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Choosing proper normalization is essential for
discovery of sparse glycan biomarkers†

Hae-Won Uh, *a Lucija Klarić, bc Ivo Ugrina,bde Gordan Lauc,bf Age K. Smildeg

and Jeanine J. Houwing-Duistermaatah

Rapid progress in high-throughput glycomics analysis enables the researchers to conduct large sample

studies. Typically, the between-subject differences in total abundance of raw glycomics data are very

large, and it is necessary to reduce the differences, making measurements comparable across samples.

Essentially there are two ways to approach this issue: row-wise and column-wise normalization. In

glycomics, the differences per subject are usually forced to be exactly zero, by scaling each sample

having the sum of all glycan intensities equal to 100%. This total area (row-wise) normalization (TA)

results in so-called compositional data, rendering many standard multivariate statistical methods

inappropriate or inapplicable. Ignoring the compositional nature of the data, moreover, may lead to

spurious results. Alternatively, a log-transformation to the raw data can be performed prior to column-

wise normalization and implementing standard statistical tools. Until now, there is no clear consensus

on the appropriate normalization method applied to glycomics data. Nor is systematic investigation of

impact of TA on downstream analysis available to justify the choice of TA. Our motivation lies in efficient

variable selection to identify glycan biomarkers with regard to accurate prediction as well as

interpretability of the model chosen. Via extensive simulations we investigate how different

normalization methods affect the performance of variable selection, and compare their performance.

We also address the effect of various types of measurement error in glycans: additive, multiplicative and

two-component error. We show that when sample-wise differences are not large row-wise

normalization (like TA) can have deleterious effects on variable selection and prediction.

1. Introduction

Glycomics is an emerging omics field. The majority of proteins
are glycosylated and glycomics changes may well be a hallmark
of human disease.1 The structural complexity of glycans,
however, has slowed down the development of high-throughput
quantification methods, and technical improvements are still
ongoing. Keeping pace with technological progress we here
examine appropriate handling of glycomics data in large sample
studies. The motivating example of the present work is based

on data from Orkney Islands in Scotland,2 where we assess
prediction of age from immunoglobulin G (IgG) glycans. Fig. 1
shows twenty four glycans bound to IgG measured by ultra-
performance liquid chromatography (UPLC). It is reported that
IgG glycosylation appears to be closely linked with chronological
and biological ages.2–4 Prior to exploring the potential of glycan
biomarkers of ageing, several steps of data pre-processing are
required (Fig. 2). Our interest here is to minimize unwanted
biases and variances. In this paper pre-processing refers to
various techniques used for extracting clean data from raw
instrumental data, and pre-treatment to methods that transform
the cleaned raw data for downstream statistical analysis.5

Normalization of the raw data is needed to transform glycomics
measurements or abundances to comparable scales, and
improper normalization methods can significantly impair the
data.6,7 In this work we systematically investigate the impact of
different normalization methods on variable selection using
lasso regression with glycan covariates.

In general, between-subject differences in total abundance of
raw glycomics data are large, and even technical replicates show
substantial differences due to measurement errors. To reduce
these differences (or variances), applying a log-transformation
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to the cleaned raw data is by far the easiest way, as in other
omics data analysis. Traditionally, however, the difference in
total abundance per subject is forced to be exactly zero by
scaling each sample to have the sum of all glycan intensities
equal to 1 (or 100%). This results in so-called compositional
data, also present in microbiome data analysis. Until now,

there is no clear consensus on the appropriate normalization
method for glycomics data.

The compositional nature of the data renders many standard
multivariate statistical methods inappropriate or inapplicable,
and the complications from such data are well recognized in the
statistics literature.8,9 For example, one cannot simply calculate

Fig. 1 Typical chromatogram of glycans separated by HILIC-UPLC analysis of the IgG glycome. Raw glycan intensities are computed as areas under the
curve of corresponding chromatographic peak (GP1-24).

Fig. 2 The flow diagram identifying the steps involved in a preparation of data for statistical analysis.
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the Pearson’s correlations between two compositional compo-
nents. To illustrate this problem, consider a simple, toy example
of only two glycans representing a whole glycome of a person.
Because of the constraint to the sum of a 100%, when the level of
one glycan increases, the level of another must decrease. These
two glycans are therefore negatively correlated.10 Such changes
in correlation structure are shown in Fig. 3. In Table 1, we divide
the six normalization methods considered here into two classes:
row-wise (making samples comparable, Fig. 3(c)–(f)), and column-
wise (making glycans comparable, Fig. 3(g) and (h)). Moreover,
as can be seen in Fig. 3(a), glycans are highly correlated. To
avoid overfitting and the multicollinearity problem, penalized
regression can be considered. The effects of column-wise
normalization such as centering and scaling will lead to a

corresponding change in the scale of the coefficients and
standard errors, but no change in the significance or inter-
pretation. In contrast, if the compositional glycan data is used
as covariates in regression analysis, the lasso regression should
not be directly applied.11

