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Zeolitic imidazolate frameworks (ZIFs) are designed with metals as center atoms, connected by imidazole-
like linkers. The created structures have been employed considerably in the field of advanced energy
materials, including catalysis/electrocatalysis and energy storage and harvesting applications. In the
present study, the bandgaps of pristine and doped ZIF-8 (using noble and transition metal dopants such
as Pd, Pt, Ni, Mn, Co, Cu, Fe, and Ti) are determined. This can result in a promising approach to enhance
the corresponding electronic properties while applying noble metal-free dopants. To determine the
bandgap values, a quantum mechanical modeling based on density functional theory (DFT) was applied.
Then, due to the time-consuming and complicated nature of this approach, the obtained results from
the DFT study were then employed to develop the support vector machine (SVM) model to estimate the

. 4 315t March 2020 bandgap of the resulting nanostructure. The outcomes of the proposed model showed its high accuracy,
eceive st Marc . >
Accepted 24th May 2020 with R of 0.98 and root mean squared error (RMSE) of 0.04. The developed model could have great

value in designing various ZIF-8-based nanostructures, particularly when applied in electro/catalytic

DOI: 10.1039/d0ra02943b reactions, e.g., electrocatalytic hydrogen evolution reaction or catalytic hydrogenation reaction, through
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1. Introduction

Porous materials with tunable pore sizes, large pore volumes,
and high surface areas have drawn much attention from
researchers in recent decades.'” This field has gained even
more significance with the development of an innovative type of
porous material based on hybrid metal-organic frameworks
(MOFs), which are well known as coordination polymers and
hybrid organic-inorganic frameworks.®*® MOFs with zeolitic
structures, such as zeolitic imidazolate frameworks (ZIFs),*
include M-Im-M (M: transition metal cations, e.g., Co, Zn, and
Im: imidazolate linker), which can be synthesized by a self-
assembly method."" The different forms of ZIFs are topologi-
cally isomorphic with the conventional form of aluminosilicate
zeolites. Namely, the M-Im-M angle is similar to the 145° Si-O-
Si angle in zeolites.”> Among zeolitic MOFs, ZIF-8, referred to as
Zn(2-methylimidazole), or Zn(mIm),, is a highly crystalline
porous material that possesses the pore diameter and acces-
sible diameter of 1.16 nm and 0.34 nm, respectively.'***
Applying ZIF-8 as an advanced energy material in energy
harvesting, storage, and catalysis highlights the importance of

“Chemical Engineering Department, Amirkabir University of Technology (Tehran
Polytechnic), Mahshahr Campus, Mahshahr, Iran. E-mail: sajjad.habibzadeh@aut.
ac.ir

*Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering
Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
(ESI) available. See DOI:

T Electronic  supplementary  information

10.1039/d0ra02943b

This journal is © The Royal Society of Chemistry 2020

the solid-state electronic properties of this porous struc-
ture.*>'® Particularly, the respective bandgap serves as one of
the imperative parameters in the rational design of such
materials.”” ™ Information about this parameter can help
researchers judge the performance of synthesized nano-
structures in different applications, especially catalytic (i.e.,
hydrogenation reaction) and electrocatalytic (i.e., hydrogen
evolution reaction). However, limited experimental data on
the bandgap of such imidazolic crystalline structures have
been reported in the literature,*»** despite such experimental
measurements becoming of great importance in designing
new materials.?> Nevertheless, experimental measurements
are quite costly and time consuming; therefore, theoretical
studies based on quantum mechanical concepts with
improved functionalities have been raised in the recent
studies, which can potentially address the objective of
bandgap determination.>®*

Computational material science, including DFT, Monte
Carlo simulations, and molecular dynamics, can offer an
opportunity to discover gaps in science and design new chem-
ical structures and composites.> Nonetheless, these computa-
tional approaches generate a huge amount of data, requiring
the application of artificial intelligence (AI) in material data
science. Al, a computational strategy that has been extensively
applied in natural language processing, speech recognition,
and computer vision, has recently been widely utilized for
materials studies,* specifically, in property prediction®** and
prescreening in high-throughput materials search. Methods
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based on Al, such as decision tree, fuzzy logic, support vector
machine (SVM), artificial neural network (ANN), etc., are very
robust tools used for DFT calculations, molecular dynamics
(MD) simulations, and group contribution correlations. Such
a combined approach between AI and material structural
calculations can lead to a reduction of computational time.*

