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High-order structures from nucleic acids
for biomedical applications

Alyssa C. Hill * and Jonathan Hall *

Over the past 40 years, research in the fields of DNA nanotechnology and RNA nanotechnology has

taken nucleic acid molecules out of their biological contexts and harnessed their unique base-pairing

and self-assembly properties to generate well-defined, organized, and functional supramolecular

architectures. Capitalizing on an intrinsic biocompatibility and the ability to tailor size, shape, and

functionality from the bottom up, recent work has positioned high-order nucleic acid structures as

powerful biomedical tools. This review summarizes advances in nanotechnology that have enabled the

fabrication of synthetic nucleic acid structures. Nucleic acid-based platforms for biosensing and

therapeutic drug delivery are highlighted. Finally, an outlook that considers the limitations and future

challenges for this field is presented.

Advances in DNA nanotechnology
DNA junctions

Deoxyribonucleic acid (DNA) is well known as the macromolecule
that encodes genetic information. Taken out of its biological
context, DNA is also an attractive material for bottom-up
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fabrication. First, the composition of DNA is known. DNA
sequences are made up of four nucleotides: adenine, cytosine,
guanine, and thymine (A, C, G, and T, respectively). Second,
DNA participates in some of the most predictable interactions
of any natural or synthetic molecule.1 Indeed, DNA sequences
form hydrogen bonds according to Watson–Crick base pairing
rules (i.e., C pairs with G and A pairs with T), and these
interactions confer on DNA the capacity for precise molecular
recognition and programmable self-assembly.1,2 Finally, the
structure of DNA is defined at the nanometer (nm) scale:
DNA helices adopt B-form geometry, with 10.5 base pairs (bp)
per turn, a diameter of 2 nm, a helical pitch of 3.4 nm, and a
persistence length of 50 nm.3 However, in nature, DNA exists
predominantly as a duplex with a linear helical axis, which is
poorly suited for fabrication in three dimensions (3D).

In 1982, Nadrian Seeman conceived of using branched DNA
molecules, or junctions, to assemble DNA structures in 2- and
3D.4 Seeman’s inspiration was the Holliday structure, a mobile
intermediate of genetic recombination that consists of a single
strand exchange, or crossover, between two DNA duplexes. In a
seminal publication, Seeman proposed rules for constructing
immobile DNA junctions from multiple strands and suggested
fitting the junctions with ‘sticky ends’.4 Sticky ends are single-
stranded overhangs, and cohesion between sticky ends in DNA
generates a helix with standard B-form local geometry.5 By
programming DNA junctions to self-assemble via sticky-ended
cohesion (Fig. 1A), Seeman imagined the creation of extended
DNA arrays, including 2D lattices and 3D crystals.4 Seeman’s vision
was that DNA crystals with embedded recognition motifs could be
used as hosts to organize proteins and other macromolecule guests
for structure determination by X-ray crystallography (Fig. 1B).4

In the years following Seeman’s innovative proposal, a variety of
DNA structures were created, including multi-way junctions,6,7

geometric shapes,8 knots9,10 (Fig. 1C), Borromean rings11

(Fig. 1D), and polyhedra12,13 (Fig. 1E and F), and thus the field
of structural DNA nanotechnology was established.

DNA tiles

While early work in the field of DNA nanotechnology demon-
strated that target topologies could be generated by mani-
pulating flexible junctions, the creation of specific 2- and 3D
geometries hinged on the development of more rigid motifs.15

To this end, a variety of DNA ‘tiles’ with high structural integrity
have been developed.16 One notable example is the double-
crossover (DX) tile.17 In contrast to the Holliday junction, which
features one crossover between two DNA duplexes, the DX tile
features two crossovers (Fig. 2A). Accordingly, the DX tile has
a stiffness that is twice that of linear, double-stranded DNA.18

DX tiles with sticky ends have been shown to self-assemble
into periodic19 and aperiodic20 2D lattices (Fig. 2A). Further
research has produced triple crossover (TX)21 and paranemic
crossover (PX)22 tiles, multi-point stars23–25 (Fig. 2B–D), double-
decker tiles26 (Fig. 2E), T-junctions27 (Fig. 2F), Wang tiles,28 and
other tiles for assembling DNA lattices of varying patterns and
periodicities, 3D DNA objects with controlled sizes29 (Fig. 2G),
and even DNA-based nano-mechanical devices.30,31

Additionally, in 2009, Seeman’s group used a tile known as
the tensegrity triangle to produce the first rationally designed,
self-assembled DNA crystal.32,33 In the tensegrity triangle, seven
oligonucleotide strands come together to form a structure com-
prising three struts and three four-way junction vertices, while
two-nucleotide sticky ends mediate self-assembly in 3D (Fig. 2H).32,33

