RSC Advances

PAPER

Cite this: RSC Adv., 2020, 10, 22264

Received 5th April 2020 Accepted 27th May 2020

DOI: 10.1039/d0ra03071f

rsc.li/rsc-advances

Introduction

Nickel catalyzed intramolecular oxidative coupling: synthesis of 3-aryl benzofurans†

Sakshi Aggarwal, Dasari [Srin](http://orcid.org/0000-0002-3203-442X)ivas, Chinnabattigalla Sreenivasulu and Gedu Satyanarayana^{D*}

Recent research has been focused on the transition metal-catalyzed reactions. Herein we have developed nickel-catalyzed synthesis of 3-aryl benzofurans from ortho-alkenyl phenols via intramolecular dehydrogenative coupling. Notably, simple $O₂$ gas served as an oxidant, without using any sacrificial hydrogen acceptor. The strategy enabled the synthesis of 3-aryl benzofurans in good to excellent yields.

> furomollugin II, amiodarone III, Iantheran A IV, viniferifuran V and pterolinus A VI (Fig. 1). 3

Benzofuran is a heterocyclic compound made up of benzene ring fused with a furan ring and a prominent structural motif that constitutes naturally occurring compounds, pharmaceuticals, photosensitizers and molecules of biological relevance.¹⁻³ Some of the biologically active compounds containing benzofuran skeleton are fused tricyclic compound (R7000) I,

Due to their wide occurrence and interesting biological properties, numerous reports have disclosed the synthesis of benzofurans.⁴–²² In this context, most of the reports mainly centered on the synthesis of 2,3-diaryl benzofurans, either via intermolecular annulation of ortho-halophenols with olefins or via intramolecular annulation of ortho-vinyl phenols promoted by Lewis acids/oxidants/some strong acids/bases.⁵⁻⁹ All of them

Fig. 1 Representative examples of benzofurans of biological relevance.

Department of Chemistry, Indian Institute of Technology, Kandi, Sangareddy, Hyderabad, 502 285, Telangana, India. E-mail: gvsatya@iith.ac.in; Fax: +91 40 2301 6003/32; Tel: +91 40 2301 6033

† Electronic supplementary information (ESI) available. See DOI: 10.1039/d0ra03071f

require stoichiometric amounts of acid/oxidant/base. Arcadi et al. described a first palladium-catalyzed synthesis of 2,3diaryl benzofuran via intramolecular cyclization of orthoalkynes substituted phenols.^{6a} Subsequently, a reasonable number of reports have appeared on the synthesis of 2,3-diarlybenzofurans using transition metal catalysts like Au, Ir, Rh, Cu, Pd and Fe etc.¹⁰ The best synthetic route to accomplish benzofuran could be the intramolecular cyclization from orthoalkenyl phenol, unfortunately, this protocol requires a stoichiometric amount of sacrificial hydrogen acceptor-like DDQ.^{8b} Notably, recently, the oxidative C–H functionalization of orthoalkenyl phenols to generate benzofurans has been accomplished using some transition metals without the need of any sacrificing hydrogen acceptor.^{9,22b,22d} Most of the earlier reports are devoted to the formation of 2,3-diaryl benzofurans/2-aryl benzofurans, whereas the synthesis of 3-aryl benzofurans from *ortho*-alkenyl phenols was scarcely explored.^{20,22} Some of the representative examples of the previous study versus the present protocol is described in Scheme 1.

We have been interested in the ambitious catalytic nature of late transition metals.²³ Recently, we have developed a synthesis of 2,3-diaryl benzofuran by using phenols and internal alkynes^{11a} and also reported a synthesis of $2H/4H$ -chromenes from phenols with terminal alkynes (aryl/alkyl) using Lewis acidic conditions.^{11b} With this background of phenols and the alkyne chemistry. We intended to develop nickel catalyzed oxidative cross coupling reactions. Herein, we describe an efficient method to cyclize ortho-alkenyl phenols to give benzofurans facilitated by $Ni(\text{acal})_2$ and O_2 as an oxidant.

Results and discussion

To begin with, it was contemplated that 3-aryl benzofuran can be achieved from ortho-vinyl phenols using intramolecular oxidative coupling feasible by means of a suitable metal catalyst

