Bromo-N,N-diphenylaniline (5 g, 15.4 mmol) was dissolved in
THF (80 mL) at �78 1C, and n-butyl lithium (11.6 mL, 18.5 mmol,
1.6 M in n-hexane) was added dropwise using a syringe. After
stirring for 1 hour at �78 1C, 1 (2.8 g, 15.4 mmol) in THF (50 mL)
was added slowly over a period of 30 min. The resulting mixture
was stirred for 2 hours at �78 1C, and the mixture was gradually
warmed to room temperature overnight. The reaction was
quenched with water, and the product was extracted with EtOAc
(3 � 50 mL). Then the organic layer was separated and dried
over sodium sulfate (Na2SO4). The removal of the solvent under
reduced pressure afforded the crude product as a light yellow
oil, which was directly used in the next reaction without further
purification.

The crude product was dissolved in acetic acid (100 mL) at
110 1C and 10 mL of hydrochloric acid was added dropwise.
The mixture was heated to reflux overnight. Then the reaction
system was cooled down to room temperature. After the
removal of the solvent, the raw product was purified by column
chromatography using petroleum ether/EtOAc (3/1, v/v) as an
eluent to give SAIP as a pale-yellow powder (3.8 g, B60%).
1H NMR (600 MHz, chloroform-d) d 8.45 (d, J = 2.6 Hz, 1H), 8.29
(d, J = 2.6 Hz, 1H), 8.19–8.10 (m, 1H), 7.68 (t, J = 7.6 Hz, 2H),
7.60–7.47 (m, 6H), 6.94 (ddd, J = 8.4, 7.1, 1.5 Hz, 2H), 6.57 (t,
J = 7.5 Hz, 2H), 6.40 (d, J = 8.4 Hz, 2H), 6.31 (dd, J = 7.9, 1.5 Hz,
2H) ppm. 13C NMR (151 MHz, chloroform-d) d 168.45, 154.67,
152.18, 143.36, 142.76, 141.79, 141.02, 136.86, 131.62, 131.27,
130.94, 128.58, 128.43, 127.83, 127.23, 126.55, 121.77, 121.44,
120.41, 115.17, 55.34 ppm. MALDI-TOF (m/z), calculated for:
409.492, found: 407.994. Anal. calcd for: C29H19N3 (%): C, 85.06;
H, 4.68; N, 10.26; found: C, 85.09; H, 4.72; N, 10.18.

10-Phenyl-10H-spiro[acridine-9,110-indeno[1,2-b]quinoxaline]
(SAIQ) and 10-phenyl-10H-spiro[acridine-9,130-benzo[g]indeno-
[1,2-b]quinoxaline] (SABIQ) were prepared by a similar method
to that used for SAIP.

SAIQ. Bright yellow solid (68%). 1H NMR (600 MHz, chloro-
form-d) d 8.34–8.29 (m, 1H), 8.14 (d, J = 8.2 Hz, 1H), 7.99 (d, J =
8.3 Hz, 1H), 7.75–7.67 (m, 3H), 7.67–7.55 (m, 7H), 6.95 (t, J =
8.5 Hz, 2H), 6.56 (t, J = 8.1 Hz, 2H), 6.45 (d, J = 8.4 Hz, 2H), 6.37
(d, J = 7.8 Hz, 2H) ppm. 13C NMR (151 MHz, chloroform-d)
d 167.72, 154.61, 153.28, 142.62, 142.09, 141.77, 141.12, 136.64,
132.73, 131.31, 130.92, 129.77, 129.43, 128.95, 128.83, 128.63,
128.44, 127.76, 127.42, 126.80, 123.08, 122.06, 120.40, 115.14,
55.16 ppm. MALDI-TOF (m/z), calculated for: 459.552, found:
458.343. Anal. calcd for: C33H21N3 (%): C, 86.25; H, 4.61; N,
9.14; found: C, 86.30; H, 4.75; N, 9.10.

SABIQ. Orange-yellow solid (62%). 1H NMR (600 MHz,
chloroform-d) d 8.69 (s, 1H), 8.53 (s, 1H), 8.39–8.36 (m, 1H),
8.08 (d, J = 8.2 Hz, 1H), 8.00 (d, J = 8.1 Hz, 1H), 7.75 (t, J = 7.7 Hz,
2H), 7.71–7.67 (m, 2H), 7.66–7.57 (m, 4H), 7.55–7.49 (m, 2H),
6.96 (t, J = 8.5 Hz, 2H), 6.58 (t, J = 8.0 Hz, 2H), 6.47 (d, J = 8.5 Hz,
2H), 6.43 (d, J = 7.9 Hz, 2H) ppm. 13C NMR (151 MHz, chloro-
form-d) d 168.16, 154.57, 154.36, 141.66, 141.12, 139.29, 138.84,
136.62, 133.65, 133.37, 133.16, 131.35, 130.96, 128.99, 128.48,
128.28 (d, J = 6.3 Hz), 127.98, 127.76 (d, J = 13.5 Hz), 127.02 (d,
J = 7.0 Hz), 126.51, 126.37, 123.33, 122.27, 120.45, 115.15, 55.06
ppm. MALDI-TOF (m/z), calculated for: 509.612, found: 509.169.
Anal. calcd for: C37H23N3 (%): C, 87.20; H, 4.55; N, 8.25; found:
C, 87.34; H, 4.61; N, 8.13.