Fig. 1 DNA junctions as units of assembly in extended DNA arrays and discrete DNA topologies. (A) A DNA four-way junction with sticky ends self-
assembles into a 2D DNA lattice. (B) A 3D DNA crystal (black) scaffolds proteins (blue) for structure determination by X-ray crystallography. (C) A DNA
trefoil knot. (D) Borromean rings made of DNA. (E) A DNA cube. (F) A DNA octahedron. Panels (A) and (B) reprinted from ref. 1 by permission from Springer
Nature: Nature Reviews Materials. Copyright 2017. Panels (C–F) reprinted from ref. 14 by permission from Elsevier: Trends in Biotechnology. Copyright
1999.
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The development of self-assembling DNA crystals constituted an
important step toward realizing Seeman’s aforementioned vision
for the field of DNA nanotechnology. However, the crystals
diffracted to only 4 Å resolution.33 Similarly, self-assembling
DNA crystals designed to contain two tensegrity triangles per
asymmetric unit diffracted to only 5 Å resolution.34 In recent
years, improvements to resolution and crystal stability have been
made by incorporating 50 terminal phosphates into certain
component DNA strands,35 by changing the length36 and
composition37 of the sticky ends, and by introducing additional
stabilizing DNA strands,38 crosslinks,39 and covalent bonds.40

However, further improvements to resolution will be necessary
in order to maximize the utility of DNA crystals as tools for
macromolecular structure determination by X-ray crystallography.

DNA origami

In a 2003 publication, Yan et al. described the creation of DNA
lattices from DX tiles self-assembled around long (B300
nucleotide; nt) strands of DNA.20 The following year, Shih et al.
reported a DNA octahedron self-assembled from a 1.7 kilobase
(kb) strand of DNA and five 40-nt strands.42 Inspired by these
advances, in 2006 Paul Rothemund generalized the approach into
a method called DNA origami, which consists of folding a large
‘scaffold’ strand of DNA with many short ‘staple’ strands in order

to generate defined shapes of arbitrary complexity.43 Specifically,
designs are created by raster-filling a shape with the scaffold
strand and using staple strands that base pair to the scaffold
to hold it in place (Fig. 3A).43 In a now-famous publication,
Rothemund folded the B7 kb M13 bacteriophage genome with
over 200 32-nt DNA strands into rectangles, stars, and smiley
faces (Fig. 3B).43 Rothemund’s technique revolutionized the
field by achieving high yields of the designed structures while
simultaneously avoiding requirements for the purification
of component strands, multiple assembly steps, and exact
stoichiometries.43

Follow-on research extended Rothemund’s design principles
into 3D with impressive results. Using DNA origami, Ke et al.
created DNA cages,44 and Douglas et al. created DNA monoliths,
bridges, and crosses.45 Other studies generated 3D structures that
twist and curve at the nano-scale. For example, Dietz et al.
produced DNA beach balls and square-tooth gears46 (Fig. 3C),
and Han et al. produced DNA spheres, shells, and flasks
(Fig. 3D).47 A particularly notable example of 3D DNA origami
was reported in a publication by Andersen et al., who used
the M13 bacteriophage genome as a scaffold to create fully
addressable, self-assembling DNA boxes.48 Each box measured
42 � 36 � 36 nm and was folded from six interconnected
sheets of DNA with 220 staple strands bridging the edges.48

