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ing switchable solvents for
separation of hydrocarbons and their derivatives

Yunfeng Liu, a Zhengsong Qiu,*a Hanyi Zhong,a Xin Zhao,a Weian Huanga

and Xijin Xingb

Solvent extraction is commonly used to separate mixtures of hydrocarbons and their derivatives, and

solvent choice is strongly influenced by the affinity to the target component, cost and safety. Nitrogen-

containing switchable solvents can switch from water-immiscible form to water-miscible bicarbonate

salts when CO2 is injected and back to water-immiscible form when N2 is injected. Switchable solvents,

as a type of recyclable green solvent, can be used not only to separate such mixtures but also to reduce

process costs. Herein, four switchable solvents, namely, dipropylamine, di-sec-butylamine, N,N-

dimethylcyclohexylamine (CyNMe2), and N,N,N0,N0-tetraethyl-1,3-propanediamine (TEPDA), were

employed to separate benzene/cyclohexane, ethyl acetate/acetonitrile, and ethyl acetate/n-heptane

mixtures, and the corresponding partition and selectivity coefficients were determined. In all cases,

separation selectivity increased in the order of dipropylamine < di-sec-butylamine < CyNMe2 < TEPDA,

i.e., TEPDA was best suited for the separation of hydrocarbons and their derivatives. In addition, cycling

experiments revealed that the TEPDA can be re-used at least 15 times and was well suited for industrial

applications. In the end, the mechanism of the separation was put forward.
1. Introduction

The effective separation of mixtures of hydrocarbons and their
derivatives, which are important petroleum components, can
make petroleum resource utilisation more efficient. At present,
the above separation is widely realised using solvent extraction,
with much attention directed at the investigation of traditional
solvents such as sulfolanes, esters, alcohols, and ionic liquids
(ILs). However, as the toxicity, volatility, and ammability of
organic solvents pose potential hazards during industrial-scale
separation, new, highly efficient, and environmentally friendly
solvents for hydrocarbon mixture separation are highly
sought.1–4

As a type of recyclable green solvents, switchable solvents are
soluble in water under a CO2 atmosphere and insoluble in the
absence of CO2.1–7 The polarity, hydrophobic–hydrophilic and
other properties of switchable solvents can be reversibly
changed in the presence of triggers. Taking advantage of this
property, a switchable solvent can be used to extract the product
rst, and then, a trigger is added to separate the product from
the solvent through a phase transition process, and the solvent
can be recovered aer removal of the trigger, all without any
distillation step, which greatly simplies the process of solvent
recovery. However, most switchable solvents are amines, as
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these compounds are protonated in aqueous media in an
atmosphere of CO2 and deprotonated under N2;8 however, not
all amines are switchable solvents.9,10 Nitrogen-containing
switchable solvents have been widely used for extraction,11–15,17

e.g., Holland et al. used N,N-dimethylcyclohexylamine (CyNMe2)
to extract bitumen, achieving bitumen recoveries of 94–97%.18

Besides, the above amine was also used to extract lipids from
Botryococcus braunii microalgae with an extraction efficiency of
22%.11 Wang et al. studied the physicochemical properties of
switchable-hydrophilicity solvent systems,19 and Bediako et al.
used CyNMe2 as a switchable solvent in their novel method of
producing ne silica aerogel powder from silica hydrogel.20 In
the past few years, switchable solvent microextraction has been
extensively studied.16,21–26 These ndings indicate that nitrogen-
containing switchable solvents can be effectively applied in
extraction-based separation.

Hydrocarbon mixtures are generally difficult to separate
using conventional solvents, e.g., benzene/cyclohexane
mixtures can only be separated by extractive distillation in
view of the similar volatilities of these hydrocarbons.27–30 Li et al.
showed that ILs can be used as entrainers to facilitate the
separation of benzene and cyclohexane by extractive distilla-
tion,27 which is also the only method allowing the separation of
ethyl acetate/acetonitrile and ethyl acetate/n-heptane
mixtures31–33 and is characterised by high energy consumption
and equipment cost.33 Although many researchers have applied
switchable solvents to the separation of mixtures of
RSC Adv., 2020, 10, 12953–12961 | 12953
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Fig. 2 Separation of benzene/cyclohexane based on the use of
dipropylamine.
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hydrocarbons and their derivatives, the corresponding studies
involving nitrogen-containing switchable solvents are few.

Accordingly, we make use of the variable ability of nitrogen-
containing switchable solvents to separate different hydrocar-
bons and their derivatives to design a novel procedure for the
separation of hydrocarbons and their derivatives, employing
benzene/cyclohexane, ethyl acetate/acetonitrile, and ethyl
acetate/n-heptane as model mixtures and dipropylamine, di-sec-
butylamine, CyNMe2, and N,N,N0,N0-tetraethyl-1,3-
propanediamine (TEPDA) as model solvents. In addition,
process parameters are optimised, and the effects of switchable
solvent and mixture component identities on separation selec-
tivity and solvent recyclability are revealed.

