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o-annelated indenofluorene-
extended tetrathiafulvalenes – large multiredox
systems†

Line Broløs and Mogens Brøndsted Nielsen *

Novel scaffolds of indenofluorene (IF)-extended tetrathiafulvalenes (TTF) were synthesized starting from

a new pyrrolo-annelated IF-TTF monomer. Rigid para- and meta-phenylene linked dimers were

obtained via N-arylation reactions of the monomer, and their optical and redox properties were

elucidated by UV-Vis absorption spectroscopy and cyclic and differential pulse voltammetries.
Tetrathiafulvalene (TTF) is a redox-active unit that reversibly
undergoes two sequential one-electron oxidations, forming rst
a radical cation (TTF+) and subsequently a dication (TTF2+)
containing two aromatic 1,3-dithiolium rings, and it is due to
these redox properties that it is an attractive unit for materials
and supramolecular chemistries.1

Extension of the conjugated system, leading to so-called
extended TTFs, has successfully been used as a tool to nely
tune the redox properties and geometries of the various redox
states.2 For example, introduction of an indeno[1,2-b]uorene
(IF) core3 has provided indenouorene-extended TTFs of the
general structure IF-TTF shown in Fig. 1. X-Ray crystallographic
and computational studies reveal that all three redox states (0,
+1, +2), generated in sequential and reversible steps, take a fully
planar structure, and spectroelectrochemical studies have
shown that the individual redox states exhibit signicantly
redshied absorptions relative to those of TTF, TTF+, and TTF2+,
respectively.2

Recently, we developed synthetic protocols for linking
together two IF-TTF units via anchoring at a peripheral position
of each dithiafulvene unit.4 Such dimers unfortunately exist as
unseparable mixtures of cis and trans isomers (cf., the disub-
stituted TTFs shown in Fig. 1), and to avoid this problem of
isomerism we decided to develop a synthetic protocol for fusing
a pyrrole unit to one of the dithiole rings of IF-TTF as in target
molecule 1 shown in Fig. 2. Indeed, the related mono-pyrrolo-
annelated TTF (MP-TTF, Fig. 1) and bis-pyrrolo-annelated TTF
have proven important as versatile p-donor building blocks in
macromolecular and supramolecular chemistry.5

Dimerization of two units 1 via its nitrogen atom and
a suitable linker would prevent formation of isomers. As linkers
we decided to explore rigid phenylene units as in target
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molecules 2 (para-phenylene bridge) and 3 (meta-phenylene
bridge) shown in Fig. 2. Previously prepared cis/trans isomeric
IF-TTF dimers had exible linkers and showed intramolecular
associations upon oxidation,4 which would be prevented by
these rigid linkers. Moreover, intermolecular interactions are to
a large extent prevented by the peripheral tert-butyl substituents
that were chosen as substituent groups to enhance solubility of
the dimers.

Synthesis of 1 proceeds according to Scheme 1, employing
the known diketone 4,4 the N-tosyl-protected pyrrolo-annelated
1,3-dithiole-2-thione I5a and the phosphonate ester II3b as
precursors. A phosphite-mediated coupling between 4 and I was
carried out to give mono-olenated product 5 in a yield of 61%.
This compound was next subjected to a Horner–Wadsworth–
Emmons olenation with compound II, deprotonated by
sodium hexamethyldisilazide (NaHMDS), providing the tosyl-
protected mono-pyrrolo IF-TTF 6 in good yield (76%). This
compound was subsequently deprotected using NaOMe to give
in almost quantitative yield the monopyrrolo IF-TTF 1 with
a pyrrole N–H unit available for further reactions.

Withmonomer 1 in hand, N-arylation reactions with 1,4- and
1,3-diiodobenzene, catalyzed by an excess of CuI and (�)-1,2-
trans-diaminocyclohexane, were conducted in THF at reux
Fig. 1 Structures of cis/trans-isomeric TTFs, mono-pyrrolo-TTF (MP-
TTF), indenofluorene (IF) and an indenofluorene-extended TTF (IF-
TTF).
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Scheme 2 Synthesis of dimers 2 and 3, and of mono-arylated species
7 and 8.