Fig. 2 DNA tiles and tile-based structures. (A) Double-crossover (DX) tile (left) and a periodic DNA lattice self-assembled from the DX tile (right). Scale
bar: 150 nm. (B) Three-point star motif (left) and a periodic DNA lattice self-assembled from the three-point star motif (right). Scale bar: 50 nm. (C) Four-
point star motif (left) and a periodic DNA lattice self-assembled from the four-point star motif (right). Scale bar: 50 nm. (D) Six-point star motif (left) and a
periodic DNA lattice self-assembled from the six-point star motif (right). Scale bar: 50 nm. (E) Double-decker tile (left) and a periodic DNA lattice self-
assembled from the double-decker tile (right). Scale bar: 200 nm. (F) T-junction (left) and a periodic DNA lattice self-assembled from the T-junction
(right). Scale bar: 25 nm. (G) Cryo-electron microscopy (cryo-EM) reconstructed models of DNA polyhedra self-assembled from the three-point star
motif. Top panel: DNA tetrahedron, middle panel: DNA dodecahedron, bottom panel: DNA buckyball. Scale bars: 5 nm, 20 nm, and 20 nm, respectively.
(H) Tensegrity triangle (left) and DNA crystals self-assembled from the tensegrity triangle (right). Scale bar: 500 mm. Panel (A) tile reprinted from ref. 41 by
permission from Springer Nature: Methods in Molecular Biology. Copyright 2005. Panel (A) lattice reprinted from ref. 19 by permission from Springer
Nature: Nature. Copyright 1998. Panel (B) reprinted with permission from ref. 24. Copyright 2005 American Chemical Society. Panel (C) from ref. 23.
Reprinted with permission from AAAS. Panel (D) reprinted with permission from ref. 25. Copyright 2006 American Chemical Society. Panel (E) reprinted
with permission from ref. 26. Copyright 2011 American Chemical Society. Panel (F) reprinted with permission from ref. 27. Copyright 2009 John Wiley
and Sons. Panel (G) reprinted from ref. 29 by permission from Springer Nature: Nature. Copyright 2008. Panel (H) reprinted from ref. 33 by permission
from Springer Nature: Nature. Copyright 2009.
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Furthermore, by programming the lids of these boxes with DNA
‘locks’, the authors showed that they could control their
opening with externally supplied DNA ‘keys’ (Fig. 3E).48 In this
case, the locks comprised DNA duplexes with sticky ends that
facilitated toehold-mediated strand displacement by auxiliary
DNA strands.

Variations on DNA origami

More recent work has produced variations on the DNA origami
technique. For example, Wei et al. developed a 42-nt single-
stranded DNA tile that self-assembles into complex 2D patterns,

including alphanumeric characters, punctuation marks, and
smiley faces, without the need for a scaffold strand (Fig. 3F).49

A recent publication from the same group showed that 32-nt
single-stranded DNA tiles, or ‘bricks’, self-assemble into pre-
scribed 3D shapes with up to 10 000 unique components
(Fig. 3G).50,51 Another recent study using DNA bricks generated
polyhedral assemblies with atomic masses up to 1.2 gigadaltons
and long, thick tubes similar in size to some bacilli.52 Because
they do not require a scaffold strand, these approaches contrast
with Rothemund’s ‘scaffolded’ DNA origami. A separate approach
is single-stranded origami, which folds multi-kilobase nucleic

Fig. 3 2- and 3D DNA origami shapes. (A) Scaffolded DNA origami: the folding of a long scaffold strand of DNA (black) into a defined 2D shape is
accomplished with the help of short staple strands (colors). (B) Complex 2D shapes folded using scaffolded DNA origami. Images are 165 nm � 165 nm.
(C) Schematic representation (left) and transmission electron microscopy (TEM) images (right) of a DNA square-tooth gear. Scale bars: 20 nm.
(D) Schematic representations of a DNA sphere (top left) and flask (bottom left) and TEM images of the sphere (top right) and flask (bottom right).
Scale bars: 50 nm. (E) Illustration of a DNA origami box with a controllable lid. (F) Complex 2D shapes self-assembled from single-stranded DNA tiles.
Images are 150 nm � 150 nm. (G) 3D DNA shapes self-assembled from DNA bricks. Each shape is 25 � 25 � 27 nm. (H) Atomic force microscopy (AFM)
images of single-stranded DNA origami hearts. Scale bars: left panel, 50 nm; right panel, 200 nm. Panels (A) and (B) reprinted from ref. 43 by permission
from Springer Nature: Nature. Copyright 2006. Panel (C) from ref. 46. Reprinted with permission from AAAS. Panel (D) from ref. 47. Reprinted with
permission from AAAS. Panel (E) reprinted from ref. 48 by permission from Springer Nature: Nature. Copyright 2009. Panel (F) reprinted from ref. 49 by
permission from Springer Nature: Nature. Copyright 2012. Panel (G) from ref. 50. Reprinted with permission from AAAS. Panel (H) from ref. 53. Reprinted
with permission from AAAS.
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acid strands into complex 2D patterns without using staple
strands. In one example, Han et al. folded hearts from a single
strand of DNA approximately 3000 nt in length (Fig. 3H).53

Another recent example described the combination of single-
stranded origami with DNA tiles to fold highly knotted 2- and
3D topologies.54 Since the advent of DNA origami, semi-
automated55,56 and fully-automated57,58 approaches for produ-
cing target 2- and 3D geometries have emerged. Today, the ease
of the origami technique, combined with the commercial
availability of chemically synthesized DNA sequences,59 makes
the design and fabrication of complex DNA structures acces-
sible even to non-specialists.1