2. Materials and methods
2.1. Materials

Chemicals, including dipropylamine, di-sec-butylamine,
CyNMe2, TEPDA, benzene, cyclohexane, ethyl acetate, acetoni-
trile, and n-heptane were of analytical grade and were purchased
from Aladdin Reagent Company Co., Ltd., China. The chemical
structures of nitrogen-containing switchable solvents are shown
in Fig. 1. CO2 and N2 were used at a purity of 99.9%.Milli-Q water
(18.2 MU cm at 25 �C) was used throughout.

2.2. Separation of benzene/cyclohexane, ethyl acetate/
acetonitrile, and ethyl acetate/n-heptane

Details of the separation procedure are provided in Fig. 2. Typi-
cally, a benzene/cyclohexane mixture (2 mL of each component)
was treated with dipropylamine (16 mL), and the resulting
homogenous solution was transferred into a 100 mL beaker held
at a constant temperature of 45 �C in a water bath. Then, CO2

(300 mL) was injected into the mixture over 30 min, which was
followed by the injection of deionised water (16 mL) to induce
separation into upper (cyclohexane) phase and lower (benzene +
dipropylamine) phases. The concentrations of cyclohexane and
benzene were determined by gas chromatography (GC) and used
to calculate the cyclohexane partition coefficient, the benzene
partition coefficient, and the benzene selectivity coefficient, with
the benzene selectivity coefficient employed to assess separation
Fig. 1 Chemical structures of nitrogen-containing switchable solvents.

12954 | RSC Adv., 2020, 10, 12953–12961
efficiency. Subsequently, N2 was injected into the lower phase to
induce separation into the upper dipropylamine phase and the
lower benzene phase, and then the upper phase and the lower
phase was phase separation, and then the amine could be recy-
cling use. In the next experiment, the amine was used for the
separation again, and then the separation effect was calculated.
In addition, using different switchable solvents (CyNMe2, di-sec-
butylamine and TEPDA) to separate ethyl acetate/acetonitrile and
ethyl acetate/n-heptane mixtures according to the method
described above under the same operating conditions. The
detailed device diagram of separating benzene and cyclohexane
was shown in Fig. 3, and other hydrocarbons and their deriva-
tives separation was similar. The selectivity coefficient was
determined according to eqn (1).Dbenzene andDcyclohexane were the
partition coefficient of benzene and cyclohexane, which were
calculated by the eqn (2). In the eqn (2), ym and yn represent the
mole fractions of components in the m and n phases, respec-
tively, Vm and Vn represent the volumes of the m and n phases,
respectively.
This journal is © The Royal Society of Chemistry 2020
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Fig. 3 Experimental steps followed in this work to separate hydrocarbons and their derivatives.
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Benzene selectivity coefficient ¼ Dbenzene

Dcyclohexane

(1)

Dbenzene ¼ ym

Vm

�
yn

Vn

(2)
Fig. 4 Effects of (a) CO2 injection rate, (b) temperature, and (c) switcha

This journal is © The Royal Society of Chemistry 2020
Dcyclohexane ¼ ym

Vm

�
yn

Vn

(3)

All the experimental data were repeated at least three times
to obtain a reliable result. The error bars value of experimental
ble solvent amount on the benzene selectivity coefficient.

RSC Adv., 2020, 10, 12953–12961 | 12955
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Fig. 5 Effects of (a) CO2 injection rate, (b) temperature, and (c) switchable solvent amount on the ethyl acetate selectivity coefficient.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
M

ar
ch

 2
02

0.
 D

ow
nl

oa
de

d 
on

 1
1/

27
/2

02
4 

8:
38

:3
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
data was calculated according to the following eqn (4). The error
bars were the standard deviation. In eqn (4), the N represents
the total measurement times, and the xi represents every
measurement value, and the �x represents the average value of
every measurement.

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

XN
i¼1

ðxi � xÞ
vuut (4)

2.3. Optimisation of the separation process and cycling
experiments

The performances of the four switchable solvents for the sepa-
ration of benzene/cyclohexane, ethyl acetate/acetonitrile, and
ethyl acetate/n-heptane mixtures were optimised using the
setup in Fig. 2 by varying (1) the CO2 injection rate (100, 200,
300, 400, and 500 mL min�1), (2) temperature (25, 35, 45, 55,
and 65 �C), and (3) solvent amount (4, 8, 12, 16, and 20 mL).