Results and discussion
Preparation and characterization

The synthesis routes to SAIP, SAIQ, and SABIQ are outlined in
Scheme 1. The key precursors 1,29 2,36 and 337 were synthesized
according to literature methods that provided good yields.
Then the ketones underwent nucleophilic addition with
2-lithium-N,N-diphenylaniline to give the corresponding tertiary
alcohols. The subsequent acid catalyzed cyclization produced
the target products SAIP, SAIQ, and SABIQ in moderate yields. In
addition, 1H and 13C nuclear magnetic resonance (1H/13C NMR),
mass spectrometry (MS) and elemental analysis (EA) were utilized
to further validate the structures of SAIP, SAIQ, and SABIQ.

Thermal properties

The thermal properties of SAIP, SAIQ, and SABIQ were investi-
gated by differential scanning calorimetry (DSC) and thermo-
gravimetric analysis (TGA) in nitrogen. The experimental results
are shown in Fig. 4 and the detailed data are listed in Table 1.

Scheme 1 Synthetic routes to SAIP, SAIQ, and SABIQ.
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The glass transition temperatures (Tgs) and decomposition tem-
peratures (Tds, 5 wt% weight loss) were found to be 95, 122 and
178 1C and 304, 352 and 393 1C for SAIP, SAIQ, and SABIQ,
respectively. The good thermal properties of these three materials
might be due to the rigid and bulky molecular platforms of the
spiro-structures. It is worth noting that the nearly 100% weight
loss at 381 1C, 439 1C, and 495 1C for SAIP, SAIQ, and SABIQ,
respectively, could be due to the sublimation of these compounds.

Photophysical properties

The UV-Vis absorption and photoluminescence (PL) spectra of
SAIP, SAIQ, and SABIQ were recorded at room temperature in a

dichloromethane (DCM) solution, and phosphorescence (Phos)
spectra were recorded at 77 K in a toluene glass matrix (Fig. 5
and Fig. S1, ESI†). Their photophysical results are summarized in
Table 1. According to the UV-Vis absorption spectra, the maxi-
mum absorption peaks were observed at 321 nm, 348/366 nm,
and 374/394 nm for SAIP, SAIQ, and SABIQ, respectively. In
addition, the energy gaps (Egs) are calculated based on the
absorption edge, which are 3.58 eV, 3.30 eV, and 2.92 eV for
SAIP, SAIQ, and SABIQ, respectively. On the other hand, we can
clearly see that the PL spectra of SAIP, SAIQ, and SABIQ are
broader and structureless, and their emission peaks were at
478 nm, 539 nm, and 570 nm, respectively. In contrast, the Phos
spectra of SAIP, SAIQ, and SABIQ are well-defined (Fig. S1, ESI†),
and the corresponding triplet energies (ETs) were determined
from the first emission peaks in the Phos spectra to be 2.71 eV for
SAIP, 2.47 eV for SAIQ, and 2.38 eV for SABIQ. It is noteworthy
that from pyrazine to quinoxaline to benzo[g]quinoxaline, the
p-conjugation systems are extending gradually, which make a
direct contribution to the red-shift of their absorption and
emission spectra, and the narrowing of their Egs. In addition,
the molecular configuration of SAIP resembles that of 10-phenyl-
10H-spiro[acridine-9,90-fluorene] (SAF),38 but the triplet energy of
SAIP is not as high as that of SAF (2.87 eV).38c The replacement of
benzene with pyrazine could be the reason for the reduction in
the triplet state energy,39 but the introduction of the electron-
withdrawing group might be beneficial for achieving a more
balanced charge transport characteristic, thus resulting in an
efficient PHOLED.35

In an attempt to understand the electronic structures of the
excited states of SAIP, SAIQ, and SABIQ, natural transition
orbital (NTO) analysis was used to study the nature of singlet
(S1) and triplet (T1) excitations of these molecules.40 As shown
in Fig. S2 (ESI†), the holes of the S1 states of SAIP, SAIQ, and
SABIQ were mainly localized at the acridine unit. However, the
particles of these three molecules were confined to the electron
acceptors, 9H-indeno[1,2-b]pyrazine, 11H-indeno[1,2-b]quinoxaline,
and 13H-benzo[g]indeno[1,2-b]quinoxaline, which indicate the
charge transfer (CT) characteristics of the S1 states of these
compounds. The solvation effect of SAIP, SAIQ, and SABIQ could
support their intramolecular charge transfer (ICT) features
(Fig. S3, ESI†).41 Furthermore, for the T1 state, the holes and
particles of SAIP and SAIQ were similar to those of S1, but the
holes were partially delocalized over pyrazine to a certain
extent, which exhibited CT and locally excited (LE) hybrid state
characteristics. However, the holes and particles of SABIQ were

Fig. 4 DSC and TGA curves of SAIP, SAIQ, and SABIQ.