Machine learning patterns have emerged in solid-state
electronic structure prediction based on fitting of DFT data-
bases and utilization of different feature lists and network
architectures.*®*” These strategies suggested a potential and
alternative way for addressing the discussion of bandgap
problems. Previous works on this issue employed regression or
learning approaches. Namely, ordinary least squares regres-
sion (OLSR),**?%% sparse partial least squares regression,*
least absolute shrinkage and selection operator (LASSO),*®
support vector regression (SVR),* artificial neural networks
(ANNs)**** and kernel ridge regression (KRR)*»* have been
used to determine actual bandgaps or bandgaps from
computationally expensive beyond-DFT approaches. These
employed DFT-KS bandgaps and constitutive elemental prop-
erties, including pseudopotential radii, first atomic ionization
potential, electronegativity, atomic valence, standard melting
points, atomic number, etc. Ferreira and Silveira developed
multilayer perceptron (MLP) and extreme learning machine
(ELM) artificial neural network (ANN) models to estimate
bandgap values derived from DFT calculations for two-
dimensional photonic crystals.** Their results indicated the
reliability of both ANN models, with the RMSEs of 0.7642 and
0.5627 for the MLP and ELM models, respectively. Moreover,
another modeling study was carried out by Zhuo et al to
estimate the bandgap values of inorganic solids using the SVM
method.*” They used 3896 experimental bandgap values
extracted from the literature to construct the model. Moreover,
Wang et al. developed a quantitative structure-property rela-
tionship (QSPR) model to estimate the bandgaps of metal
oxide nanoparticles, which were obtained from DFT calcula-
tions.*® They used Vienna Ab initio Simulation Package to
calculate the theoretical descriptors.
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In this study, a combined quantum mechanical concept and
machine learning approach was employed to estimate the
bandgaps of noble and transition metal/ZIF-8 composites. In
addition, a potential application of the optimized SVM model
with GWO method was investigated. In doing so, we optimized
the binding energy of metal/ZIF-8 structures, for which the
corresponding bandgap values were determined by DFT simu-
lation. The obtained bandgap values from DFT calculations
were utilized to construct the SVM model in order to estimate
the respective bandgaps with the simple variables.

2. Theory

2.1. Support vector machine (SVM)

One of the supervised learning methods, called SVM, was constructed
by statistical learning theory for pattern recognition and data analysis,
which is applied for data classification and regression.” The aim of
the present work is to use this algorithm as a regression approach to
transfer the data to a high-dimensional space by employing
a nonlinear function of @(x), and bring them to the first space. The
mentioned nonlinear mapping is done based on development of the
suitable kernel function of K(x;, y,).*® Furthermore, it is assumed that
several points are not appropriately classified by a hyperplane;
therefore, to overcome this challenge, the slack variable is employed.*
By considering that m data points exist in the data space and the
training dataset of D = {(x;y;)|i = 1, 2, 3,..., m}, a regression function
can be introduced in accordance with y = w’®(x) + b, in which &(x)
stands for nonlinear mapping function, and » and w stand for offsets
and weight vectors, respectively. Therefore, the optimized equation for
the support vector regression model is:
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Fig. 1 Schematic view of ZIF-8 MOF: (a) unit cell and (b) primitive cell.
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Fig. 2 The PDOS plots for: (a) pristine ZIF-8, (b) Ni/ZIF-8, (c) Pt/ZIF-8

in which C represents the penalty parameter, ¢ shows the loss
function parameter, and E:f and &, represent the slack variables.
The model loss is determined only when the absolute error of
the predicted and real values is greater than e.