Emergence of RNA nanotechnology

In parallel with developments in DNA nanotechnology, the last
two decades have witnessed the emergence of the field of
ribonucleic acid (RNA) nanotechnology.60,61 Owing to its 20-
hydroxyl group, RNA is more chemically labile than DNA,62 but
it nevertheless has several desirable features for nano-scale
fabrication. Like DNA, RNA comprises four nucleotides: adenine,
cytosine, guanine, and uracil (A, C, G, and U, respectively). It is
highly programmable, with molecular recognition and self-
assembly properties governed by canonical Watson–Crick inter-
actions (i.e., C:G and A:U). However, unlike DNA, RNA also
engages in many non-canonical interactions (e.g., G:U wobble
pairs, sheared G:A pairs, reverse Hoogsteen pairs, and G:A imino
pairs),63,64 which permit the formation of a breathtaking range of
complex 3D structures and the execution of catalytic and recogni-
tion functions that rival the activities of proteins.65,66 Indeed,
in nature, messenger RNA (mRNA), transfer RNA (tRNA), and
ribosomal RNA (rRNA) have active roles in protein synthesis.67–70

Additionally, ribozymes, riboswitches, small RNAs, and long,
noncoding RNAs are central players in genome replication, intron
splicing, regulation of gene expression, epigenetic modification
and scaffolding, and more.66

Moreover, RNA structure is organized on the primary,
secondary, and tertiary levels. Primary structure is simply the
nucleotide sequence of an RNA molecule. Secondary structure
comprises recurrent motifs such as helices, hairpins, bulges, internal
loops, and multi-way junctions, and tertiary structure comprises
noncovalent interactions that connect these motifs together in 3D.71

Hierarchical folding confers modularity on all levels of RNA
structure.72 Therefore, RNA designers can shop the natural repertoire
and mix and match different structural and functional elements
(‘modules’) in order to create composite RNA structures with tailored
functionalities.73 These features, combined with the groundwork
laid by research in the field of DNA nanotechnology and advances in
chemical RNA synthesis,74 have enabled the construction of a wide
variety of synthetic RNA structures. Important advances in the field
of RNA nanotechnology are summarized below.

RNA tectonics

In 1996, Westhof et al. proposed ‘RNA tectonics’ to describe
the idea that RNA can be resolved into and reassembled from

component modules, like a 3D mosaic.75 A few years later,
Jaeger and Leontis put this idea into practice by generating
synthetic ‘tectoRNA’ units using a hairpin tetraloop and a
tetraloop receptor extracted from the Tetrahymena thermophila
group I intron.76 Their pioneering work showed that the
rational placement of interacting loops and loop-receptors
could direct the self-assembly of RNA dimers and 1D arrays.76

Further studies revealed that the self-assembly behavior of
tectoRNAs could be fine-tuned by changing the length, helical
twist, and flexibility of the linker between interacting motifs.77

Additionally, by modifying the loop:loop-receptor system with
a four-way junction derived from the hairpin ribozyme,
Nasalean et al. later demonstrated the self-assembly of long,
micrometer-scale RNA structures that resemble actin filaments
from the protein world (Fig. 4A).78

Using a different approach, Horiya et al. showed that kissing
loops taken from the genome of human immunodeficiency
virus (HIV) could mediate the formation of large RNA
assemblies.79 Kissing loops are short hairpin loops that base
pair, and their interactions have been shown to be 102–104 times
more stable than loop:loop-receptor interactions.79 Chworos et al.
combined HIV kissing loops with a right angle motif conserved in
rRNA to generate RNA squares, square patterns, and finite grids of
defined size and shape.80 In a separate study, a five-way junction
derived from class II tRNA was engineered with HIV kissing
loops to generate self-assembling, thermostable RNA polyhedra
(Fig. 4B).81 Using 50-biotinylated tectoRNAs, the authors of this
study further illustrated a remarkable degree of spatial control
by directing the precise positioning and encapsulation of
streptavidins within the RNA structures.81

Yet other studies have adapted a kissing complex from
Escherichia coli (E. coli) with a 1201 bend to generate multimeric
RNA rings with potential drug delivery applications (Fig. 4C).82–84

Notably, these circularized RNA assemblies show increased
resistance to ribonucleases relative to their linear RNA
counterparts.84 Recent work by Geary et al. has generalized
the RNA tectonics approach by composing a ‘syntax’ of struc-
tural modules, including kissing loops, tail–tail interactions,
triple helices, bulges, and three- and five-way junctions.85 Using
this syntax, the authors demonstrated the formation of various
RNA shapes, including polygons, ladders, grids, and even
hearts85 that together provide a glimpse into the versatility of
RNA as a medium for generating complex nanostructures.