Table 1 Summary of the physical properties of SAIP, SAIQ, and SABIQ

Molecule
Abs lmax

a PL lmax
a Tg

b/Td
c Eg

d ET
e HOMOf LUMOg

[nm] [nm] [1C] [eV] [eV] [eV] [eV]

SAIP 321 478 95/304 3.58 2.71 �5.33 �1.75
SAIQ 348, 366 539 122/352 3.30 2.47 �5.33 �2.03
SABIQ 374, 394 570 178/393 2.92 2.38 �5.34 �2.42

a Measured in dichloromethane solution at room temperature. b Tg: glass transition temperature. c Td: decomposition temperature. d Eg: optical
band gap energies were calculated from the corresponding absorption onset in dichloromethane solution. e ET: measured in a toluene glass matrix
at 77 K. f HOMO levels were calculated from CV data. g LUMO levels were calculated from the HOMOs and Egs.
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mainly localized at the benzo[g]quinoxaline motif, which demon-
strated an LE state characteristic.

Electrochemical properties and theoretical calculations

The HOMO and LUMO energy levels of a host play an important
role in device fabrication and optimization. Therefore, we
investigated the electrochemical behaviors of SAIP, SAIQ, and
SABIQ by cyclic voltammetry (CV). The HOMO energy levels can
be estimated from the onset of oxidation waves. As shown in
Fig. 6, the electrochemical behaviors of SAIP, SAIQ, and SABIQ
were alike at the onset of the oxidation waves around 1.0 V.
Therefore, SAIP, SAIQ, and SABIQ exhibited very similar HOMO
energy levels. On the other hand, the LUMO energy levels of
SAIP (�1.75 eV), SAIQ (�2.03 eV), and SABIQ (�2.42 eV) can be
calculated by subtracting the optical energy gaps (Egs) from the
corresponding HOMO energy levels. Furthermore, we also
studied the frontier molecular orbital (FMO) electronic distri-
butions and the energy levels of SAIP, SAIQ, and SABIQ using
density function theory (DFT) calculations at the B3LYP/6-31G(d)
level. As illustrated in Fig. 7, the HOMOs were mainly distributed
on the electron rich acridine motifs, which led to SAIP, SAIQ, and
SABIQ having almost the same HOMO energy level. The LUMOs
reside over the diaza-containing motifs in these compounds.

From SAIP to SAIQ and to SABIQ, the Egs decrease gradually with
the extension of molecular p-conjugation, and the LUMO energy
levels decrease as well.

Electroluminescence properties

In order to investigate the electroluminescence (EL) properties
of these novel spirocycles, blue, green and red PHOLEDs were
fabricated with the following device configurations: ITO/HAT-CN
(10 nm)/TAPC (55 nm)/TCTA (10 nm)/SAIP: 10 wt% FIrpic (20 nm)/
B4PyMPM (45 nm)/Liq (2 nm)/Al (120 nm) (blue device, denoted
as B1), ITO/HAT-CN (10 nm)/TAPC (55 nm)/SAIP or SAIQ: 10 wt%
Ir(ppy)2(acac) (20 nm)/B4PyMPM (40 nm)/Liq (2 nm)/Al (120 nm)
(green device, denoted as G1 or G2), and ITO/HAT-CN (10 nm)/
TAPC (45 nm)/TCTA (10 nm)/SAIP or SAIQ: 6 wt% Ir(MDQ)2(acac)
(20 nm)/TmPyPB (45 nm)/Liq (2 nm)/Al (120 nm) (red device,
denoted as R1 or R2). Fig. 8, 9 and Fig. S5 (ESI†) show the current
density–voltage–luminance (J–V–L) characteristics, current effi-
ciency (CE)/power efficiency (PE)/external quantum efficiency
(EQE)–L curves, and EL spectra of the corresponding PHOLEDs.
These device parameters are listed in Table 2.

Fig. 6 Cyclic voltammograms of SAIP, SAIQ, and SABIQ.

Fig. 7 Frontier molecular orbital distributions and energy levels of SAIP,
SAIQ, and SABIQ.