The fundamental of this problem refers to a convex
quadratic programming. To fuse the constraint into the cost
function, the Lagrangian function is used, and the dual
problem can be solved as follows:**

1<
max| —

24

m
i =

(0= @) (& = o) 20)- ()

1 j=1

i=1

+ (ai - a;)yi - Z(ai - “7)}’f€:| s.t., Z(O‘i - 0‘?)

(2)

Herein, o is the Lagrangian multiplier, where the kernel
function calculates the transformation relationship of the
utilized dataset. In the present work, the radial basis kernel
function is used:>

K (x;,x)) :exp(—yﬂx,-—xjﬂz) (3)
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Fig. 3 Relative deviation between obtained values from Mulliken
population analysis for Pt/MOF and other metal/MOF composites.

in which y shows the RBF parameter.

According to the above discussions, there are two determining
parameters in this training, namely, the penalty parameter C and
the RBF parameter v, referring to the generalization ability and
estimation performance. Finally, it is worth mentioning that the
hyper-parameters of SVM should also be optimized.

2.2. Gray wolf optimization (GWO)

The GWO algorithm is known as one of the optimization algo-
rithms derived from simulation of the predation behavior and

RSC Adv, 2020, 10, 22929-22938 | 22931
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Fig.4 Schematic view of atomic charge difference with the addition of transition metals to ZIF-8: (a) pristine ZIF-8, (b) Pt/ZIF-8, (c) Co/ZIF-8, (d)
Cu/ZIF-8, (e) Fe/ZIF-8, (f) Mn/ZIF-8, (g) Pd/ZIF-8, (h) Ti/ZIF-8, (i) Ni/ZIF-8.

social hierarchy of gray wolf populations.® A strict social hier- the gray wolf group based on the ranks. In these grades, the
archy is considered for the gray wolf group, which can be high-level wolf leads to the low-level wolf. During hunting, the
demonstrated in a pyramid hierarchy. There are four grades in  activities, including aggression, encirclement, and capturing of

22932 | RSC Adv,, 2020, 10, 22929-22938 This journal is © The Royal Society of Chemistry 2020
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Table 1 Bandgap values for some ZIF-8/metal composites deter-
mined by DFT calculation

Composite Bandgap (eV)
ZIF 4.961
ZIF/Ni 0.973
ZIF/Co 1.241
ZIF/Co-Ni (50%) 1.237
ZIF/Cu 1.951
ZIF/Cu-Ni (50%) 1.393
ZIF/Mn 0.516
ZIF/Mn-Ni (50%) 0.984
ZIF/Pd 2.189
ZIF/Pd-Ni (50%) 1.394
ZIF/Pt 1.86
ZIF/Pt-Ni (50%) 1.392
ZIF/Ti-Ni (50%) 1.393

the prey are conducted by the gray wolf group. Upon obtaining
the best solution by GWO, the wolf group searches for the prey
position, and then completes the search for the optimal solu-
tion based on the gray wolf fitness value and the relationship
between the different grades.>

2.3. Density functional theory (DFT)

DFT rewrites the Schrodinger relationship to explain the
conditions of electrons for a system.** Hohenberg and Kohn
developed this theory, in which all the ground-state properties
are determined based on the charge density in which energy
should be minimized. Such theorems proposed that there
would be a potential to use it iteratively for improvement on an
initial guess for the charge density. Later, Kohn et al.> used the
crystal structures to obtain a method for certain applications by
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reformulation of the basic equations to gather the most
complicated interactions between electrons in an ‘exchange-
correlation’ functional. It should be mentioned that the accu-
rate form of the exchange-correlation functional has not been
recognized, although there are some successful estimations by
electron gas models and other extensions for several classes of
materials.>**® The inputs of a DFT calculation include the
coordinates and identities of the atoms in the material within
a repeating® lattice, the exchange-correlation functional,
parameters and algorithms for numerical and iterative conver-
gence, and optionally, a method for more efficiently treating the
core electrons in the system (for example, through the use of
pseudopotentials). This is the point where DFT can generate
structural information, including charge density and the elec-
tronic band structure, magnetic configuration, and binding
energy.