Another important issue to be addressed is measurement error
in glycans. Compared to more abundant glycans, IgG glycans
of low-abundance appear to be measured with up to 50% of
measurement error, indicating an additive error (unpublished
data). In gene expression data, where measurement error is
approximately constant over a range of intensity levels near
zero, it appears to be proportional to intensity level at large
intensity levels,13,14 which might imply multiplicative error.
Since the specific measurement error structure in the real data

Fig. 3 Correlation structure of immunoglobulin G glycan data. The heatmap depicts the pair-wise Spearman’s rank correlation coefficients: the colours
blue and red representing negative and positive correlation, respectively. The darker the colour, the stronger the correlation. From left to right and top to
bottom: (a) clean data, (b) log (clean data), (c) TA, (d) logTA, (e) RP, (f) MQ, (g) MS, and (h) MQN. The log-transformation ((a) vs. (b), and (c) vs. (d)) and
column-wise normalisations ((g) and (h)) do not change the correlation structure. The row-wise normalizations (c–f) change correlation structure and
introduce the negative correlation.

Table 1 Normalization methods investigated. For details cf. Section 2.1

Class Normalization Abbreviation Description

Row-wise Total area TA Each glycan peak is divided by total abundance per subject, resulting compositional data.
Log-transform of TA logTA To achieve less-skewed distribution. When centering is applied to each sample,

it is equivalent to the centred log-ratio (CLR) transformation.a

Reference peakb RP Each glycan peak is divided by the most abundant glycan peak per subject.
Median quotient MQ To remove the bias due to the relative abundance of glycan intensities.

Column-wise Median scaling MS Each glycan peak is subtracted by its median and divided by the interquartile range (IQR).
Multivariate quantile
normalization

MQN Column-wise adaptation of quantile normalization in gene expression data.

a Aitchison12 introduced transformations based on ratios: the additive log-ratio transformation (ALR) and the centred log-ratio transformation
(CLR). b By taking the logarithm of RP, the additive log-ratio (ALR) transformation is obtained.
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is not well studied, we consider three models: additive, multi-
plicative, and two-component measurement error in glycan
measurements, the last containing both additive and multi-
plicative error components. We study the effects caused by
measurement error in our simulation studies. Given that the
real correlation structure between glycans is not known, to
assess the influence of different normalizations on discovery of
glycan biomarkers we simulated the data to mimic the real data
and simulated association with an outcome. In short, we first
generate the glycans that mimic the correlation structure of real
glycan data, namely the log-transformed glycan measurements
from the Orkney Complex Disease Study (ORCADES).15 Next,
outcome variables are generated assuming that different sets
of glycan combinations are associated with the outcome. In
addition, based on different error models the corresponding
error-contaminated datasets are generated. For each of simu-
lated glycan datasets (with or without error) six different normal-
ization methods are applied, and variable selection is employed.
Finally, the impact of normalization on the performance of
variable selection is assessed via extensive simulations reflecting
various scenarios as described in Section 3.

The structure of the paper is as follows. In the next section, a
detailed description of the considered normalization methods
is given, followed by discussion on measurement error in
glycomics data. In Section 3 we present our simulation study
and evaluate the robustness and efficiency of the normalization
methods regarding variable selection. Next, the analysis of
glycan measurements from the ORCADES study15 is considered
in Section 4, where glycan variable selection is performed
with age as an outcome. Finally, in the last section we give
some insights and recommendations based on the conducted
simulation study.

2. Methods
2.1. Normalization methods

Let us first introduce some notation. Matrices are represented
with bold upper case (X) and column vectors as bold lower case
(x) letters. Let an n � p matrix X = (xij), where i = 1,. . .,n
represents samples and j = 1,. . .,p glycan variables of the
cleaned raw data. Following the order presented in Table 1,
the total area normalization (TA) can be written as follows:

TA xij
� �

¼ xij

,Xp
j¼1

xij :

From this formula it is obvious that TA introduces constraint

that
Pp
j¼1

TA xij
� �

¼ 1. TA does not entirely correct for highly

skewed distribution of glycans, and can add additional skewing
to glycan intensity distributions. Therefore, the TA-normalized
data TA(xij) is often log-transformed

logTA(xij) = log(TA(xij)).

In the compositional data analysis literature further centring
of logTA results in the centred log-ratio transformation.12

Denoting xs the column vector of the most abundant glycan
peak across the samples, the Reference Peak Normalization
(RP) can then be written as

RP(xij) = xij/xis.

RP can generate a very small variance, and additional standardi-
zation may be needed.3,16 The drawbacks of RP are: one of the
glycan chosen as the reference glycan xs will not be included for
the further analysis, and the choice of the reference glycans is
highly subjective. Median quotient (MQ) is a modified version of
Probabilistic Quotient Normalization (PQN).17 This method is
based on the median fold change of all peak intensities with
respect to a reference spectrum, or most commonly the median
of the analysed data. PQN assumes that biologically interesting
concentration changes influence only parts of the spectrum,
while dilution effects will affect all signals in the spectrum.6

Assuming similar behaviour for the UPLC glycomics data, PQN
can be adapted to suite glycomics data. First, to derive reference
glycans, a median of each glycan vector xj is calculated: median
(xj), for j = 1,. . .,p. Next, for all glycan values xij the quotient
of xij and the appropriate reference glycan is derived: xq

ij = xij/
median(xj). Then for each sample i, the median of all quotients,
xmq

i = median(xq
ij), is calculated. Finally, all glycans are divided by

the median quotient.