and an oxidant. The required *ortho-vinyl* phenols have prepared from the reaction of phenols and terminal arylacetylenes using Friedel-Crafts alkenylation induced by a suitable Lewis acid. With the available *ortho*-alkenyl phenols, it is set for the optimization study to achieve 3-aryl benzofurans. Thus, initially, ortho-alkenyl phenol 1c was chosen as the model compound for the preparation of 3-aryl benzofuran 2c. Various screening conditions (i.e., by varying ligand, additive, oxidant, reaction time and solvent etc.) have explored to find the best-optimized conditions and the outcomes are summarised in Table 1. To begin with, the reaction was performed with Ni(acac) 2 (5 mol%), 1,10-phenanthroline (10 mol%) and DMF as solvent under inert conditions (nitrogen atmosphere) at 140 $^{\circ}$ C for 48 h. The expected 3-aryl benzofuran 2c was obtained albeit in moderate yield along with a minor side product (2-hydroxy-5 methylphenyl)(phenyl)methanone 3c (Table 1, entry 1). Even switching to PPh_3 as the ligand, furnished the product $2c$ in more or less same yield (Table 1, entry 2). Interestingly, under the same reaction conditions (*i.e.* Table 1, entry 2), but with molecular O_2 as the oxidant, there was a drastic change in the yield of 2c along with the minimal amount of ketone 3c (Table 1, entry 3). However, with additive TEMPO and with PPh_3 under open air at 140 °C for 48 h, improved the yield of 2c to 80% (Table 1, entry 4). Performing the reaction with TEMPO/PPh₃ and under an oxygen atmosphere, gave the product 2c in the same yield but with a reduced amount of time 36 h (Table 1, entry 5). On the other hand, the other additives (DDQ, Oxone, $K_2S_2O_8$ and TBHP/H₂O, under oxygen atmosphere) in the same solvent DMF were not active improve the yields of 2c (Table 1, entries 6 to 9). The reaction was inferior in solvents, such as H2O and ortho-xylene, under oxygen atmosphere (Table 1, entries 10 & 11), while in DMSO under an oxygen atmosphere, gave 2c in 70% yield (Table 1, entry 12). To our delight, the reaction in solvent DMA under oxygen atmosphere afforded the product 2c in 81% yield (Table 1, entry 13). When the reaction Table 1 Screening conditions for the formation of 3-aryl benzofurans 2c from $1c^{a,e}$

^a All reactions were carried out using ortho-alkenyl phenol 1c (83 mg, 0.4 mmol), Ni(acac)₂ [0.008 mmol (2 mol%) to 0.02 mmol (5 mol%)], ligand $(0.04 \text{ mmol}, 10 \text{ mol}\%)$. b Reaction was conducted under nitrogen atmosphere. C Very less conversion was observed. d The by-product 3c was formed (up-to 5–20% yields). e^{ϵ} Some other volatile by-products also formed along with 2c, which were not isolable.

conducted using 2 mol% of the catalyst $Ni(\text{ac}a)_2$, under an oxygen atmosphere, afforded the product 2c but with slightly decreased yield (Table 1, entry 14). Replacing the ligand $PPh₃$ with 1,10-phenanthroline in the open air and an oxygen atmosphere, gave the product 2c in 64% and 60% yields, respectively (Table 1, entries 15 & 16). The reaction without ligand and additive, under oxygen atmosphere, afforded 2c in 45% moderate yield (Table 1, entry 17). On the other hand, treatment of 1c either with TEMPO or DDQ as additive without ligand and in the open air in $CH₃CN$ as a solvent found to be slightly inferior (Table 1, entries 18 & 19). While using K_2CO_3 as the base instead of additive TEMPO, in the open air and in the presence of oxygen atmosphere showed no progress indicating the importance of TEMPO to initiate the reaction (Table 1, entries 20 & 21). On the other hand, by employing $NiCl₂$ as a catalyst, only a 50% yield of the product 2c was obtained (Table 1, entry 22). Further, the reaction at reduced temperatures 120 $^{\circ}$ C and 80 °C, showed little conversion and no conversion, respectively (Table 1, entries 23 & 24).

Now to test the scope and applicability of the strategy, bestoptimized conditions (Table 1, entry 15) applied to different ortho-alkenyl phenols 1a-w. This protocol was found to be quite successful and afforded the corresponding 3-aryl benzofurans 2a–w, good to very good yields (Table 2). For example, the reaction was amenable with electron-donating groups like Me, Et, OMe substituents on phenol moiety of ortho-alkenyl phenols (Table 2). The reaction also found smooth with the α -naphthol, b-naphthol, and 6-bromo-2-naphthol derived alkenols (Table 2). Moreover, the reaction was obedient with the electron donating (Me and OMe) and the partial electron withdrawing substituents (F and Br) on the ring of terminal alkynes of ortho-alkenyl phenols (Table 2). All synthesized 3-aryl benzofurans 2a–w, are characterized by spectrometric data $(^1H\text{-NMR}$ and 13 C-NMR and Mass Spectrometry) and also with the earlier literature. However, it is essential to note that even alkenylation reaction did not proceed when electron withdrawing groups such as CHO and $NO₂$ flanked to the phenol moiety. And it can be justified based on the fact that electron withdrawing functional

^a Reactions were carried out using *ortho-*alkenyl phenols $1a-w$ (79.0–110.0 mg, 0.4 mmol), Ni(acac)₂ (5.2 mg, 0.02 mmol, 5 mol%), PPh₃ (10.5 mg, 0.04 mmol, 10 mol%), TEMPO (6.5 mg, 0.04 mmol) at 140 °C under oxygen atmosphere. b Yields in the parenthesis are isolated yields of products.

Scheme 2 Plausible mechanism for the formation of 3-aryl benzofurans 2 from 1.

groups retard the Friedel-Crafts alkylation/alkenylation reactions. Similarly, the attempt made to synthesis ortho-alkenyl phenols were not successful with meta-amino functionality on the aromatic ring of the alkyne. This could be due to the more reactive nature of the amino group under Lewis acid conditions. Moreover, aliphatic alkynes could not make compatible to give ortho-alkenylation products as well.

Plausible mechanism

Though the exact mechanism is not very certain at this stage, based on the present observations and literature reports,^{12,20,23} we have attempted to propose a plausible reaction mechanism as depicted in Scheme 2. Initially, $Ni(II)$ could combine with phosphine ligand PPh_3 converted into its reduced Ni (0) -catalyst, which may act as an active catalyst. On the other hand, in an independent path, ortho-alkenyl phenol 1 would be transformed into its oxyradical A under probable catalytic oxidative conditions of TEMPO/O₂ system. Now coupling of oxy-radical A with Ni (0) catalyst would lead to the formation of intermediate B. Subsequently, intramolecular π -complexation with olefinic double bond followed by olefinic C-H activation could generate a six-membered oxa-nickelacycle C via the removal of H-radical. Finally, reductive elimination of catalyst from C gives 3-aryl benzofuran 2 and regenerates the Ni(0)-catalyst. Thus, completes the catalytic cycle.

Conclusion

In summary, we have established a nickel-catalyzed synthesis of 3-aryl benzofurans via intramolecular oxidative cyclization of ortho-alkenyl phenols. Notably, simple oxygen served as the sole oxidant and precludes the use of sacrificial hydrogen acceptor.

This methodology found viable for accomplishing several different 3-arylbenzofuran derivatives in good to very good yields.

Experimental section

IR spectra recorded on a Bruker Tensor 37 (FT-IR) spectrophotometer. ¹H-NMR spectra recorded on Bruker Avance 400 (400 MHz) spectrometer at 295 K in CDCl₃; chemical shifts (δ in ppm) and coupling constants $(J \text{ in } Hz)$ reported in standard fashion with reference to either internal standard tetramethylsilane (TMS) ($\delta_H = 0.00$ ppm) or CHCl₃ ($\delta_H = 7.25$ ppm). ¹³C-NMR spectra recorded on Bruker Avance 400 (100 MHz) spectrometer at RT in CDCl₃; chemical shifts (δ in ppm) are reported relative to CDCl₃ [δ _C = 77.00 ppm (central line of the triplet)]. In the ¹³C-NMR, the nature of carbons (C, CH, CH₂ and $CH₃$) was determined by recording the DEPT-135 spectra, and is given in parentheses and noted as $s =$ singlet (for C), $d =$ doublet (for CH), t = triplet (for CH₂) and q = quartet (for $CH₃$). In the ¹H-NMR, the following abbreviations were used throughout: $s = singlet, d = doublet, t = triplet, q = quartet, m$ $=$ multiplet. The assignment of signals confirmed by ${}^{1}H$, ${}^{13}C$ CPD and DEPT spectra. High-resolution mass spectra (HR-MS) were recorded on an Agilent 6538 UHD Q-TOF using multimode source. Reactions were monitored by TLC on silica gel coated on alumina plate or glass plate using a mixture of petroleum ether and ethyl acetate as eluents. Reactions carried out under oxygen atmosphere.

Materials

All solvents distilled before using; petroleum ether with a boiling range of 60 to 80 \degree C, dichloromethane (DCM), ethyl acetate, dry DMA (boiling range 160 to 170 \degree C; with purity 99%)

were purchased from Sigma Aldrich & locally available commercial sources used. Acme's silica gel (100–200 mesh) used for column chromatography.

GP (general procedure for the synthesis of 3-aryl benzofurans)

To an oven dry Schlenk tube was equipped with a magnetic stir bar, were added $\text{Ni}(\text{acac})_2$ (5.2 mg, 0.02 mmol), PPh₃ (10.5 mg, 0.04 mmol), TEMPO (6.3 mg, 0.04 mmol), *ortho-alkenyl* phenols 1a-w $(79-110.0 \text{ mg}, 0.4 \text{ mmol})$, and DMA (1 mL) . Then a balloon filled with $O₂$ was attached to the Schlenk tube. The reaction mixture stirred at 140 \degree C for 24 to 36 h. TLC monitored the progress of the reaction. The reaction mixture was then cooled to room temperature and extracted by using ethyl acetate $(3 \times 20 \text{ mL})$. The organic layers were washed with saturated $NH₄Cl$ solution, dried by $Na₂SO₄$ and then filtered. Evaporation of the solvent(s) under reduced pressure and refinement of the crude mixture by silica gel column chromatography (petroleum ether/ethyl acetate), gave the 3-aryl benzofurans (68–88%) as semi-solid or liquid.