3. Model development

3.1. Determining bandgap via DFT

A 3D cubic cell of ZIF-8 (see Fig. 1a) was constructed based on
XRD pattern, and its primitive cell (shown in Fig. 1b) was used
for subsequent calculations.

The determination of DFT combined by the generalized
gradient approximation (GGA) were done in Dmol® program.*
The Perdew exchange-correlation functional and double-
numeric quality basis set were used.®* To treat the core elec-
trons, DFT semicore pseudopotentials (DSPPs) were employed.
The outputs showed that no magnetism was found by all the
super-lattice models at their equilibrium lattice constants,
though the spin-polarized determinations were done. In order
to determine the energy and optimize the geometry, the
convergence criteria were selected as follows: (a) a maximum

u MW of Metall
Max energy level for Metal 1

® No of electron in the last S orbital
for Metall

® No of electron in the last d orbital
for Metall

B MW of Metal2

No of electron in the last S orbital
for Metal2

m No of electron in the last d orbital
for Metal2
® Max energy level for Metal2

Composition Metal 1

Composition Metal 2

Fig. 5 Sensitivity analysis for determining effective variables on bandgap.
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Fig. 6 Flowchart of the GWO-SVM model.

displacement tolerance of 0.005 A, (b) a maximum force toler-
ance of 0.002 Ha A™*, and (c) an energy tolerance of 1.0 x 10°
Ha. In addition, an empirical dispersion-corrected density
functional theory (DFT-D) developed by Grimme was employed
to tackle the inappropriate description of the weak interactions
by the standard PBE functional.®>*

The projected density of states (PDOSs) and the band
structures of metal/ZIF-8 were calculated. This is to understand
the orbital contributions and the respective electronic coupling.
The bandgap value of pristine ZIF-8 is 4.961 eV, and based on
electrochemical background, it is well known as a semi-
conductor material. Fig. 2 shows the projected density of states
for pristine ZIF-8 and some important metal/ZIF-8 frameworks,
such as Pt, Pd, and Ni/ZIF-8. Even though this figure includes
the contribution from all orbitals, the orbital-projected DOS
ascribes that the PDOS near Fermi energy originates mostly
from the zinc d-orbitals for pristine ZIF-8. In addition, as can be
seen, the bandgap values due to the addition of dopants were
significantly decreased.

It was found that ZIF-8 has poor electronic conductivity.**
Thus, we tried to add precious metals and transition metals
such as Pd, Pt, Ni, Mn, Co, Cu, Fe, and Ti as the dopants.
Subsequently, the corresponding bandgap changes can be
compared with the pristine ZIF-8. In addition, binary dopants,

Table 2 Details of the employed GWO-SVM algorithm

Parameter Value/comment
Kernel function Gaussian

No. of train data 37

No. of test data 6

Optimization GWO
technique

C 7525.674

& 0.0358

I 0.00256
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including Ni and other aforementioned metals, were also
investigated within the metal composition range of 0-1.

Fig. S1 to S8t indicate the band structures and projected
density of states for the addition of Ni, Mn, Co, Pd, Pt, Cu, Fe,
and Ti atoms to the pristine ZIF-8 framework. As can be seen,
the bandgap values were decreased significantly by the addition
of Fe and Ti to this structure. The bandgap value can also lead
us to find a suitable dopant for a certain application. Namely,
considering catalytic hydrogenation or electrocatalytic
hydrogen evolution reaction (HER), costly Pt-based electro/
catalysts are considered as the most active materials.
However, designing a cost-effective doped-ZIF-8 composite
using the bandgap analysis can be of great value, where the
bandgap values of such doped frameworks are close to that of
Pt/MOF framework. Accordingly, the predicted metal dopant
can be a good candidate for the hydrogen surface reaction
application. As can be seen in Fig. S1 to S8,T the bandgap values
for Pd, Cu, Ni, and Co metals are closer to that of Pt/ZIF-8. In
addition, Mulliken population analysis confirms the above
conclusion by comparing the charge for the d-angular
momentum shell of the dopants. Fig. 3 indicates the relative
deviation between obtained values from Mulliken population
analysis for Pt/ZIF-8 and other metal/ZIF-8 composites.