Engineering of viral pRNA

Alongside tectoRNAs, another molecule that has significantly
shaped the current RNA nanotechnology landscape is prohead
or packaging RNA (pRNA).60,61 pRNA is a naturally-occurring
RNA molecule that derives from the phi29 bacteriophage and
related bacteriophages in the phi29-like family.86 Full-length
pRNA is approximately 170 nt long,87 and it has a conserved
secondary structure that features six helical regions, a three-way
junction (3WJ), and two kissing loops that mediate pRNA self-
assembly in the context of a DNA packaging motor, where pRNA
performs an essential but yet unknown function.87–89 In 1998,
Guo et al. demonstrated that the prototype phi29 pRNA
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sequence self-assembles in vitro.90 More recent studies on phylo-
genetically related pRNAs have shown that in vitro self-assembly
behavior varies by sequence and depends on the nucleotide
composition at the 3WJ.91–93 Engineering of phi29 pRNA has
yielded self-assembling RNA dimers, trimers, and arrays
in vitro.94,95 The ability to control pRNA self-assembly also
has enabled the creation of RNA cages96 (Fig. 4D) and possible
vectors for drug delivery.97,98 Recent work has narrowed engi-
neering efforts to the unusually stable 3WJ motif found within
the pRNA structure.99–101 The phi29 pRNA 3WJ has been used
to construct RNA polygons,102–105 tetrahedra106 (Fig. 4E), and
prisms.107 Other studies have developed the 3WJ into a promising
platform for the delivery of therapeutic cargoes.108–113 To date,
only the phi29 pRNA sequence has been developed for RNA
nanotechnology. Related or engineered pRNA sequences
with different thermodynamic,100 conformational,93 and self-
assembly91,92 properties may prove useful for tailoring the
features of pRNA-based structures for specific applications.

RNA tiles and RNA origami

As described above, a host of synthetic RNA structures have
been engineered by exploiting RNA motifs found in nature.
A different approach relies on the de novo design of RNA motifs
analogous to the tiles used in DNA nanotechnology. For example,

Afonin et al. have demonstrated the self-assembly of RNA
PX tiles,114 and Stewart et al. have shown that RNA DX tiles
self-assemble into periodic lattices on the micrometer scale
(Fig. 4F).115 Moreover, Yu et al. have employed RNA
T-junctions in the fabrication of self-assembling octameric
prisms (Fig. 4G).116 Another technique that has been developed
for RNA nanotechnology is origami. In a recent study, Han et al.
demonstrated that single-stranded DNA origami could be
adapted for RNA by taking into account the difference in helical
periodicity between DNA and RNA molecules.53 Using the
adapted technique, the authors were able to produce structures
such as rectangles, rhombuses, and hearts from RNA sequences
up to 6.3 kb in length.53 In another recent study, Qi et al.
combined RNA PX tiles with single-stranded origami to fold
intricately knotted 2D RNA structures up to 7.5 kb in length.54

Co-transcriptionally folded RNA structures

RNA folding is fast on the timescale of transcription.117

Therefore, one exciting prospect for the field of RNA nanotech-
nology is encoding RNA structures as DNA and subsequently
expressing them in vitro or in vivo. In one example, Afonin et al.
showed that rationally designed RNA cubes self-assemble from
six or 10 component strands during in vitro transcription.118

In another example, Afonin et al. showed that RNA rings and

Fig. 4 Self-assembled RNA structures. (A) Transmission electron microscopy (TEM) images of RNA filaments self-assembled from tectoRNAs. Scale
bars: 400 nm. (B) Views of a cryo-electron microscopy (cryo-EM) reconstructed model of a tRNA polyhedron. (C) 3D model of a hexagonal ring based on
the RNAI/IIi kissing complex from E. coli. (D) Cryo-EM reconstructed models of three different RNA cages self-assembled from engineered pRNA. Scale
bars: 3 nm. (E) Sequences (left) and a 3D computational model (right) of an RNA tetrahedron with pRNA 3WJ vertices (red). (F) Atomic force microscopy
(AFM) image of a periodic RNA lattice self-assembled from the RNA DX tile. Scale bar: 25 nm. (G) Computational model (left) and a cryo-EM reconstructed
model (right) of an octameric prism self-assembled from an RNA T-junction. Scale bar: 5 nm. (H) 3D model of an RNA double square (left) and an AFM
image of double squares in cell lysates from E. coli (right). Scale bar: 20 nm. Panel (A) reprinted from ref. 78 by permission of Oxford University Press.
Panel (B) reprinted from ref. 81 by permission from Springer Nature: Nature Chemistry. Copyright 2010. Panel (C) reprinted with permission from ref. 84.
Copyright 2011 American Chemical Society. Panel (D) reprinted from ref. 96 by permission from Springer Nature: Nature Communications. Copyright
2014. Panel (E) reprinted with permission from ref. 106. Copyright 2016 John Wiley and Sons. Panel (F) reprinted from ref. 115 by permission of Oxford
University Press. Panel (G) reprinted from ref. 116 by permission from Springer Nature: Nature Communications. Copyright 2015. Panel (H) reprinted
from ref. 122.
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cubes co-transcriptionally assemble from up to 22 different
component strands in vitro.119 An artful study by Geary et al.
combined principles of origami with tiles, hairpins, and kissing
loops to create hexagonal RNA lattices that co-transcriptionally
fold and self-assemble in vitro.120 Other studies have extended
these principles into living systems. For example, Delebecque
et al. co-transcriptionally assembled RNA scaffolds in E. coli
that were capable of organizing proteins in a hydrogen-
producing biosynthetic pathway.121 More recently, Li et al.
showed that an RNA double square design could be cloned,
expressed, and folded in E. coli (Fig. 4H).122 Compared to
conventional origami techniques, the gene expression of RNA
assemblies avoids costly chemical synthesis as well as lengthy
annealing steps120 and moves the field a step closer to one of
the holy grails of RNA nanotechnology, i.e., rationally designing
RNA objects as large and complex as natural RNA machines.123

Biomedical applications

As described above, numerous advances in nucleic acid nano-
technology have contributed to the development of supra-
molecular DNA and RNA assemblies with precise structural
and dynamic control. Here, we highlight examples of high-
order nucleic acid structures in two promising biomedical
applications: biosensing and therapeutic drug delivery.

Biosensing

Biosensors are tools that convert signals from biological analytes
(e.g., cells, proteins, nucleic acids, and small metabolites) into
recordable signals. They consist of a recognition component
(i.e., a probe), a transducer, and a signal amplification device.124

One challenge in biosensing is facilitating maximum interactions
between analytes and probes while preventing agglomeration due
to an irregular distribution of probes across a sensing surface.124

Rationally designed DNA tetrahedra have proven particularly
useful for addressing this problem. DNA tetrahedra are mechani-
cally robust structures that self-assemble rapidly and in nearly
quantitative yields from four component strands.125,126 In 2010,
Pei et al. developed a sensitive electrochemical biosensor using
DNA tetrahedra assembled from three DNA strands bearing a
terminal thiol group (–SH) and one DNA strand containing a
probe.127 The tetrahedra self-assembled on a gold (Au) electrode
by Au–S chemistry and were shown to enforce uniform probe-to-
probe spacing.127 Additionally, tetrahedra with pendant DNA
probes showed a lower detection limit for target DNA of approxi-
mately 1 picomolar (pM), which represented a 250-fold improve-
ment over the same probe without tetrahedron scaffolding.127

Moreover, aptamers are synthetic nucleic acid sequences that are
evolved to bind a user-specified target ligand with high affinity
using a process known as systematic evolution of ligands
by exponential enrichment (SELEX).128,129 Replacement of the
pendant DNA probe with a DNA aptamer enabled the detection
of thrombin, a potential tumor marker, with a lower detection
limit of 100 pM, or three orders of magnitude lower than the
detection limit for the aptamer alone.127

New work has shown that DNA tetrahedra functionalized
with antibodies can detect other disease biomarkers, including
tumor necrosis factor alpha (TNF-a),130 a well-known tumor
marker, and prostate-specific antigen (PSA),131 a biomarker for
prostate cancer. Yet other DNA tetrahedra have been developed
for detecting microRNAs (miRNAs).132–136 In one particularly
notable example, Wen et al. showed that a DNA tetrahedron-
based biosensor could discriminate human let-7 sequences
with single nucleotide variations.132 The same system equipped
with a different probe could detect the cancer-associated
miRNA-21 on the attomolar range.132 Furthermore, using DNA
tetrahedra, Zhou et al. were able to detect MCF-7 breast cancer
cells.137 Lin et al. since have developed a protocol for the fabrica-
tion of DNA tetrahedron-based biosensors for small molecule,
nucleic acid, protein, and whole cell detection (Fig. 5A).138 Recent
studies have further shown that DNA tetrahedron-based bio-
sensors can detect RNAs,139–142 proteins,143 small molecules,144

and metal ions145 inside living cells.