MQ(xij) = xq
ij/median(xmq

i ).

The next two methods involve column-wise normalization. Con-
sidering a highly right-skewed distribution, a log-transformation
is carried out prior to column-wise normalization. For conve-
nience, we use the same notation xij for the abundance on
the log scale of the jth glycan in the ith sample for i = 1,. . .,n
and j = 1,. . .,p. Median Scaling (MS) stands for the non-
parametric version of the standardization (centring and scaling),
which is sometimes simply called scaling.18 In the parametric
setting, the procedure is to subtract the mean from each glycan
and to divide by the standard deviation, resulting in zero mean
and a standard deviation of one. This often leads to the inflation
of small values. The measurement error being sometimes
relatively large for small values, this can enlarge undesirable
effects on further analysis. Hence, we chose to study a more
robust version: to subtract the median from each glycan and
divide by the interquartile range (IQR), i.e. for jth glycan

MS(xij) = {xij � median(xj)}/IQR(xj).

Quantile normalization (QN) is a row-wise normalization
proposed by Bolstad et al.19 It was derived for gene-expression
data and the justification for it comes from the idea that only a
handful of genes in most studies should be differentially
expressed between samples and therefore the distribution of
intensities should be approximately the same. Any discrepancies
between the intensity distributions are due to measurements
errors. We adapt QN to glycan data to achieve the same distribu-
tion of glycan intensities across all glycans, which is column-wise
normalization. If two glycan intensities share the same distribu-
tion, all quantiles will be identical and, hence, align along the
diagonal. This concept is extended to p dimensions in our case,
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and in fact can be interpreted as multivariate version of rank-
based inverse normal transformation, transformation often
used in a genome-wide association study (GWAS) setting.
To make distinction clear we call this method Multivariate
Quantile normalization (MQN). Thus, if all p glycan vectors
have the same distribution, then plotting the quantiles in
p dimensions gives a straight line along the line given by the
unit vector 1

� ffiffiffi
p
p

; . . . ; 1
� ffiffiffi

p
p� �

. For further computational
details we refer to ref. 19.

2.2. Normalization can change correlation structure

Let X denote an n � p matrix containing glycan measurements
for n samples and p glycans. Without loss of generality we
assume that X has a multivariate normal distribution with mean
l and covariance matrix R. The transformation performed by
TA on a row (sample) is given by

(x̃1,. . .,x̃p) = (x1,. . .,xp)/(x1 +� � �+ xp),

introducing the constraint that
P
j

~xj ¼ 1. This, unfortunately,

leads to the problem of losing the possibility to interpret
the correlation coefficients between the original components,
commonly referred to as the negative bias problem.10 This
means that for a p-part composition (x̃1,. . .,x̃p) we have

Cov(x̃1, x̃1 +� � �+ xp) = 0.

Consequently,

Cov(x̃1, x̃2) +� � �+ Cov(x̃1, x̃p) = �Var(x̃1).

Thus at least one of the covariances on the left must be
negative, and consequently, there must be at least one negative
element in each row of the raw covariance matrix.20 Fig. 3(c)–(f)
show the different patterns of correlation matrix caused by the
different row-wise normalization methods.

2.3. Measurement error models

Standard regression models assume that the covariates have
been measured precisely, or observed without error. In contrast,
the so-called errors-in-variables models or measurement error
models are regression models that account for measurement
errors in the independent variables (i.e. covariates, predictors).21

We use measurement error models to generate glycomics data-
sets that contain measurement errors for our simulation study.

Assuming X has a multivariate normal distribution with
mean m and covariance matrix R, we consider a regression
of a response Y on a predictor or covariate X. Instead of
observing X, we observe W: i.e., error-free data (Y, X) versus
the error-contaminated data (Y, W). First, for additive error we
have WA = X + U1, where U1 is additive error independent of X.
U1 is normally distributed and has mean zero and covariance
matrix RU1

. For simple linear regression the effect of having
additive measurement error in a covariate is said to be an
underestimate of the coefficient, known as the attenuation
bias. The effects can vary depending on simple or multiple
regression, and whether a covariate measured with error is
univariate or multivariate. For our simulation study, we consider

a diagonal matrix for uncorrelated error as well as a full matrix
for correlated errors. For the multiplicative measurement error,
we have WM = XU2, where U2 is multiplicative error. It indicates
that the largest observed values are very far from the true
values. If U � N 0;RUð Þ and U2,j = exp(Uj), for j = 1,. . .,p, then
U2 has a multivariate log-normal distribution with mean zero
and covariance matrix RU. Lastly, the two-component model
or Rocke–Lorenzato model13,22 containing both additive and
multiplicative error is as follows: WMA = XU2 + U1, where U1 and
U2 are independent errors. In the univariate case, w = xs2

