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power modeling of lanthanum
manganites using Gaussian process regression

Yun Zhang * and Xiaojie Xu

Efficient solid-state refrigeration techniques at room temperature have drawn increasing attention due to

their potential for improving energy efficiency of refrigeration, air-conditioning, and temperature-control

systems without using harmful gas in conventional gas compression techniques. Recent developments

of increased magnetocaloric effects and relative cooling power (RCP) in ferromagnetic lanthanum

manganites show promising results of further developments in magnetic refrigeration devices. By

incorporating chemical substitutions, oxygen content modifications, and various synthesis methods,

these manganites experience lattice distortions from perovskite cubic structures to orthorhombic

structures. Lattice distortions, revealed by changes in lattice parameters, have significant influences on

adiabatic temperature changes and isothermal magnetic entropy changes, and thus RCP. Empirical

results and previous models through thermodynamics and first-principles have shown that changes in

lattice parameters correlate with those in RCP, but correlations are merely general tendencies and

obviously not universal. In this work, the Gaussian process regression model is developed to find

statistical correlations and predict RCP based on lattice parameters among lanthanum manganites. This

modeling approach demonstrates a high degree of accuracy and stability, contributing to efficient and

low-cost estimations of RCP and understandings of magnetic phase transformations and magnetocaloric

effects in lanthanum manganites.
1 Introduction

Energy efficiency and sustainability are priority topics in
modern society. Refrigeration and air conditioning account for
a signicant amount of power consumption among various end
uses of energy in both commercial and residential areas.10 Most
refrigeration technology relies on the conventional gas
compression (CGC) technique, which has drawn increasing
criticisms due to its lack of efficiency and use of air-pollutant
gas. Recent developments of magnetic refrigeration (MR) tech-
nology, based on the magnetocaloric effect in magnetic mate-
rials particularly near room temperature, have offered an
exciting alternative to vapor compression refrigeration.20

Advantages of MR technology over CGC include, but not limited
to, almost ten-fold higher cooling efficiency in magnetic
refrigerators, much smaller footprints, complete solid-state
operation, and being environmentally friendly.21 Furthermore,
recent developments in high-temperature superconductors
with enhanced critical temperature andmagnetic elds that can
be generated have prompted developments of high-efficiency
MR devices with superconducting magnetic eld sour-
ces.8,22,28–30 An early development of a gadolinium (Gd) rare earth
metal with a large magnetocaloric effect (MCE) marked
C 27695, USA. E-mail: yzhang43@ncsu.

–20653
a signicant starting point in developing room-temperature
MR, but its application in large-scale commercial usage was
greatly limited due to the very high price of Gd.9 Therefore,
numerous research has been conducted to search for new
materials with large MCEs, large relative cooling power (RCP),
and cheap prices.

Among these materials, ferromagnetic lanthanum manga-
nites, with the general formula, La1�x�yRExAyMn1�zTMzO3

where RE is a rare earth element that partially or totally
substitutes lanthanum, A is an element of the IA or IIA group,
and TM is a transition element that partially substitutes Mn, are
of practical importance. These materials have unique properties
such as small magnetic and thermal hysteresis, a large MCE
around Curie temperature TC, and a broad working temperature
range. Furthermore, manganites are inexpensive to prepare,
chemically stable, and highly electrically resistive.6 The parent
LaMnO3 compound is semiconducting and orders antiferro-
magnetically at 150 K, but a formation of mixed valence in Mn
ions via a double exchange mechanism between Mn4+ andMn3+

can induce ferromagnetism. A wide range of TC from �150 K to
375 K can be obtained by, for example, substitution of a divalent
ion (Ca2+, Ba2+, Sr2+, etc.) or a monovalent ion (Na1+, K1+, etc.) for
La3+, and an excess of oxygen. Furthermore, the ground state of
manganites can be tuned by partial substitution of La3+ by
a trivalent rare earth, or in a La-free Pr or Nd manganites. These
perovskite-based structures show lattice distortions as a result
This journal is © The Royal Society of Chemistry 2020
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of modications from the cubic structure by the deformation of
the MnO6 octahedron arising from the Jahn–Teller effect and/or
changes in the connective pattern of the MnO6 octahedra in the
perovskite structure.26,27 Values of TC, magnetic entropy changes
DSm, adiabatic temperature changes DTad, and the resultant
RCP are strongly dependent on the doping mechanisms and
thus lattice distortions.