Drug delivery

Owing to their intrinsic biocompatibility, nucleic acids also
hold promise as platforms for therapeutic drug delivery.
In 2006, Erben et al. illustrated the potential of DNA structures
to serve as molecular containers for therapeutic cargo by
loading cytochrome c into a self-assembled DNA tetrahedron.146

Follow-on research showed that DNA tetrahedra are stable to
enzymatic degradation,147 and DNA tetrahedra,148 icosahedra,149

and cages150 may be reconfigured in response to external signals
for controlled drug release. Furthermore, many studies have
demonstrated that DNA structures are taken up by cultured
cells without transfection reagents.151–154 Recently, Wiraja et al.
tested a variety of nano-scale DNA structures, including tetra-
hedra, cylindrical rods, rectangles, and triangles, and showed
that highly-ordered structures smaller than 75 nm penetrate
the skin.155 Using a mouse model of melanoma, the study
further showed that DNA tetrahedra loaded with the chemo-
therapeutic drug doxorubicin could achieve over 2-fold higher
drug accumulation and tumor inhibition relative to topically
applied doxorubicin and liposome- or nanoparticle-formulated
doxorubicin.155

While some DNA structures achieve passive uptake, other
platforms have been developed with active targeting mechanisms
to promote uptake by specific populations of cells. In one
example, Chang et al. showed that DNA icosahedra self-
assembled from five- and six-point star motifs could be func-
tionalized with a MUC 1 aptamer for targeted delivery of
doxorubicin to MUC 1+ MCF-7 breast cancer cells.156 In a
separate, pioneering study, Lee et al. developed a DNA tetra-
hedron with a small interfering RNA (siRNA) hybridized to each
edge (Fig. 5B).157 SiRNAs are short, double-stranded RNA
molecules that elicit potent gene silencing by co-opting an
endogenous RNA interference (RNAi) pathway.158 Currently,
major challenges for the delivery of oligonucleotide drugs such
as siRNAs include nuclease protection, systemic delivery,
and targeted cellular uptake.159 Notably, siRNA-functionalized
tetrahedra administered in a mouse tumor xenograft model
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displayed longer half-lives in blood circulation relative to
siRNAs alone.157 Additionally, tetrahedra with siRNAs bearing
folate distributed to several tissues but accumulated in folate
receptor-overexpressing KB cells, where they efficiently silenced
a luciferase reporter.157 In line with these results, other studies
have shown that DNA structures can confer stability on their
therapeutic payloads while also maintaining or even improving
their therapeutic efficacies.160,161

Yet other DNA platforms have been developed with sophis-
ticated mechanisms for cargo release. In a recent example,
Bujold et al. designed DNA ‘nanosuitcases’ that encapsulate
siRNA and release it in the presence of specific mRNA or
miRNA triggers (Fig. 5C).162 In another example, Douglas
et al. developed DNA origami ‘nanorobots’ with AND logic
gates.163 These logic gates consisted of two aptamer ‘locks’ that
triggered a drastic reconfiguration of the robot and exposed
molecular payloads upon binding both antigenic ‘keys’.163

Recent work by Li et al. combined both active targeting and

controlled release mechanisms in a DNA nanorobot loaded
with thrombin and functionalized with nucleolin-binding
aptamers (Fig. 5D).164 Thrombin is a protease that induces
coagulation and may be useful for starving tumors of nutrients
and oxygen by selective occlusion of tumor blood vessels.164

Nucleolin is a protein that is expressed on tumor-associated
endothelial cells.165 Remarkably, the nanorobots were capable
of depositing thrombin at tumor cells in mouse models of
breast cancer, and they also proved safe and immunologically
inert in both mice and miniature pigs.164

Several high-order RNA structures also have been developed
for therapeutic drug delivery. Because RNA is more chemically
labile than DNA, RNA-based platforms often are chemically
modified to improve their stability under physiological
conditions. Common modifications include substitutions at
the 20 position of ribose as well as in the internucleotide
linkage.159 A series of studies has developed RNA cubes
designed in silico118 as a promising platform for drug delivery.