2 + s1
2,

and this implies Var(w|x) = x2s2
2 + s1

2. For sufficiently small
values of x, Var(w|x) is similar to s1

2, while for sufficiently large
values of x, Var(w|x) is similar to s2

2.21 This behaviour in the
multivariate case will be studied using simulations.

2.4. Variable selection and prediction

We consider a multiple linear regression model with n observa-
tions on a dependent variable y = (y1,. . .,yn)T and p glycans as
predictors (or covariates). Let 1n denote a vector of ones of
length n, and I an identity matrix. In matrix notation the linear
regression model can be written as:

y = Xb + e, (1)

where y = (y1,. . .,yn)T, X = (1n, x1, x2,. . .,xp) is the n � (p + 1)
matrix of standardized covariates, b = (b0, b1,. . .,bp)T and
e � N 0; se2I

� �
. Often when we are given a large number of

covariates and due to different reasons (like the high cost of
measuring all these covariates or inability to interpret results
with many covariates), we would like to obtain a reduced set of
covariates including only those that are necessary to obtain a
‘‘good enough’’ model. Also, we may have some domain knowledge
telling us that only a few predictors should indeed be important for
an outcome and therefore our ‘‘good enough’’ model is the best
model. In other words, it is frequently assumed that most regres-
sion coefficients bj are zero. Variable selection aims to identify all
important variables whose regression coefficients are not zero and
to provide effective estimates of those coefficients. These variable
selection features can lead to finding smaller groups of variables
with good prediction accuracy. A potentially simple and effective
tool for variable selection is the stepwise selection. However, it has
severe problems in the presence of collinearity.

Among many methods, to achieve good prediction, to avoid
overfitting, and to obtain an interpretable model, we consider
the Least Absolute Shrinkage and Selection Operator (lasso)
proposed by Tibshirani.23 This method considers both continuous
shrinkage and variable selection. The lasso is a penalized least
squares procedure that minimizes RSS = (ỹ � Xb)T(ỹ � Xb) where
ỹ = y � y1n, subject to the non-differentiable constraint expressed
in terms of the L1 norm. The lasso estimator is given by

b̂ ¼ argmin
b

~y� Xbð ÞT ~y� Xbð Þ þ l
Xp
j¼1

bj
�� �� (2)

where lZ 0 is a tuning parameter. The optimal l can be selected
by k-fold cross-validation, which gives minimum mean cross-
validated error, with common choices of k equal to 5 and 10.
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To assess how the results of different scenarios will general-
ize to external datasets, we investigate performance of predic-
tive model through estimating accuracy of a predictive model
applied to a new independent data. We therefore first build the
model (or perform variable selection) using a training and test
dataset, and then validate the model composed of the selected
variables using an external validation dataset. To summarize
the results, we report the numbers of correctly and incorrectly
selected variables, and we quantify the prediction error,24

defined by squared root of the average error in the prediction
of y given X for future cases not used in the construction of a
prediction equation. Formally, if m̂(X) is the predicted values
constructed using the present data, the prediction error can be
written as

PE m̂ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E y� m̂ðXÞ½ �2

q
; (3)

where the expectation is taken only with respect to the new
observation.

3. Simulation study
3.1. Simulation schemes

(i) Generate the glycan data X based on the correlation structure of
real data. We simulate 1000 datasets consisting of 2n (n = 1000,
for n model building set and n validation set) observations. The p
glycans (p = 24) are drawn from multivariate normal distribution
with mean l and covariance matrix R. Details such as l and R of
real data and X are shown in Table S1 (ESI†). To mimic the skewed
clean data exp(X) is used.

(ii) Generate the error-contaminated glycan data W. We
simulate 1000 datasets consisting of 2n observations and
p glycans generated with three different error models – additive,
multiplicative, two-component. The parameters of the covar-
iance matrix R are shown in Table 2. The diagonal elements are
denoted as sii = si

2, and the off-diagonal elements as sij(i a j).
We consider both correlated and uncorrelated covariance
matrices.

(iii) Simulation of trait (y). Based on linear regression
y = Xb + e (eqn (1)) with ei � Nð0; 1Þ, and the coefficients b

were set as follows:
� 3 coefficients fixed: bjA{1,2,10} = (1,0.5,2)T and all other

bj{1,2,10} = 0.
� 6 coefficients fixed: bjA{1,2,10,15,16,17} = c(1,0.5,2,3,0.5,1)T

and all others are set to zero.
The descriptives of y are given in Table S1 (ESI†).

(iv) Six normalization methods. For each of the error-free
and -contaminated glycan datasets – glycan data generated
from the steps (i) and (ii) – the TA, logTA, RP, MS, MQ, or
MQN transformation is applied.

(v) Regression. Using n training sets we apply lasso penalized
regression for variable selection and prediction. The effect
estimates b̂ are compared to the true b.

(vi) Prediction. Using n (independent) validation or test sets,
b̂ estimates from the variable selection (step v) are plugged in
the model, and the fitted outcome ŷ are compared to the true y.

(vii) To assess the performance of variable selection,
the average number of the correctly and incorrectly (falsely)
selected variables is computed. For prediction performance the
root mean squared prediction error (eqn (3)) is computed.

