Issue 1, 2020

Germanium-based high-performance dual-ion batteries

Abstract

Recently, dual-ion batteries (DIBs) have received immense attention owing to their high operating voltage and low cost, and further studies on the enhancement of their energy densities and cyclabilities are being intensively pursued. Herein, a novel Ge-based DIB has been developed for the first time by using a rationally designed nanocomposite of Ge particles embedded in one-dimensional carbon nanofibers (Ge/CNFs) as an anode. The resulting battery shows a high discharge capacity of 281 mA h g−1 at a discharge current of 0.25 A g−1 and a superb rate capability of 94 mA h g−1 at a discharge current of 2.5 A g−1, which greatly surpasses those of most of the reported DIBs. These remarkable properties can be ascribed to the fact that the uniform one-dimensional nanostructure facilitates the improvement of lithium-ion diffusion within the hybrids, and the carbon matrix effectively alleviates the volume expansion of Ge during the cycling process and simultaneously enhances the electrical conductivity of the hybrids. The charge storage mechanism of Ge/CNFs is found to be Ge alloying with Li, accompanied by a phase transformation process from crystalline Ge to amorphous LixGe alloys. This work paves the way for the rational utilization of Ge-based materials in new-generation high-performance DIBs.

Graphical abstract: Germanium-based high-performance dual-ion batteries

Supplementary files

Article information

Article type
Communication
Submitted
13 Oct 2019
Accepted
29 Nov 2019
First published
29 Nov 2019

Nanoscale, 2020,12, 79-84

Germanium-based high-performance dual-ion batteries

J. Zhou, Y. Zhou, X. Zhang, L. Cheng, M. Qian, W. Wei and H. Wang, Nanoscale, 2020, 12, 79 DOI: 10.1039/C9NR08783D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements