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zed cross-coupling reaction of
alkenyl aluminums with 2-bromobenzo[b]furans†

Chang Wen,‡ Xin Jiang,‡ Kun Wu, Ruiqiang Luo and Qinghan Li *

Highly efficient and simple cross-coupling reactions of 2-bromobenzo[b]furans with alkenylaluminum

reagents for the synthesis of 2-alkenylbenzo[b]furan derivatives using PdCl2 (3 mol%)/XantPhos (6 mol%)

as catalyst are reported. Excellent yields (up to 97%) were obtained for a wide range of substrates at

80 �C for 4 h in DCE.
2-Substituted benzo[b]furans are important structural scaffolds
found in many natural products and pharmaceutical products.1

Some of these compounds have been known to exhibit anti-
inammatory,2 antitumor,3 anticancer,4 and anti-fungal,5 anti-
plasmodial,6 antioxidant,7 anti-HIV,8 and estrogenic activities.9

In addition, they serve as building blocks for many organic
transformations.10 Thus, their synthesis and applications have
attracted considerable attention in the chemical and pharma-
ceutical industries over the past decades.11 Until now numerous
effective synthetic methodologies of synthesis 2-substituted
benzo[b]furans have been reported.12,13 Among these methods
hitherto developed, the metal-catalyzed 2-halobenzo[b]furans
coupling with organometallic nucleophiles is one of the most
effective methods (Scheme 1).13 However, in most cases gener-
ally suffer from one or more drawbacks such as requirement co-
catalyst like Cu salts, limited substrate scope, high catalyst
loading, high temperature and poor chemoselectivity etc.
Therefore, the development of more efficient and atom
economical approaches for the preparation of 2-substituted
benzo[b]furans remains as desirable work. Previous studies
show that organoaluminum reagents are highly efficient
nucleophiles for cross-coupling reactions with aromatic
halides14 or benzylic halides,15 and the investigations have
demonstrated that palladium is a good catalytic metal.16

At present, a variety of methods have been developed to
prepare compounds containing olen functional groups
through hydrocarbon activation of olens.17 To continue our
effort to develop coupling reactions using reactive organo-
aluminum reagents,18 we herein report a palladium(II)-cata-
lyzed, base free cross-coupling reactions of 2-bromo benzo[b]
furans with alkenylaluminum reagents at 80 �C in short reac-
tion time with good to excellent isolated yields for 2-alkenyl
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benzo[b]furans. The process was simple and easily performed,
and it provides an efficient method for the synthesis of 2-alkenyl
benzo[b]furans derivatives. Notably, in our procedure palla-
dium is used as the single catalyst and base free.

Our initial studies used 2-bromo-6-methoxybenzo[b]furan
(2e) with diethyl(oct-1-enyl)aluminum (1a) as model substrates.
Treatment of compound 2e with the alkenylaluminum (1a)
using PdCl2 (3 mol%)/XantPhos (6 mol%) as catalyst in toluene
at 60 �C for 4 h, the coupled product 6-methoxy-2-(oct-1-enyl)
benzo[b]furan (3ae) was obtained in 46% isolated yield (Table 1,
entry 1). However, when using other palladium catalysts, such
as Pd(OAc)2 and Pd(acac)2 the yield is lower than that of palla-
dium dichloride(Table 1, entries 2 and 3). Some bases were
investigated to further improve the yield of coupled products
(3ae). When Et3N was used as a base, the reaction of compound
2e with alkenylaluminum (1a) produced the coupled product
(3ae) with a 27% isolated yield only (Table 1, entry 4). While, the
coupled product (3ae) could not obtain when K2CO3 and
TMEDA were used as base (Table 1, entries 5 and 6). To further
understand the nature of this catalysis, we tested the cross-
coupling reaction of 1a with 2e under various solvents and the
results revealed that DCE was the solvent of choice (Table 1,
entry 9). In hexane or THF, the isolated yield of the coupled
product (3ae) was low efficient (Table 1, entries 7 and 8). To our
delighted, the isolated yield of the coupled product (3ae)
increased from 74% to 85% when the reaction temperature was
increased from 60 �C to 80 �C (Table 1, entries 9 and 10).
Interestingly, the isolated yield of the coupled product (3ae) was
almost unchanged when the alkenylaluminum loading was
decreased from 1.0 mmol to 0.8 mmol (Table 1, entries 10 and
Scheme 1 Palladium-catalyzed cross-coupling reactions of 2-hal-
obenzo[b]furans derivatives with organometallic nucleophiles.

This journal is © The Royal Society of Chemistry 2020
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Table 1 The cross-coupling reaction of diethyl(oct-1-enyl) aluminum
(1a) with 2-bromo-6-methoxybenzo[b]furan (2e) catalyzed by
palladiuma

Entry Pd salt.
1a
(equiv.)