Cycling experiments were performed to evaluate the suit-
ability of the developed method for industrial applications.
Aer N2 injection into the lower phase, the solvents were
recovered and re-used, and selectivity coefficients were calcu-
lated aer each cycle.
12956 | RSC Adv., 2020, 10, 12953–12961
3. Results and discussion
3.1. Benzene/cyclohexane separation

For all solvents and mixtures, a homogeneous phase was
formed aer CO2 injection into amine–water mixtures because
of amine protonation (amine + H2O + CO2 / amineH+ +
HCO3

�), whereas subsequent N2 injection resulted in separa-
tion into two phases due to the reverse process (i.e., decompo-
sition into the amine and CO2).

Fig. 4 presents the effects of the three parameters on the
benzene selectivity coefficient, revealing that TEPDA showed the
best performance among the four solvents. The benzene selec-
tivity coefficient increased with CO2 injection rate (Fig. 3(a)), as
high injection rates favoured switchable intermediate formation,
reaching saturation at 300 mL min�1, which indicated the
establishment of equilibrium. Due to the CO2 injecting rate
inuence the formation of switchable hydrophilic solvent salts,8

and when the switchable hydrophilic salts formed, then the
phase separation between benzene and cyclohexane was clear.
With the higher CO2 injecting rate, the switchable hydrophilic
solvent salts would form faster, and then the benzene selectivity
coefficient would increase. A similar trend was observed for
temperature, with saturation observed at 45 �C in cases of
dipropylamine, di-sec-butylamine, and TEPDA (Fig. 3(b)). In the
This journal is © The Royal Society of Chemistry 2020
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Fig. 6 Effects of (a) CO2 injection rate, (b) temperature, and (c) switchable solvent amount on the ethyl acetate selectivity coefficient.
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case of CyNMe2, the benzene selectivity coefficient decreased at
temperatures above 45 �C because of the concomitant decrease of
CyNMe2 switchability. Therefore, the optimal temperature was
identied as 45 �C. Finally, the benzene selectivity coefficient
increased with solvent amount (Fig. 3(c)), saturating at 16 mL,
which was therefore selected as the optimal solvent volume.
Among the four solvents, TEPDA was most inuenced by the
three to-be-optimised parameters, and this high sensitivity was
ascribed to the relatively slow protonation attributable to the
presence of two amine groups.
3.2. Ethyl acetate/acetonitrile separation

As shown in Fig. 5(a), the ethyl acetate selectivity coefficient
increased with increasing CO2 injection rate, saturating above
400 mL min�1, which was therefore chosen as the optimal
injection rate. Temperature and solvent amount had similar
effects (Fig. 5(b) and (c)), with optimal values determined as
45 �C and 16 mL, respectively.
3.3. Ethyl acetate/n-heptane separation

As shown in Fig. 6(a), the ethyl acetate selectivity coefficient
remained almost unchanged with increasing CO2 injection rate,
and the smallest rate of 100 mL min�1 was therefore chosen as
This journal is © The Royal Society of Chemistry 2020
optimal. The above coefficient increased with increasing
temperature and solvent amount (Fig. 6(b) and (c)), with
saturation-marking values of 55 �C and 8mL chosen as optimal.

3.4. Partition and selectivity coefficients

As shown in Fig. 7, the benzene partition coefficient increased in
the order of dipropylamine (0.85) < di-sec-butylamine (0.97) <
CyNMe2 (1.13) < TEPDA (1.45), and the cyclohexane partition
coefficient decreased in the order of dipropylamine (0.39) > di-sec-
butylamine (0.34) > CyNMe2 (0.28) > TEPDA (0.21), i.e., separation
efficiency increased in the order of dipropylamine < di-sec-butyl-
amine < CyNMe2 < TEPDA. The same behaviour was observed for
the ethyl acetate partition coefficient in cases of ethyl acetate/
acetonitrile and ethyl acetate/n-heptane separation, which was
ascribed to the increase of amine steric hindrance (and, hence, of
separation efficiency) in the order of dipropylamine < di-sec-
butylamine < CyNMe2 < TEPDA. The enhanced performance of
TEPDA was ascribed to its diamine nature. Fig. 8 indicates that all
selectivity coefficients increased in the order of dipropylamine <
di-sec-butylamine < CyNMe2 < TEPDA, in agreement with the
results presented in Fig. 6. For the same switchable solvent, the
selectivity coefficient increased in the order of benzene < ethyl
acetate (in acetonitrile mixture) < ethyl acetate (in n-heptane
mixture), which was ascribed to the concomitant decrease of
RSC Adv., 2020, 10, 12953–12961 | 12957
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Fig. 7 Partition coefficients obtained for benzene/cyclohexane, ethyl acetate/acetonitrile, and ethyl acetate/n-heptane separations using (a)
dipropylamine, (b) di-sec-butylamine, (c) CyNMe2, and (d) TEPDA.