Fig. 4 also illustrates the schematic of different metals doped
on ZIF-8 and changes in atomic charge difference with the
addition of these dopants to the pristine ZIF-8 framework.

3.2. Data used for the model construction

The results obtained from the DFT calculation were used to
construct and test the SVM model. A total of 43 data points were
employed; 70% of this data was used for training step, and the
remaining 30% was applied to assess the generalization of the
model. A portion of the dataset is presented in Table 1. The
composition of binary dopants ranges between 0 and 1. The
inputs of the proposed model are molecular weight, maximum
energy level, number of electrons in s and d orbitals for both
metal dopants, composition of the first dopant, and composi-
tion of the second dopant. All data were normalized within the
ranges of —1 and 1 and fed to the SVM model.
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Fig. 7 Williams plot of proposed GWO-SVM model.
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Fig. 8 Simulated and predicted bandgap values obtained from the
proposed GWO-SVM model.

4. Results and discussion

4.1. Sensitivity analysis

A mathematical technique, ie., sensitivity analysis (SA), was
applied to check the impacts of the input variables on the
output. Additionally, there are other useful applications for SA,
such as establishing the priorities of research, revealing tech-
nical errors, and identifying critical regions.*>* In the litera-
ture, SA has two forms of analyses, local and global. Local
sensitivity assumes that all the other inputs are set constant
while the impact of one input on the target is evaluated.®® On
the other hand, global sensitivity, as a typical method, studies
the impact of the inputs on the target when all variables are
varied.

The effectiveness of the inputs in GWO-SVM for bandgap
prediction is shown in Fig. 5. As observed, the number of

Train @ Test

—— Linear (Train)

View Article Online

RSC Advances

electrons in the last d orbital of the dopants shows the highest
impact on the bandgap. In addition, characteristics of the first
metal with the higher composition possesses a similar rele-
vancy factor. The outcomes indicate that all of the designated
inputs have crucial impacts on the bandgap values.

4.2. Designing GWO-SVM model

According to the previous discussions, the performance of SVM
algorithm is controlled by C, ¢ and v. Therefore, in the present
study, GWO was used to optimize these parameters. In Fig. 6,
the scheme of the GWO-SVM algorithm is depicted.

The GWO fundamentally includes four parts: social hier-
archy, tracking, encircling, and attacking prey steps. Four kinds
of grey wolves, including alpha («), beta (8), delta (6) and omega
(w), are used for simulation of the wolf hierarchy, in which «, 8,
0, and w are solutions. The «, 8, and ¢ are determined based on
the corresponding fitness values, such that the best three
solutions can determine the position of the prey. Detailed
information explaining all parameters of this strategy can be
found in the literature.”® As the final criterion is obtained, the
GWO is stopped. Details of the proposed GWO-SVM model are
summarized in Table 2.

4.3. Outlier analysis

One of the vital statistical approaches is outlier diagnosis,
which is used to diagnose groups of data from the overall
dataset. An efficient method, namely, leverage statistics, is
applied for the detection of outliers.®” The critical Leverage limit
(H*), the Hat indices (H), and the standardized (R) were
considered in the present approach. The Hat index is expressed
as follows:

H=XXX"'X, (4)

—— Linear (Test)

2.5
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g 15
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Fig. 9 Regression plot between simulated and outcome of GWO-SVM model.
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Fig. 11 Relative deviation plot for the proposed GWO-SVM model.

where X and ¢ are the two-dimensional (n x k) matrix and the
symbol for transpose matrix, respectively. In this problem, the
possible Hat solutions are on the main diagonal of H. The
outliers are identified by depiction of the Williams plot. This
plot expresses the correlation between the standardized
residual and Hat index.*” A squared zone in the range of +3
standard deviations and a leverage threshold of 3n/(p + 1) is
defined as the valid zone of data (where p and  are, respectively,
the number of input parameters of the model and the training
points). The significant number of data placed in the ranges of
—3 =R =3 and 0 = H = H* shows that GWO-SVM can be

Table 3 Comparison of different models

View Article Online
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applied in a wide domain. Outliers are defined as data (R and H)
excess the ranges [—3, 3] and [0, H*], respectively. Fig. 7 shows
the Williams plot of the outputs of GWO-SVM.