Fig. 2 New pyrrolo-annelated IF-TTF mono- and dimers.
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(Scheme 2). This procedure, previously applied for N-arylation
of pyrrolo-annelated TTFs,6 yielded dimers 2 and 3, respectively.
The procedure worked best for 1,3-diiodobenzene. For the ary-
lation reaction with 1,4-diiodobenzene it was observed that the
rst arylation progressed rather willingly, as the mono-arylated
product 7 could be isolated in 91% yield aer only 3 hours. Only
when compound 7was subjected to signicantly longer reaction
time, however, formation of dimer 2 was observed, and the
compound was isolated in 9% yield aer 18 hours of reaction
time. This result indicates that the substitution of an iodide on
the benzene ring with one IF-TTF unit, in the para position,
Scheme 1 Synthesis of monomer 1 by stepwise olefination reactions.
NaHMDS ¼ sodium hexamethyldisilazide.

This journal is © The Royal Society of Chemistry 2020
decreases the reactivity of the second iodide signicantly,
possibly due to the strongly electron-donating character of the
pyrrolo-TTF. Albeit inconvenient in the current work, it could be
a potential advantage for stepwise construction of unsymmet-
rical scaffolds. For the corresponding reaction with 1,3-diiodo-
benzene smooth formation of the dimer 3 was observed, and
this product was isolated in 23% aer 16 hours, while no mono-
arylated intermediate could be isolated.
Fig. 3 UV-Vis absorption spectra of monomer 1 (dashed line),
monomer 8 (dot dash dot) and dimers 2 (dotted line) and 3 (full line) in
CH2Cl2 at 25 �C.
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Table 1 Absorption maxima (lmax) and extinction coefficients (3) in CH2Cl2 at 25 �C, and oxidation potentials (from DPV) Eox vs. Fc/Fc
+ in 1 : 1

CH2Cl2/C6H5Cl, for compounds 1, 2, 3 and 8

Compound lmax/nm (3/104 M�1 cm�1) Eox (V vs. Fc/Fc+)

1 468 (6.99), 443 (4.61), 378 (1.47), 348 (2.46), 298 (4.13), 267 (5.00) +0.18 (1e), +0.36 (1e)
2 475 (15.9), 448 (9.88), 379 (3.59), 347 (5.98), 295 (8.78), 267 (10.7) +0.11 (1e), +0.44 (2e)
3 472 (15.8), 445 (9.84), 379 (3.32), 347 (5.32), 302 (8.31), 269 (10.3) +0.14 (1e), +0.20 (1e), +0.41 (2e)
8 471 (6.97), 444 (4.52), 381 (1.41), 347 (2.29), 302 (3.98), 268 (4.65) +0.22 (1e), +0.33 (1e)

Fig. 4 Cyclic voltammograms (CVs) (left) and differential pulse vol-
tammograms (DPVs) (right) of (from the top) 1 (0.38 mM), 8 (0.38 mM),
2 (0.37 mM) and 3 (0.43 mM); potentials vs. Fc/Fc+ (solvent: 1 : 1
CH2Cl2/C6H5Cl; supporting electrolyte: 0.1 M NBu4PF6; scan rate:

�1
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Synthesis of a trimer consisting of three IF-TTF units around
one central benzene ring was also attempted by coupling of
monomer 1 and 1,3,5-triiodobenzene. However, when employ-
ing the conditions proven successful for synthesis of the
dimers, no reaction was observed; instead, 86% of the starting
material was re-isolated. Nevertheless, when conducting the
reaction in a sealed vial and heating to 100 �C, full conversion of
monomer 1 was observed. However, the isolated products were
mono-arylated monomer 8 and previously isolated dimer 3, and
not the desired trimer. This result signals again that the reac-
tivity of the iodides in the arylation reaction decreases upon
introduction of IF-TTF units. Upon elevated pressure, as applied
in the attempt to achieve the desired trimer, a competing
reaction by which the iodides are substituted for hydrogen
atoms is observed to exceed the arylation reaction. The mono-
arylated compound 8 was used as a reference compound in
subsequent studies of the synthesized dimers.