Base
(x equiv.) Solvent

3aeb

yield (%)

1 PdCl2 1.0 — Toluene 46
2 Pd(OAc)2 1.0 — Toluene 19
3 Pd(acac)2 1.0 — Toluene 10
4 PdCl2 1.0 Et3N (2.0) Toluene 27
5 PdCl2 1.0 K2CO3 (2.0) Toluene NR
6 PdCl2 1.0 TMEDA (2.0) Toluene NR
7 PdCl2 1.0 — Hexane 47
8 PdCl2 1.0 — THF 51
9 PdCl2 1.0 — DCE 74
10c PdCl2 1.0 — DCE 85
11c PdCl2 0.8 — DCE 84
12c PdCl2 0.6 — DCE 53
13c,d PdCl2 0.8 — DCE 49

a 1a/2a/PdCl2/XantPhos ¼ 1.0/0.5/0.03/0.06 mmol, 60 �C, 3 mL solvent,
4 h, Ar2.

b Isolated yield of 3ae. c 80 �C. d 1a/2a/PdCl2/XantPhos ¼ 0.8/
0.5/0.02/0.04 mmol.

Table 2 The cross-coupling reaction of alkenylaluminums (1) with 2-
bromobenzo[b]furans derivatives (2) catalyzed by palladiuma

a 1/2/PdCl2/XantPhos ¼ 0.8/0.5/0.03/0.06 mmol, 80 �C, 4 h. Isolated
yield of 3, two runs.
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11). However, the isolated yield of the coupled product (3ae) is
53% only when the alkenylaluminum loading was decreased
from 0.8 mmol to 0.6 mmol (Table 1, entries 11 and 12). Further
studies indicated that the catalyst loading dramatically inu-
enced the isolated yield of the coupled product (3ae). It was
found that the most favorable catalyst loading is 3 mol% PdCl2/
6 mol% XantPhos (Table 1, entry 11). Extensive screening
showed that the optimized coupling conditions were 3 mol%
PdCl2/6 mol% XantPhos, 0.8 mmol 1a, 0.5 mmol 2e in DCE at
80 �C for 4 h (Table 1, entry 11).

Under the optimized conditions, coupling reactions of
aliphatic alkenylaluminum reagents, such as di-sec-butyl(oct-
1-enyl)aluminum (1a) and di-sec-butyl(dec-1-enyl)aluminum
(1b), proceed with electron-neutral, electron rich and
electron-decient 2-bromo benzo[b]furans derivatives afford-
ing the products in good yields (Table 2, 3(ae–ak), 3(ba–bk)).
For example, 2-bromobenzo[b]furans containing methyl and
methoxy affording the corresponding coupled products in 72–
97% isolated yields (Table 2, 3(ab–af), 3bf). 2-Bromobenzo[b]
furans containing chloro and bromo groups affording the
corresponding coupled products in 33–95% isolated yields
(Table 2, 3(ah–ak), 3(bh–bk)). Interestingly, 5,7-dichloro-2-
bromobenzo[b]furan affording the corresponding coupled
products (3ak) and (3bk) in 93% and 93% isolated yields,
respectively (Table 2). Furthermore, the 2-bromonaphtho[2,3-
b]furan was also produced the 2-(oct-1-enyl)naphtho[2,1-b]
furan (3am) with isolated yield of 83% (Table 2). Besides
aliphatic alkenylaluminums, aromatic alkenyl aluminums
such as di-sec-butyl(styryl)aluminum (1c) and di-sec-butyl(3-
This journal is © The Royal Society of Chemistry 2020
phenylprop-1-enyl)aluminum (1d) also reacted smoothly to
afford satisfactory isolated yields (61–95%) (Table 2, 3(ca–ck),
3(da,df)). Importantly, the coupling reactions with 2,5-
dibromo benzo[b]furan, 2-bromo-5-chloro-benzo[b]furan and
2-bromo-5,7-dichlorobenzo[b]furan reacted regioselectivity at
2-position affording the corresponding 2-ynylbenzo[b]furans
derivatives in 33–95% isolated yields (Table 2, 3(ah–ak),
3(bh,bk), 3ck). At the same time, the dehalogenation was not
observed in the cross-coupling with 2-bromobenzo[b]furans
derivatives containing halogen-substituents (Table 2, 3(ah–
ak), 3(bh,bk), 3ck).

The reaction was also found to be effective in gram-scale
synthesis, which indicated its potential for practical
RSC Adv., 2020, 10, 19610–19614 | 19611
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Scheme 2 Preparative scale synthesis of compound 3ah.

Scheme 3 The proposed mechanism for the formation of coupled
product 3.
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application (Scheme 2). 2-Substituted benzo[b]furans deriva-
tives 3ah was synthesized in 1.31 gram using this methodology.