3.2. Distribution of error-contaminated glycans

We first show how the different error models change the
distribution of simulated glycan data. Fig. 4 shows the glycan
distributions of such simulated data with and without the
correlated error E1 in Table 2. The first row depicts the
distribution of the highly skewed cleaned raw data, and that of
the log-transformed data, which induces relative symmetry of
glycan distributions, still having the same correlation structure.
The second row, the left figure shows the error-free simulated
data, SIMdata, based on the real log-transformed data. The rest
depicts the distribution of the simulated data under additive,
multiplicative, and two-component error model. While data
with additive error showed similar distribution and correlation
patterns, introducing multiplicative error in glycans makes the
distribution skewed. Moreover, multiplicative error dominates
additive error.

3.3. Results of variable selection and prediction of multiple
glycan predictors

Tables 3 and 4 show the results based on correlated errors
under E1 and E2, respectively. The results of each table are
averaged across 1000 simulations: for six normalization meth-
ods, two sets of fixed coefficients (3 and 6 bs), and four different
error models (data without additional measurement error,
and with additive, multiplicative, and two-component). For
evaluation of the performance of normalization methods we
considered (i) the number of the correctly selected variables,
namely 3 or 6, (ii) the number of falsely selected variables
(should be zero), and (iii) prediction error as defined in (3).

The first row of each error model in Table 3, SIMdata, serves
as a reference point and can be interpreted as the best achiev-
able results under the correct model. Even when glycans were
simulated without additional measurement error, the number
of the falsely selected variables was non-zero: 4.46 for 3 fixed
coefficients, and 5.12 for 6 fixed coefficients in average. When
additive error in the data, the number of the falsely selected
(13.57 and 15.31, respectively) becomes large, indicating a poor
performance of variable selection. When multiplicative error
was introduced the number of both correctly and incorrectly
selected variables decreased and prediction error increased.
The results of two-component error were close to those of

Table 2 Parameters in covariance matrix R

Error type

Additive Multiplicative

sii sij sii sij

Correlated E1 1/4 1/8 0.1 0.05
E2 1 0.5 0.01 0.005

Uncorrelated E1un 1/4 0 0.1 0
E2un 1 0 0.01 0
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multiplicative error, which indicates that in this parameter
setting multiplicative error dominates additive one. Among
row-wise normalization methods, TA and logTA perform poorly
for variable selection when multiplicative error was involved.
For multiplicative and two-component error the performance
of all normalization methods was comparable; variable
selection and prediction became exceedingly difficult. Overall,
the column-wise normalizations outperformed the row-wise
normalizations. Moreover, the results from two column-wise
normalization, MS and MQN, were similar to SIMdata under all
error models of Table 2.

Based on the error model E2 (Table 4), in which multi-
plicative errors have very small variances compared to additive
ones, the number of incorrectly selected variables for the
benchmark, SIMdata, was very large across all error types,
leading to a poor variable selection performance. Prediction
error seemed more controllable than under E1.

Fig. 5 highlights the prediction performance. Since the
results of the models including 3 and 6 b’s were similar, only
the performance based on the models with 6 b’s under E1 and
E2 is shown. In case of uncorrelated error, compared to Table 3,
the effects of the error in glycans became more marked (data
not shown). Comparison of the correlated and uncorrelated
error based on 6 bs in the model and the two-component error
model is depicted in Fig. S1 (ESI†). The correlated error caused
a poorer performance in variable selection.

To summarize the simulation results, even without addi-
tional measurement error the row-wise normalization appeared
to perform poorly based on simulated glycan data, in terms of
false positives and accurate prediction. Adding error caused
perturbation of correlation structure, and especially introducing
multiplicative error resulted in smaller number of variables in
the model (less correctly- and incorrectly selected variables) and
larger prediction error.

Fig. 4 Distribution of glycans with correlated error. The green and yellow color depicts the measured and simulated data, respectively. (i) The first row,
colored green, depicts the cleaned and its log-transformed data: the extreme range of abundance and the highly right skewed distribution of cleaned
data can be dealt with the log-transformation of the data. (ii) The second row shows error-free simulated data based on the log-transformed cleaned
data, and the error-contaminated data with additive error (E1), which showed similar distribution patterns. (iii) The last row multiplicative and two-
component error under E1. Introducing multiplicative error in glycans made the distribution skewed, and the range of abundances larger. The similarity of
two distribution patterns indicates that multiplicative error dominates additive error.
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4. Data application

Glycans have been previously reported as biomarkers of
both chronological and biological ages.2–4 These results were
obtained using single-point analysis where the association
between each glycan and ageing outcome was studied one at
a time. Here we aim to detect multiple biomarkers associated
with ageing, all in one go. Considering high correlation shown
among glycan variables, to avoid overfitting and to obtain an
interpretable model, the lasso regression23 in Section 2.4 is
applied to the data from Scottish island of Orkney.15