Fig. 8 Selectivity coefficients obtained for benzene/cyclohexane,
ethyl acetate/acetonitrile, and ethyl acetate/n-heptane separations.
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structural similarity between mixture components. The chosen
switchable solvents were an organic solvent which could be used
to dissolve the hydrocarbons and their derivatives for separation.
Take the TEPDA for example, aer the separation of hydrocarbons
and their derivatives, the switchable solvents could be separated
from the mixed hydrocarbons by the addition of water and CO2

injection. This protonated TEPDA would be switched back to
TEPDA by heating or N2 bubbling to remove the CO2. However,
12958 | RSC Adv., 2020, 10, 12953–12961
when the water was added to the TEPDA in the separation system,
things become more complex. The TEPDA would play several
different roles in this aqueous/non-aqueous hybrid process. Most
of the TEPDA still acted as a solvent in its non-ionic state to soen
and dissolve the mixed hydrocarbons and their derivatives. The
dissolution of mixture in the TEPDA allowed the solubility
between the mixed hydrocarbons. At the same time, a small
amount of TEPDA was ionized in water. The TEPDA ions (i.e.,
(C2H5)2N–(CH2)3–NH

+(C2H5)2) in the water solution acts like
a surfactant in enhancing the mixed hydrocarbons and their
derivatives separation. The accumulation of TEPDA ions at the
interface reduces the mixed hydrocarbons and their derivatives–
water interfacial tension, resulting in the separation.
3.5. Recyclability of nitrogen-containing switchable solvents

Fig. 9 summarises the effects of solvent recycling on separation
performance. For dipropylamine and di-sec-butylamine, selec-
tivity coefficients decreased from the rst cycle to the tenth
cycle, subsequently stabilising. For CyNMe2 and TEPDA, stabi-
lisation was observed aer the seventh and h cycles,
respectively. In general, the employed solvents could be recycled
for at least 15 times, and the corresponding decrease of sepa-
ration efficiency was acceptable for industrial applications. In
addition, the switchable solvent (TEPDA) was applied to oil–
solid separation. Xingang Li et al. used TEPDA to separate heavy
oil from a carbonate solid surface, resulting in over 10% addi-
tional oil recovery.34
This journal is © The Royal Society of Chemistry 2020

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ra00615g


Fig. 9 Effect of cycle number on selectivity coefficients for (a) dipropylamine, (b) di-sec-butylamine, (c) CyNMe2, and (d) TEPDA.

Table 1 The four switchable solvents (dipropylamine, di-sec-butyl-
amine, CyNMe2, TEPDA) in the solubility in the products and recovery

Switchable solvent Separation products
Solubility
(g g�1)

Recovery
(%)

Dipropylamine Benzene/cyclohexane 0.002 99.63
Ethyl acetate/acetonitrile 0.021 99.83
Ethyl acetate/n-heptane 0.006 98.97

Di-sec-butylamine Benzene/cyclohexane 0.012 98.67
Ethyl acetate/acetonitrile 0.015 99.32
Ethyl acetate/n-heptane 0.023 99.58

CyNMe2 Benzene/cyclohexane 0.008 99.67
Ethyl acetate/acetonitrile 0.041 99.63
Ethyl acetate/n-heptane 0.032 99.32

TEPDA Benzene/cyclohexane 0.009 99.21
Ethyl acetate/acetonitrile 0.013 99.72
Ethyl acetate/n-heptane 0.021 98.67
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3.6. The mutual solubility of switchable solvents in the
products

The four different switchable solvents (dipropylamine, di-sec-
butylamine, CyNMe2 and TEPDA) solubility and recovery were
shown in Table 1. The mutual solubility of switchable solvents
in the products were low, and the switchable solvents recovery
were high.
This journal is © The Royal Society of Chemistry 2020
4. Conclusions

Four nitrogen-containing switchable solvents (dipropylamine, di-
sec-butylamine, CyNMe2, and TEPDA) were used to separate
benzene/cyclohexane, ethyl acetate/acetonitrile, and ethyl acetate/
n-heptane mixtures, and the following conclusions were drawn.

(1) Optimal separation conditions depended on the chosen
mixture.

(2) All selectivity coefficients increased in the order of
dipropylamine < di-sec-butylamine < CyNMe2 < TEPDA. For the
same solvent and operating conditions, the selectivity coeffi-
cient increased in the order of benzene < ethyl acetate (in
acetonitrile mixture) < ethyl acetate (in n-heptane mixture).

(3) The tested solvents could be recycled for at least 15 times,
thus being well suited for industrial-scale separation of hydro-
carbons and their derivatives.
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