In order to further explore the reaction mechanism, control
experiments were carried out (see the ESI†). We performed the
reaction between 2-bromobenzo[b]furan (2a, 0.5 mmol) with di-
sec-butyl(oct-1-enyl)aluminum (1a, 0.8 mmol) in the presence of
PdCl2 (3 mol%)/XantPhos (6 mol%) in DCE at 80 �C for 4 h. The
reaction mixture was analyzed by 31P NMR, it was found that the
characteristic peak of 31P NMR appeared around at 22.98 ppm
and 30.98 ppm. However, 31P NMR peak of pure XantPhos is
�18.03 ppm. The results show that XantPhos work as a ligand of
the palladium center. Thus, a proposed possible reaction mech-
anism for the cross-coupling reaction is shown in Scheme 3. The
rst step is the oxidative addition of 2-bromobenzo[b]furans (2) to
Pd(0) phosphine complex (4) (which in turn from PdCl2 and
RAlMe2 (1) reagents) to form the organopalladium(II) bromide
intermediate (5). Transmetalation of RAlMe2 (1) with complex 5
gives R'PdR(II) intermediate (6) and Me2AlBr. Finally, complex 6
under goes reductive elimination to afford the desired coupling
product of 2-alkenylbenzo[b]furans (3) and regenerate the active
Pd(0) species for the next catalytic cycle.

Conclusions

A palladium-catalyzed the cross-coupling reactions of 2-bro-
mobenzo[b]furans derivatives with alkenylaluminum reagents
is reported. The cross-coupling reactions of aliphatic and
aromatic alkenylaluminum reagents proceed with electron-
neutral, electron rich and electron-decient 2-bromobenzo[b]
furans derivatives affording the coupled products 2-alkenyl
benzo[b]furans in 33–97% isolated yields. More importantly,
the reaction was found to be effective in gram-scale synthesis,
19612 | RSC Adv., 2020, 10, 19610–19614
and can be utilized as precursors for the synthesis of impor-
tant bioactive compounds. The methodology provides useful
procedure for the synthesis of 2-alkenylbenzo[b]furans deriv-
atives. The coupling reactions with 2-bromo-5,7-dichlor-
obenzo[b]furan reacted regioselectivity at 2-position
furnishing the corresponding 2-substituted benzo[b]furans
derivatives in good yields. Further studies on the application
of this catalytic system to synthesis of bioactive compounds
are currently under way.
Experimental

Melting points were determined with an XRC-1 micro melting
point apparatus and uncorrected. 1H and 13C NMR spectra were
recorded using a Varian 400 MHz spectrometer in CDCl3 with
tetramethylsilane as internal standard. HRMS were recorded on
a Bruker Micro TOF spectrometer equipped with an ESI ion
source. Analytical thin-layer chromatography (TLC) was per-
formed on silica 60F-254 plates. Flash column chromatography
was carried out on silica gel (200–400 mesh). All reactions were
carried out under an Argon gas atmosphere. The starting mate-
rial 2-bromo benzo[b]furans was prepared according to litera-
ture.19 Alkenylaluminum reagents were prepared according to
literature.15a Chemical reagents and solvents were purchased
fromAdamas-beta, Aldrich and XPKchem, andwere usedwithout
further purication with the exception of these reagents: THF,
hexane and toluene were distilled from sodium in mitrogen, and
DCE was distilled from CaH2. Other reagents were commercially
available and used as received.
General producer for cross-coupling of 2-bromobenzo[b]
furans with alkenylaluminum reagents

Under an atmosphere of Argon gas, PdCl2 (2.6 mg, 0.015 mmol),
XantPhos (17.4 mg, 0.015 mmol), 2-bromobenzo[b]furans
(98.0 mg, 0.5 mmol) and DCE (3 mL) were mixed in a Schlenk
ask. Shortly aerwards, a solution of alkenylaluminums (0.8
mmol) was added with a syringe pump. At the end of the
addition, the reaction mixture stirring was continued for 4 h at
80 �C. Aer completion the reaction, the mixture was diluted
with 1 N aqueous HCl solution (10 mL) and extracted with EA (3
� 15 mL). The combined organic layers were dried over anhy-
drous Na2SO4, ltered and evaporated in vacuum. The residue
was subjected to ash column chromatography on silica gel
(hexane gradient) to afford the corresponding products.

(E)-1-(Benzofuran-2-yl)oct-1-en-3-one(3aa).12e Colourless
liquid; yield: 0.099 g (82%), 1H NMR (400 MHz, CDCl3, ppm) d:
7.47 (dd, J ¼ 7.9, 24.9 Hz, 2H), 7.27–7.17 (m, 2H), 6.56–6.46 (m,
2H), 6.34 (d, J ¼ 15.8 Hz, 1H), 2.27 (q, J ¼ 7.1 Hz, 2H), 1.57–1.49
(m, 2H), 1.41–1.28 (m, 6H), 0.96–0.89 (m, 3H). 13C NMR (101
MHz, CDCl3, ppm) d: 155.3, 154.6, 134.0, 129.2, 123.9, 122.6,
120.6, 118.6, 110.7, 102.6, 33.0, 31.7, 29.0, 28.9, 22.6, 14.1.
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