Glycan traits bound to immunoglobulin G (IgG) (Fig. 1) were
measured by ultra-performance liquid chromatography (UPLC)
in 2035 individuals from the ORCADES study, as described in
Kristic et al.2 As can be seen in Fig. 1, 24 different glycan peaks
are quantified using UPLC, with each glycan peak containing
one or more glycan structures. Abundance of individual glycan
structures in every glycan peak can be found in Pucic, et al.25

Participants were men and women (797; 1238) aged between 17
and 100 years (median age, 54). To explore effects of different
normalization on biomarker selection of age, the glycan abun-
dance was transformed using six normalization methods
shown in Table 1, and additional logRP (log-transformation
of RP). To remove strong batch effects in the glycomics
data, following different normalization, we performed batch
correction using empirical Bayes method26 as implemented
in the ComBat function of sva package for R.27 To determine
the ‘best’ model, applying the lasso requires selecting a value
for the tuning parameter l in eqn (2). For this training and
testing of the model, ten-fold cross-validation was applied to
the lasso fits in two third of the dataset. Then, the selected
model was re-fitted for predicting age to the remaining one-
third of the data (validation set). For comparison of the perfor-
mance of each normalization, variable selection (in terms of
non-zero coefficients) and accuracy in prediction are presented
in Table 5.

Here, the results of variable selection is presented as (bold-
faced) non-zero coefficients (effect size). For example, if you use
TA normalization, 3 glycans (GP6, GP10, and GP14) will be
selected as potential biomarkers with prediction error 10.52. In
contrast, the smallest prediction error (10.36) is obtained using
MQN, which selects 5 glycans (GP2, GP6, GP10, GP14, and
GP24). GP6 and GP14 are the stable associated glycans, which
are selected using every normalization methods. RP and log RP
selected 6 and 3 glycans, respectively. However, the absolute
effect size of the ‘stable’ glycans (GP6 and GP14) is ca. 10-fold

Table 3 Results of simulation study. Variable selection and prediction of
multiple glycans based on the correlated error model E1 in Table 2 using
1000 replicates

Error model

3 beta’sa 6 beta’sb

Nr
correctc

Nr
falsed PEe

Nr
correct

Nr
false PE

Error-free SIMdataf 3.00 4.46 1.00 5.94 5.12 1.01
MS 3.00 4.47 1.00 5.94 5.10 1.01
MQN 3.00 4.52 1.00 5.94 5.29 1.01
TA 2.83 17.96 1.88 5.18 15.7 3.75
logTA 2.97 19.86 1.83 5.75 17.2 3.62
RP 1.83 13.21 2.33 5.73 17.13 3.63
MQ 1.88 12.99 2.33 5.71 16.19 3.62

Additive SIMdata 3.00 13.57 1.50 5.38 15.31 2.69
MS 3.00 13.63 1.50 5.37 15.32 2.69
MQN 3.00 13.58 1.50 5.37 15.29 2.70
TA 2.42 16.46 2.18 4.91 14.63 4.57
logTA 2.61 17.19 2.16 5.24 15.47 4.50
RP 2.61 17.25 2.16 5.18 15.82 4.50
MQ 2.70 16.98 2.16 5.44 15.56 4.50

Multiplicative SIMdata 2.12 8.90 2.29 3.03 8.50 4.90
MS 2.14 8.89 2.29 3.02 8.46 4.90
MQN 2.12 8.76 2.29 3.03 8.46 4.90
TA 0.29 1.68 2.36 0.45 1.32 5.06
logTA 0.61 6.50 2.35 1.62 6.15 5.02
RP 0.64 4.27 2.36 1.54 4.36 5.05
MQ 0.54 4.14 2.36 1.46 4.09 5.05

Two-
component

SIMdata 2.06 9.07 2.30 3.01 8.30 4.89
MS 2.06 9.09 2.30 3.02 8.40 4.89
MQN 2.07 9.13 2.30 3.00 8.29 4.89
TA 0.23 1.66 2.36 0.49 1.38 5.05
logTA 0.63 6.68 2.35 1.63 5.93 5.02
RP 0.64 4.37 2.36 1.59 4.19 5.04
MQ 0.55 4.26 2.36 1.57 4.27 5.05

a The glycans 1, 2, and 10 were assumed to have non-zero effects, and
all other 21 glycans no effect. b The glycans 1, 2, 10, 15, 16 and 17 were
assumed to have non-zero effects, and all other 18 glycans no effect.
c The average number of correctly selected glycans. d The average
number of falsely selected glycans, which should be close to zero. e The
root mean squared error of prediction with respect to the new observa-
tions. f The rows in italics show the results of simulated data without
additional error in glycans, which can be interpreted as the best
achievable results under the correct models.