Fig. 5 High-order nucleic acid structures for biosensing and drug delivery. (A) A DNA tetrahedron-based biosensing platform for the detection of cells,
proteins, nucleic acids, and small molecules. (B) Strands of DNA and siRNA self-assemble into an siRNA-functionalized DNA tetrahedron. (C) A DNA
nanosuitcase is triggered to release encapsulated siRNA cargo (green) by a specific miRNA sequence. (D) A DNA origami nanorobot is loaded with
thrombin (magenta) and functionalized with nucleolin-binding aptamers (green). (E) Strands of RNA self-assemble into an siRNA-functionalized RNA
cube. Processing by Dicer (‘Dicing’) releases siRNAs from the cube. (F) An RNA pyramid with photocleavable drug cargo. (G) An RNA tetrahedron
functionalized with aptamers (red, blue, and green) and a ribozyme (purple). Panel (A) reprinted from ref. 138 by permission from Springer Nature: Nature
Protocols. Copyright 2016. Panel (B) reprinted from ref. 157 by permission from Springer Nature: Nature Nanotechnology. Copyright 2012. Panel (C)
reprinted with permission from ref. 162. Copyright 2016 American Chemical Society. Panel (D) reprinted from ref. 164 by permission from Springer
Nature: Nature Biotechnology. Copyright 2018. Panel (E) reprinted with permission from ref. 168, DOI: 10.1021/nn504508s. Panel (F) reprinted from
ref. 169 with permission from Springer Nature: Nano Research. Copyright 2019. Panel (G) reprinted with permission from ref. 106. Copyright 2016 John
Wiley and Sons.
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The cubes are precisely controlled in terms of size, shape, and
composition; they can be chemically modified for downstream
applications; and they also are capable of self-assembly in
isothermal conditions during in vitro transcription or from
several short strands following chemical RNA synthesis.118,119

Computational and experimental analyses have shown that
cube designs with 10 bp per edge and single-stranded regions
in the corners are not strained and assemble efficiently.166 In
2011, Afonin et al. developed a protocol for the design and self-
assembly of siRNA-functionalized RNA cubes using processes
that are fully automatable.167 The cubes interact with recombi-
nant human Dicer in vitro to produce siRNAs167 (Fig. 5E).
Furthermore, a recent study by Afonin et al. showed that
siRNA-functionalized RNA cubes are capable of triggering RNAi
in GFP-expressing MDA-MB-231 breast cancer cells and redu-
cing HIV-1 production in HeLa cells.168

Finally, another promising platform for drug delivery has
come from research on pRNA and its thermodynamically stable
3WJ.60,61 The phi29 pRNA 3WJ has been engineered to deliver a
variety of therapeutic agents, including small molecules,108

miRNAs,109 anti-miRNAs,110,111 and siRNAs.99,112,113 In a recent
example, Xu et al. combined the phi29 pRNA 3WJ with a four-
way junction derived from the hairpin ribozyme to generate
20-deoxyfluoro U/C modified RNA pyramids (Fig. 5F).169 These
pyramids were functionalized with the chemotherapeutic drug
paclitaxel via photocleavable spacers, and irradiation with
ultraviolet light induced drug release and cytotoxicity in MDA-
MB-231 breast cancer cells.169 In a different example, Li et al.
reported the self-assembly of a nuclease-resistant, 20-deoxy-
fluoro U/C modified RNA tetrahedron based on the phi29 pRNA
3WJ (Fig. 5G).106 Functionalization of the tetrahedron with
ribozymes, aptamers, and siRNAs did not disrupt its structure,
and the functional modules retained the capacity for ribozy-
matic cleavage, ligand binding, and gene knockdown in vitro.106

Furthermore, this study showed that tetrahedra functionalized
with an aptamer against epidermal growth factor receptor
(EGFR) and an siRNA were capable of internalizing into tumor
tissue and silencing a luciferase reporter in a mouse model of
breast cancer.106

Outlook

From the development of DNA junctions, tiles, and origami in
DNA nanotechnology to the development of tectoRNAs, engi-
neered pRNA, and co-transcriptionally folded structures in RNA
nanotechnology, research over the past 40 years has expanded
the possibilities for creating supramolecular nucleic acid archi-
tectures with precise structural and dynamic control. Today,
high-order DNA and RNA structures are taking their place as
powerful tools with promising biomedical applications.
In biosensing, nano-structured DNA platforms boost sensitivity
for the detection of biological analytes while preventing
agglomeration. In drug delivery, DNA- and RNA-based plat-
forms offer potential solutions to formidable in vivo challenges,
including nuclease protection, systemic delivery, and targeted

cellular uptake for oligonucleotide drugs. Many of the achieve-
ments in nucleic acid nanotechnology would not be possible
without parallel achievements in chemical DNA and RNA
synthesis, which have given ready access to the oligonucleotide
sequences necessary for constructing nucleic acid assemblies.1

Still, for bottom-up fabrication using RNA, sequence length and
yield are considerable limitations. RNA assemblies made by
gene expression may circumvent these issues and facilitate
applications in vivo. Additionally, the cost of oligonucleotide
synthesis is decreasing. In fact, a relative of Moore’s law has
been reported for the effective cost of DNA, which is halved
every 30 months.170 Continued developments in oligonucleotide
synthesis, including in the production of longer sequences for
lower costs, will be important for supporting efforts in DNA and
RNA nanotechnology and for realizing the extraordinary potential
of high-order nucleic acid structures for biomedical applications
and beyond.
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