Qualitative analysis on the effect of dopant types and levels
on RCP of lanthanum manganites has been conducted through
experiments, mainly by varying synthesis methods (solid-state
reaction, wet chemistry, sol–gel, etc.), morphologies (particle
size, shape, etc.), crystalline states, and nal forms (powder,
pellet, lm, etc.).1,3,4,11–14,16–18,23–25 Quantitative analysis through
thermodynamics models and rst-principle models has been
utilized to aid the understanding of magnetothermal responses
of thesematerials and facilitate the searching of new candidates
for MR devices.2,5,7,15 However, these models require a signi-
cant amount of data inputs, such as variables for equations of
state, exchange coupling energies, and magnetic moments of
magnetocaloric materials, which can only be obtained by
extensive measurements.

In this work, the Gaussian process regression (GPR) model is
developed to elucidate the statistical relationship between RCP
and lattice parameters of orthorhombic lanthanum manga-
nites. The model generalizes well in the presence of only a few
descriptive features, where intelligent algorithms are able to
learn and recognize the patterns. This modeling approach
demonstrates a high degree of accuracy and stability, contrib-
uting to efficient and low-cost estimations of RCP and under-
standings of which based on lattice parameters. As one of the
computational intelligence techniques, the GPR model has
already been utilized in other materials systems to predict
signicant physical parameters in different elds of applica-
tions.31–44 On one hand, the model can serve as a guideline for
searching for doped-manganites with a large RCP value by
screening the lattice parameters. On the other hand, the model
can be used as part of machine learning to aid the under-
standing of the magnetic phase transformation in various types
of doped-manganites.

The remaining of this work is organized as follows. Section 2
proposes the GPR model. Section 3 describes the data and
computational methodology. Section 4 presents and discusses
results, and Section 5 concludes.

2 Proposed methodology
2.1 Brief description of Gaussian process regression

GPRs are nonparametric kernel-based probabilistic models.
Consider a training dataset, {(xi,yi); i ¼ 1, 2,., n} where
and , from an unknown distribution. A trained GPR
predicts values of the response variable ynew given an input
matrix xnew.

Recall a linear regression model, y ¼ xTb + 3, where 3 �
N(0,s2). A GPR aims at explaining y by introducing latent vari-
ables, l(xi) where i ¼ 1, 2, ., n, from a Gaussian process such
that the joint distribution of l(xi)'s is Gaussian, and explicit
basis functions, b. The covariance function of l(xi)'s captures the
This journal is © The Royal Society of Chemistry 2020
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smoothness of y and basis functions project x into a feature
space of dimension p.

A GP is dened by the mean and covariance. Let m(x) ¼
E(l(x)) be the mean function and k(x,x0) ¼ Cov[l(x),l(x0)] the
covariance function, and consider now the GPR model, y ¼
Fig. 1 Magnetic cooling power and lattice parameters, a (Å), b (Å), and c

Fig. 2 Experimental vs. predicted relative cooling power. The GPR mod
basis function, and standardized lattice parameters. It has a log-likeliho
89.8778. Detailed numerical predictions are listed in Table 1 (Column 6)

This journal is © The Royal Society of Chemistry 2020
b(x)Tb + l(x), where l(x) � GP(0,k(x,x0)) and . k(x,x0) is
oen parameterized by the hyperparameter, q, and thus might
be written as k(x,x0|q). In general, different algorithms estimate
b, s2, and q for model training and would allow specications of
b and k, as well as initial values for parameters.
(Å).