Table 4 Results of simulation study. Variable selection and prediction of
multiple glycans based on the error model E2 in Table 2 using 1000
replicates

Error model

3 beta’sa 6 beta’sb

Nr
correctc

Nr
falsed PEe

Nr
correct

Nr
false PE

Additive Simdata f 2.74 13.91 1.92 5.26 15.02 3.87
TA 1.82 14.00 2.31 3.82 11.57 4.93
logTA 2.26 15.68 2.29 4.62 13.86 4.86
RP 2.34 15.81 2.29 4.84 4.94 4.85
MQ 2.45 15.48 2.29 5.01 14.77 4.85

Multiplicative Simdata 2.65 16.06 1.87 5.07 15.05 3.83
TA 1.83 13.80 2.32 4.00 11.75 4.94
logTA 2.00 16.10 2.28 4.51 14.63 4.84
RP 2.22 15.50 2.29 4.65 14.01 4.86
MQ 2.30 15.28 2.29 4.96 13.96 4.86

Two-
component

Simdata 2.67 12.25 2.10 4.32 10.99 4.37
TA 1.08 8.77 2.35 2.49 7.58 5.01
logTA 1.66 13.25 2.33 3.64 11.64 4.94
RP 1.81 12.35 2.10 4.05 11.87 4.96
MQ 1.84 12.24 2.10 4.36 12.25 4.96

a The glycans 1, 2, and 10 were assumed to have non-zero effects, and
all other 21 glycans no effect. b The glycans 1, 2, 10, 15, 16 and 17 were
assumed to have non-zero effects, and all other 18 glycans no effect.
c The average number of correctly selected glycans. d The average
number of falsely selected glycans, which should be close to zero. e The
root mean squared error of prediction with respect to the new observa-
tions. f The rows in italics show the results of simulated data without
additional error in glycans, which can be interpreted as the best
achievable results under the correct models.
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greater than that of other normalizations, indicating biased
results. Less robust (with smaller effect size), but evidence of
association of GP2, GP10, and GP24, can be found using the
majority of the normalization methods (represented by the
bold-faced glycans in the first column).

To summarize, with regard to the accuracy of prediction,
MQN showed the smallest prediction error, followed by logTA
and MS. In terms of variable selection, MQ selected the largest
number of the variables, thereby failing to provide sparse
model. In particular, the strong effect size of GP14 appears to
influence the selection of neighbouring GP13 and GP15. The
other row-wise normalization, TA and RP (including logRP),
results in seemingly ‘out-of-range’ values, which lacks model
interpretability. Based on the magnitude of the effect sizes as
well as variable selection, logTA (row-wise) and MS and MQN
(both column-wise) seem to agree on the selected glycans.

5. Discussion

It is often claimed that glycans are by their nature composi-
tions, and that percentage of glycan species in the whole is
biologically relevant information.28 To dispute such claims is
not of our interest; our intention is to increase the awareness of
spurious correlations caused by row-wise normalization. In this
work, we did not try to disentangle the true correlation struc-
ture in view of biochemical pathways, but rather demonstrated
that choosing one normalization method can cause several
potential issues and problems for downstream analysis. In
particular, we focused here on variable selection by implementing
standard statistical learning. When sample-wise differences are
non-ignorable, more investigation for the choice of normalization
method is needed. One of the challenges is how to generate
or simulate such data to study statistical properties.

Fig. 5 Comparison of prediction performance based on prediction error; the smaller error, the better performance. SIMdata in the right shows the
prediction error without introducing error. (i) Under the error model E1: in the case of perturbation of additive error, the column-wise normalized (MS and
MQN) data performed similarly well. When multiplicative error is present (multiplicative or two-components), multiplicative error dominates. (ii) The
lower row shows the error model E2, which has smaller multiplicative error than E1. The results show similar prediction error patterns as in (i). Throughout
all scenarios, the column-wise normalization methods outperform the row-wise ones; i.e., smaller prediction error using MS and MQN.
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Moreover, platform differences between measurement technolo-
gies such as ultra-performance liquid chromatography (UPLC) or
nano liquid chromatography-electrospray ionization-mass spectro-
metry (nanoLC-ESI-MS) cannot be ignored. At this moment we do
not have sufficient knowledge to deal with these issues.

In this work we also addressed the effect of possible
measurement error present in glycans. In general, introducing
error caused decrease in the strength of correlations, and in
particular multiplicative error produced more perturbation in
correlation structure. In case of two-component error, the
tendency of decreasing correlation was more pronounced. Moreover,
even with very small multiplicative error, multiplicative error
dominated additive one. Our simulation study clearly indicates
that understanding measurement error structure is crucial, not
only to extract real signals from noise-ridden data, but also to
improve accuracy and efficiency of variable selection and pre-
diction for finding glycan biomarkers. In statistics, measure-
ment error models or errors-in-variables models are regression
models that account for measurement errors in independent
variables.21 Here, given that the real-life data measurement
error is not well studied, we did not consider how to correct
for the attenuation bias in multivariate errors-in-variables
regression, but applied measurement error model to generate
datasets contaminated with various types of error. We also
included here an arbitrary correlated error structure, assuming
that the highly correlated glycan data will have correlated errors.

Nevertheless, replicates are more and more used in quantifica-
tion of glycans and it will soon be possible to estimate the
correlated measurement error for glycan data, which will greatly
improve data pre-processing of glycan measurements.