Fig. 5 UV-Vis absorption and PL spectra of SAIP, SAIQ, and SABIQ.
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The green and red devices based on SAIP and SAIQ exhibited
very similar device performances. More specifically, the SAIP
and SAIQ based green and red devices showed relatively low
driving voltages (2.5 V) at a brightness of 200 cd m�2. Further-
more, the green and red devices also demonstrated relatively
high device efficiencies. The maximum CE/PE/EQE achieved were
62.5 cd A�1/81.5 lm W�1/17.8% and 63.0 cd A�1/82.3 lm W�1/
17.9% for the SAIP and SAIQ hosted green devices, respectively.
The maximum CE, PE, and EQE could reach 35.5/35.4 cd A�1,
46.5/42.6 lm W�1, and 21.5%/21.4% for the SAIP/SAIQ based

red devices, respectively. The Commission Internationale de
l’Eclairage (CIE) coordinates of the SAIP and SAIQ based green
and red devices are (0.32, 0.63) and (0.61, 0.39), respectively,
which are consistent with those of the reported Ir(ppy)2(acac)42

and Ir(MDQ)2(acac)43 doped devices. For the SAIP and SAIQ
hosted devices, there are some factors that can account for their
similar device performance. The high ETs of SAIP and SAIQ
would result in an efficient energy transfer process from the
host to the dopant, and prevent reverse energy transfer from the
dopant to the host.44 Moreover, suitable HOMO/LUMO energy

Fig. 8 (a) J–V–L characteristics, (b) CE–, PE–, and EQE–L curves, and
(c) EL spectra of the green devices.

Fig. 9 (a) J–V–L characteristics, (b) CE–, PE–, and EQE–L curves, and
(c) EL spectra of the red devices.
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levels of SAIP and SAIQ would reduce the hole and electron
injection barrier, thus lowering the device driving voltages and
achieving a high PE. In addition, the good thermal stabilities
of SAIP and SAIQ will be favorable for the device operation
stability. In addition, the PLQYs of Ir(PPy)2(acac) (10 wt%) and
Ir(MDQ)2(acac) (6 wt%) in SAIP/SAIQ were measured to be
66%/69% and 75%/74%, respectively, which were consistent with
the observed EQEs for the SAIP (green, 17.8%; red, 21.5%) and
SAIQ (green, 17.9%; red, 21.4%) hosted devices. These results
further suggest that SAIP and SAIQ could effectively confine the
triplet energies of green and red dopants within devices. On the
other hand, hole-only and electron-only devices were fabricated
to study the charge transport properties of SAIP and SAIQ with
the following device structures: hole-only devices, ITO/MoO3

(10 nm)/SAIP or SAIQ (100 nm)/MoO3 (10 nm)/Al (100 nm);
electron-only: ITO/TmPyPB (20 nm)/SAIP or SAIQ (100 nm)/
TmPyPB (20 nm)/Liq (2 nm)/Al (100 nm) (Fig. 10). Both SAIP
and SAIQ demonstrated the bipolar transport character with
similar hole and electron mobilities, which could account in part
for their similar device performance. In addition, the hole- and
electron-mobility of SAIP and SAIQ were estimated according to

the literature method45 to be mSAIP,h = 6.2 � 10�5 cm V�1 s�1,
mSAIP,e = 1.3 � 10�7 cm V�1 s�1; mSAIQ,h = 5.7 � 10�5 cm V�1 s�1,
and mSAIQ,e = 3.2 � 10�7 cm V�1 s�1. Thus, detailed studies of the
relationships between molecular structures, physical/chemical
properties, and device performance are important. As shown in
Fig. S5 (ESI†), the performance of the SAIP hosted blue device
was relatively low compared with those of the corresponding
green and red devices. The maximum CE, PE, and EQE were
22.0 cd A�1, 28.0 lm W�1, and 11.0%, respectively. This result is
not satisfactory, probably due to the small ET difference between
SAIP (2.71 eV) and the blue dopant FIrpic (2.62 eV),31b which
could favor the reverse energy transfer from the dopant to the
host, although the emission from the host was not observed in
the EL spectrum.

Conclusions

In conclusion, three novel spirocycle compounds (SAIP, SAIQ,
and SABIQ) containing an electron donating acridine unit and
an electron withdrawing pyrazine segment were designed and
synthesized. The different p-conjugation lengths of the acceptor
units led to the different photophysical properties of SAIP, SAIQ,
and SABIQ. Our results show that the green and red PHOLEDs
exhibit a similar and relatively high device performance with
those of SAIP and SAIQ as host materials. The maximum EQE of
the green and red devices could exceed 17% and 21%, respec-
tively. Correspondingly, we hope our study will expand the
application of 1,4-diazafluorenone and its analogues in the
field of OLED materials and shed new light on the development
of efficient host materials.
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