The majority of bandgap values studied in the present
research lay in the reliable domain of [0, H*] and [—-3, 3], except
for one point placed in the range of R < —3, showing that the
GWO-SVM algorithm is not only effective in statistics but could
also raise the ability to reflect the intrinsic relationships
between the bandgap value and input parameters.

4.4. Model evaluation

Fig. 8 plots the bandgap value determined from the GWO-SVM
model. In this plot, the obtained bandgap values are depicted
versus the data index while illustrating the testing and training
results. It can be seen that the proposed model can result in
a great prediction capability.

The coefficient of determination (R*) represents the prox-
imity of determined values to real values. R” varies in the range
of 0 and 1.0. As this parameter gets closer to unity, the model
predicts more accurately. Near-unity R” for the developed model
expresses its capability to determine the bandgap value of
metal/ZIF-8 composites. As demonstrated in Fig. 9, the cross
diagram of simulated and actual values illustrates an R> coef-
ficient of 0.9881 and 0.9825 for training and testing parts of the
GWO-SVM models, respectively.

The majority of bandgap values in both training and testing
data sets are along the bisector line, which represents the
precise determination of the GWO-SVM. Fig. 9 verifies the
prediction capability and accuracy of the GWO-SVM model. The
Taylor diagram of the proposed model is shown in Fig. 10 to
statistically assess the model. The range in the color bar refers
to the RMSE. An orange color is seen for the proposed model,
indicating a value of RMSE of less than 0.1. According to the
acquired values, GWO-SVM shows a superior accuracy with the
minimum MRE, RMSE, and STD while having the maximum
values of R®. Fig. 11 also illustrates the relative deviation
percentage for the GWO-SVM model. It can be seen that the
GWO-SVM model shows great precision, where the determined
deviation does not exceed the 60% band.

4.5. Comparison with other methods

The obtained results from the proposed GWO-SVM model were
statistically compared with two other machine learning methods,
the adaptive neuro-fuzzy inference system (ANFIS) and the
multilayer perceptron artificial neural network (MLP-ANN). The
ANFIS approach was applied with five clusters and Gaussian
membership function, in which its parameters were optimized by

Mean relative

Mean square Root mean square

Model R-squared error (%) error error

GWO-SVM 0.982 2.14257 0.00148 0.03851
ANFIS 0.784 5.01616 0.01676 0.12947
ANN 0.942 3.47589 0.00832 0.09120
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the particle swarm optimization algorithm. In addition, the
proposed ANN model embedded five hidden neurons, where its
parameters (weight and bias values) were tuned by Levenberg-
Marquardt technique. Table 3 summarizes the statistical anal-
yses obtained from all the applied models. It can be concluded
from the statistical evaluations that the suggested GWO-SVM
model can be regarded as the most accurate one.

5. Conclusions

In this work, the bandgap of metal/ZIF-8 was determined, for
the first time, by combining both concepts of quantum
mechanics and machine learning approaches. A DFT study
based on DMol® code was carried out to determine the bandgap
of the aforementioned composite, then the outcomes were used
to construct the SVM model optimized by GWO algorithm. The
inputs of the model were molecular weight, last layer, number
of electrons in s and d orbitals for binary metal dopants, and
composition of the first and second dopants. Based on the
sensitivity analysis, the number of electrons in the last d orbital
of dopants showed the highest impact on the bandgap. More-
over, according to the statistical analysis indicated by Taylor
plot, the suggested GWO-SVM model showed a superior
potential to accurately estimate the bandgap value. In addition,
it was found from the Mulliken charge analysis that a relatively
similar behavior was observed between the Pt-based composite
and the other metal-based composites, with a close Mulliken
charge. Hence, this study can effectively predict appropriate and
cost-effective dopants for a certain application, particularly,
hydrogen evolution reaction or hydrogenation reaction.
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