Via simulation we have shown the row-wise normalization
methods can have deleterious effects on variable selection
based on multiple regression with the glycans covariates. When
applied to the real data, two column-wise (MS and MQN) and
logTA gave similar results in terms of variable selection, pre-
diction, and the magnitude of effect estimates. For argument’s
sake, assuming the glycomics data resembles the microbiome
count data and is compositional, what are the possibilities to
obtain valid results? Although compositional data are proven
difficult to handle statistically – the covariance matrix is not
positive-semi-definite (or singular) and the level of the variance
depends on the mean of the distribution – statistical methods
for such data have been developed. For principal component
analysis, Aitchison proposed a log linear contrast form to deal
with compositional data,29 Regarding the variable selection
problem, Lin et al.30 addressed this in high-dimensional regression
with compositional covariates, motivated by research problems
arising in the analysis of gut microbiome and metagenomic data.
They considered the linear log-contrast model of Aitchison and
Bacon-Shone.31 Whether any of these approaches would be
beneficial for glycomics data analysis is yet to be determined.
In particular, for network analysis where the analysis is based

Table 5 The glycan biomarker selection: the bold-faced glycans with non-zero coefficients selected by different normalization methods can be seen as
the robust glycan-age biomarkers

Glycan

Row-wise Column-wise

TA logTA

RP logRPa MQ

MS MQNEffect sizes (coefficients)

GP1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP2 0.00 1.36 32.53 12.27 2.26 2.28 2.82
GP3 0.00 0.00 0.00 0.00 0.55 0.00 0.00
GP4 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP6 2.06 12.05 123.14 129.56 9.97 13.33 14.14
GP7 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP9 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP10 0.63 2.55 90.74 0.00 8.14 0.00 1.43
GP11 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP13 0.00 0.00 �58.53 0.00 �7.38 0.00 0.00
GP14 �1.72 �20.65 �259.85 �212.61 �14.76 �16.56 �20.00
GP15 0.00 0.00 0.00 0.00 �2.76 0.00 0.00
GP16 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP18 0.00 0.00 0.00 0.00 �0.63 0.00 0.00
GP19 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP22 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP24 0.00 0.48 9.39 0.00 0.00 1.41 2.14

Variable selectionb 3 5 6 3 8 4 5
Prediction errorc 10.52 10.40 10.45 10.83 10.46 10.40 10.36

a Log-transformation of RP is included, which is equivalent to the ALR transformation.12 b The number of non-zero coefficients (selected
variables). c As defined in eqn (3). The smaller, the better performance.
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on correlation structure, it is not at all clear how to perform
analysis based on the TA normalized data.32

With regard to biomarker discovery, it might be a better
strategy to analyse glycans jointly. New groups of a few glycans,
called derived traits, can be constructed, which represent
groups of glycan structures that have similar structural and
chemical properties. Up until now, these derived traits often
exhibited stronger associations with studied outcome. Alterna-
tively, we investigated here well-established variable selection
and prediction method to discover multiple glycans that might
be jointly responsible for association with disease trait. As
shown in application to the real data (Table 5), the glycan
biomarkers with large effect were selected, regardless which
method was applied. To identify glycans with smaller effect and
to avoid false positive and biased results, a few normalization
methods (such as logTA, MS and MQN) can be employed to
check the robustness of variable selection. Our simulation
study clearly demonstrated that incorrect pre-processing steps
might hamper discovery of reliable biomarkers. Another non-
ignorable issue emerged from simulation study was the large
amount of false positives (or falsely selected), due to the highly
correlated nature of glycan measurements. In various scenarios
many false positives were found, and therefore the task of variable
selection failed. Hence, robustness of glycan biomarkers is of
utmost importance for further investigation.

Regardless of the correlation structure or glycan measurement
technology used, row-wise normalizations introduce spurious
correlations and can therefore have an effect on downstream
statistical analyses. The specific effects of other normalization
methods on biomarker discovery not assessed in this paper
should be studied before being implemented in measurement
technology specific preprocessing procedures.

6. Conclusion

Modern high-throughput glycomics data measured by UPLC
typically shows (i) that the between-subject differences in
total abundance are very large, and (ii) that the glycans are
highly correlated. Therefore, glycomics abundances should be
normalized to comparable scales, and to avoid overfitting
special care is needed for jointly selecting multiple biomarkers.
Here, we assessed the impact of various normalization methods
on glycomics biomarker selection using lasso regression.
Through an extensive simulation study, we demonstrated that
the widely used row-wise total area (TA) normalization method
performs poorly compared to the column-wise normalization
methods – glycans were falsely selected (false positives) and the
prediction error was large. The column-wise normalization
methods, such as MS and MQN, not only outperformed the
row-wise methods but also have an advantage of preserving
the correlation structure. Measurements error in glycan abun-
dances, moreover, caused perturbation of correlation structure
and diluted the signals in the data, which led to decreased
accuracy in variable selection. Further application to the real
data problem of glycan biomarker selection for biological

ageing, confirmed these findings. To identify glycans with smaller
association effects and to avoid false positives and biased results,
we recommend to apply several normalization methods, such
as logTA, MS and MQN, and report the association results that
are detected by majority of them. This procedure will assist in
identifying robust and reproducible glycan biomarkers.
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