The photophysical properties of monomers 1 and 8 as well as
dimers 2 and 3 were investigated by UV-Vis absorption spec-
troscopy in CH2Cl2 at 25 �C (Fig. 3). Absorption maxima and
extinction coefficients are listed in Table 1. The longest-
wavelength absorption maximum of 1 (468 nm) is close to
that of the related IF-TTF with four peripheral SEt substituents
(473 nm; R ¼ SEt in Scheme 1).3a Expansion of the p-system
with a benzene ring (compound 8) had little effect on the
longest-wavelength absorption maximum (471 nm). Linking the
monomeric units by phenylene linkers, dimers 2 and 3, did not
change the longest-wavelength absorption maxima signicantly
either, but the intensity of the absorption was expectedly
doubled (or slightly more than doubled).

Electrochemical studies of the synthesized compounds were
conducted in 1 : 1 mixture of CH2Cl2/C6H5Cl containing 0.1 M
NBu4PF6 as supporting electrolyte, and the cyclic voltammo-
grams (CVs) and differential pulse voltammograms (DPVs) are
shown in Fig. 4. Chlorobenzene was needed as co-solvent due to
limited solubility of the dimers in neat CH2Cl2. Oxidation
potentials are listed in Table 1 (taken from the DPVs), refer-
enced against the ferrocene/ferrocenium (Fc/Fc+) redox couple
(recorded in a separate experiment). For monomer 1 two
reversible, one-electron oxidations were observed, at +0.18 and
+0.36 V vs. Fc/Fc+, forming the radical cation and the dication,
respectively. Similarly, monomer 8 was found to undergo two
reversible one-electron oxidations at +0.22 and +0.33 V vs. Fc/
Fc+. For dimer 3 two reversible, one-electron oxidations were
observed, at +0.14 and +0.20 V vs. Fc/Fc+, forming the radical
cation and the dication, respectively, followed by a reversible
15032 | RSC Adv., 2020, 10, 15030–15033
two-electron oxidation, at 0.41 V vs. Fc/Fc+, forming the tetra-
cation. The electrochemistry of dimer 2 is, however, more
complicated. It exhibits a reversible one-electron oxidation at
+0.11 V vs. Fc/Fc+, hence at lower potential than for dimer 3 in
accordance to the large linearly conjugated system provided by
a para-phenylene bridge. The second oxidation seemed,
however, to occur over a very broad potential range. As known
from literature,7 the isolated 1,4-di(N-pyrrolyl)benzene unit
itself undergoes an irreversible oxidation, and in the case of
dimer 2 it seems that the redox properties are affected signi-
cantly by this structural unit of the molecule; dimer 2 thereby
acts less like a ‘classical’ extended TTF. The CV may as well be
complicated by intermolecular interactions despite the bulky
tert-butyl groups present on the IF cores. A reversible two-
electron oxidation, possibly due to formation of the tetraca-
tion or higher oxidation states, is observed at +0.44 V vs. Fc/Fc+,
indicating that while the second oxidation wave is signicantly
broadened the reversibility is intact.

In conclusion, we have developed a convenient synthetic
procedure to obtain the rst pyrrolo-annelated IF-extended TTF
that was successfully dimerized by N-arylation reactions. The
resulting rigid dimers present new interesting multiredox
systems to be explored further in future work. The possibility to
perform functionalization at the a-carbon atoms of the pyrrole
0.1 V s ). Oxidation potentials listed in Table 1 are based on DPVs.

This journal is © The Royal Society of Chemistry 2020
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unit of these new scaffolds will also be interesting to pursue,
taking advantage of the elaborate chemistry that has been
developed for the parent mono- and bis-pyrrolo-annelated
TTFs.5
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J. O. Jeppesen and J. L. Sessler, Chem. Soc. Rev., 2018, 47,
5614.

6 (a) Y. Salinas, M. V. Solano, R. E. Sørensen, K. R. Larsen,
J. Lycoops, J. O. Jeppesen, R. Mart́ınez-Máñez, F. Sancenón,
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