el is built using the whole sample with the Matern 5/2 kernel, constant
od of �813.7988, b̂ of 233.9604, ŝ of 0.9866, ŝl of 0.0053, and ŝf of
. “,” in sample names stands for “vacancy”.
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The current study explores four kernel functions, namely
exponential, squared exponential, Matern 5/2, and rational
quadratic, whose specications are listed in eqn (1)–(4),
respectively, where sl is the characteristic length scale dening
how far apart x's can be for y's to become uncorrelated, sf is the

signal standard deviation, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞT ðxi � xjÞ

q
, and a is

a positive-valued scale-mixture parameter. Note that sl and sf

should be positive. This could be enforced through q such that
q1 ¼ log sl and q2 ¼ log sf.

k
�
xi; xj |q

� ¼ sf
2 exp

�
� r

sl

�
(1)

k
�
xi; xj |q

� ¼ sf
2 exp

"
� 1

2

�
xi � xj

�T�
xi � xj

�
sl

2

#
(2)

k
�
xi; xj |q

� ¼ sf
2

 
1þ

ffiffiffi
5

p
r

sl

þ 5r2

3sl
2

!
exp

 
�

ffiffiffi
5

p
r

sl

!
(3)

k
�
xi; xj |q

� ¼ sf
2

�
1þ r2

2asl
2

��a
(4)

Similarly, three basis functions are investigated here, namely
constant, linear, and pure quadratic, whose specications are
listed in eqn (5)–(7), respectively, where B ¼ (b(x1), b(x2), .,

b(xn))
T, X ¼ (x1, x2,., xn)

T, and X2 ¼

0
BB@

x112 x122 / x1d2

x212 x222 / x2d2

« « « «
xn12 xn22 / xnd2

1
CCA.
Fig. 3 Bootstrap analysis of GPR prediction stability. 1000 bootstrap s
bootstrap sample is used to train the GPR based on the Matern 5/2 kerne
obtain the associate model performance. The histograms show distributio
averages are 99.87%, 2.7915, and 0.9800, respectively.

20650 | RSC Adv., 2020, 10, 20646–20653
B ¼ In�1 (5)

B ¼ [1,X] (6)

B ¼ [1,X,X2] (7)

To estimate the GPR model, a Bayesian optimization algo-
rithm is utilized. With a Gaussian process model of f(x), the
algorithm evaluates yi ¼ f(xi) for Ns points xi taken at random
within the variable bounds, where Ns points stand for the
number of initial evaluation points and 4 is used. If there are
evaluation errors, it takes more random points until Ns

successful evaluations are arrived-at. The algorithm then
repeats the following two steps: (1) updating the Gaussian
process model of f(x) to obtain a posterior distribution over
functions Q(f|xi,yi for i ¼ 1, . ,n); (2) nding the new point x
that maximizes the acquisition function a(x). It stops aer
reaching 30 iterations. The acquisition function, a(x), evaluates
the goodness of a point, x, based on the posterior distribution
function, Q. This work employs the lower-condence-bound
(LCB) acquisition function, which looks at the curve G two
standard deviations, sQ, below the posterior mean, mQ, at each
point: G(x) ¼ mQ(x) � 2sQ(x). Therefore, G(x) is the 2sQ lower
condence envelope of the objective function model. The
algorithm then maximizes the negative of G: LCB ¼ 2sQ(x) �
mQ(x). The optimization is carried out on s, the noise standard
deviation. q and b are estimated by maximizing the log likeli-
hood function.
amples are drawn with replacements from the whole sample. Each
l and constant basis function with lattice parameters standardized, and
ns of the CC, RMSE, and MAE over the 1000 bootstrap samples, whose

This journal is © The Royal Society of Chemistry 2020
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Table 2 GPR prediction sensitivities to kernel and basis function choicesa

Kernel Basis function CC RMSE RMSE/sample mean MAE MAE/sample mean

Matern 5/2 Constant 99.87% 5.0339 2.10% 1.0923 0.46%
Rational quadratic Constant 99.87% 5.0458 2.11% 1.3362 0.56%
Squared exponential Constant 99.87% 5.0345 2.10% 1.1389 0.48%
Exponential Constant 99.87% 5.1248 2.14% 1.7993 0.75%
Matern52 Linear 99.87% 5.0339 2.10% 1.0947 0.46%
Matern52 Pure quadratic 99.87% 5.0339 2.10% 1.0940 0.46%

a The nal GPR model is based on the Matern 5/2 kernel and constant basis function.
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2.2 Performance evaluation

Performance of the proposed GPRmodels is evaluated using the
root mean square error (RMSE), mean absolute error (MAE), and
correlation coefficient (CC) in eqn (8), (9), and (10) respectively,
where n is the number of data points, Texpi and Testi are the i-th (i
¼ 1, 2, ., n) experimental and estimated magnetic cooling
power, and Texp and Test are their averages.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

�
T

exp
i � T est

i

�2s
(8)

MAE ¼ 1

n

Xn
i¼1

|T
exp
i � T est

i | (9)

CC ¼
Pn
i¼1

ðT exp
i � T expÞ�T est

i � T est
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðT exp
i � T expÞ2Pn

i¼1

�
T est

i � T est
�2s (10)
3 Empirical study
3.1 Description of dataset

The experimental data used, shown in Table 1 (Columns 1–5),
are obtained from ref. 1, 3, 4, 11–14, 16–18 and 23–25, most of
which have been modeled through the support vector machine
regression model.19 The dataset covers a wide range of doped
lanthanum manganites in the form of bulk polycrystalline,
single crystal, powders, and sintered pellets, by different
synthesis routes including the solid-state reaction, wet-mix
processing, and sol–gel processing. RCP values are calculated
from DSm and the full width at half maximum (FWHM) of the
DSm vs. T curve under D(m0H) of 5 T. Data visualization in Fig. 1
reveals nonlinear relationships, which are modeled through the
GPR.
† The comparison is not 100% one-to-one because nine additional observations
are used in ref. 19. The data are split into the training and validation
sub-samples in ref. 19, where the former has 43 observations and the latter 10.
We compare model performance of the GPR with that of the SVM regression19

by focusing on their 43 training observations.
3.2 Computational methodology

MATLAB is utilized for computations and simulations in this
work. All observations are used to train the nal GPR model
given the relative small sample size. The stability of the GPR
approach is conrmed by bootstrap analysis.
This journal is © The Royal Society of Chemistry 2020
4 Result and discussion
4.1 Comparison with previous study

The nal GPR model is detailed in Fig. 2, whose performance is
compared with that based on the SVM regression in ref. 19.†
Switching from the SVM to GPR, the CC increases from 85.07%
to 99.87%, the RMSE decreases from 50.5315 to 5.0339, and the
MAE decreases from 26.3802 to 1.0923. The GPR model thus
provides more accurate relative cooling power predictions than
the SVM regression. The result in Fig. 2 shows good alignment
between GPR predicted and experimental data.
4.2 Prediction stability

Given the small sample size (see Table 1) used, the prediction
stability of the GPR is assessed through bootstrap analysis in
Fig. 3, which shows that the modeling approach maintains high
CCs, low RMSEs, and low MAEs over the bootstrap samples.
This result suggests that the GPR might be generalized for
magnetic cooling power modeling of manganite materials
based on larger samples.
4.3 Prediction sensitivity

Table 2 shows that GPR predictions are not so sensitive to
choices of kernels or basis functions. Because predictions based
on different kernel–basis function pairs are so close and nearly
visually indistinguishable, they are not plotted for comparisons.
However, it is worth noting that estimated model parameters
are different across these kernel–basis function pairs.
5 Conclusions

The Gaussian process regression (GPR) model is developed to
predict relative cooling power of manganite materials based on
lattice parameters. The high correlation coefficient between the
predicted and experimental magnetic cooling power, the low
prediction root mean square error andmean absolute error, and
stable model performance suggest the usefulness of the GPR for
RSC Adv., 2020, 10, 20646–20653 | 20651
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modeling and understanding the relationship between lattice
parameters and relative cooling power. This modeling approach
is straightforward and simple and requires less parameters as
compared to thermodynamics models and rst-principle
models. It can be used as part of computational intelligence
approaches for new magnetocaloric materials searches.
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