5-Ethyl-3-phenylbenzofuran (2d).

GP was carried out with 1d (89 mg, 0.4 mmol) using $Ni (acac)_2$ $(5.2 \text{ mg}, 0.02 \text{ mmol})$, PPh₃ $(10.5 \text{ mg}, 0.04 \text{ mmol})$, TEMPO $(6.3 \text{ mg},$ 0.04 mmol) and allowed the reaction mixture to stirred at 140 $^{\circ}$ C for 36 h for the product 2d formation. Purification of the crude material by silica gel column chromatography (petroleum ether/ ethyl acetate, 100 to 99 : 01), furnished the product 2d (71 mg, 80%) as pale yellow viscous liquid. [TLC control (petroleum ether/ ethyl acetate 99 : 01), R_f (1**d**) = 0.10, R_f (2**d**) = 0.60, UV detection]. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.77$ (s, 1H, Ar-O-CH), 7.70-7.57 (m, 3H, Ar–H), 7.56–7.44 (m, 3H, Ar–H), 7.43–7.28 (m, 1H, Ar–H), 7.27– 7.13 (m, 1H, Ar–H), 2.79 (q, 2H, $J = 7.6$ Hz, Ar– CH_2CH_3), 1.31 (t, 3H, $J = 7.6$ Hz, Ar–CH₂CH₃) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta =$ 154.3 (s, Ar–C), 141.5 (d, Ar–O–CH), 139.2 (s, Ar–C), 132.3 (s, Ar–C), 128.9 (d, 2C, 2 \times Ar–CH), 127.5 (d, 2C, 2 \times Ar–CH), 127.3 (d, Ar– CH), 126.5 (s, Ar–C), 124.8 (d, Ar–CH), 122.1 (s, Ar–C), 119.0 (d, Ar– CH), 111.4 (d, Ar–CH), 29.01 (t, Ar–CH₂), 16.44 (q, Ar–CH₂– CH₃) ppm. HR-MS (ESI⁺) *m*/z calculated for $[C_{16}H_{14}OK]^+ = [M + K]^+$: 261.0676; found 261.0859.

4,6-Dimethyl-3-phenylbenzofuran (2f).

GP was carried out with 1f (89 mg, 0.4 mmol) using $Ni(\text{acc})_2$ (5.2 mg, 0.02 mmol), PPh₃ (10.5 mg, 0.04 mmol), TEMPO

(6.3 mg, 0.04 mmol) and allowed the reaction mixture to stirred at 140 °C for 36 h for the product 2f formation. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate, 100 to 99 : 01), furnished the product 2f (60 mg, 68%) as pale yellow viscous liquid. [TLC control (petroleum ether/ethyl acetate 99 : 01), $R_f(1f) = 0.10$, $R_{\text{f}}(2\textbf{f}) = 0.60, \text{ UV detection}$]. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.47$ (s, 1H, Ar–O–CH), 7.46–7.30 (m, 5H, Ar–H), 7.19 (s, 1H, Ar–H), 6.84 (s, 1H, Ar–H), 2.44 (s, 3H, CH₃), 2.21 (s, 3H, CH₃) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 155.9$ (s, Ar–C), 141.4 (d, Ar–O–CH), 134.6 (s, Ar–C), 133.1 (s, Ar–C), 131.4 (s, Ar–C), 130.1 (d, 2C, 2 Ar–CH), 128.0 (s, 2C, Ar–CH), 127.4 (d, Ar–CH), 125.9 (d, Ar–CH), 123.5 (s, Ar–C), 123.2 (s, 1Ar–C), 109.4 (d, Ar–CH), 21.4 (q, CH3) 19.7 (q, CH₃) ppm. HR-MS $(ESI⁺)$ m/z calculated for $[C_{16}H_{18}OFN]^{+} = [M + NH_4]^{+}$: 240.1383; found 240.2062. Paper

New Purchased from Sigma Address of a focal possible (c.1 mg, 0.04 mma) and alsoed the resistential contraction

contraction contraction contractions are commons and get (100 200 mesh) at the Creation contractions

5-Fluoro-3-(p-tolyl)benzofuran (2n).

GP was carried out with 1n (90 mg, 0.4 mmol) using $Ni(\text{acc})_2$ $(5.2 \text{ mg}, 0.02 \text{ mmol})$, PPh₃ $(10.5 \text{ mg}, 0.04 \text{ mmol})$, TEMPO (6.3 mg, 0.04 mmol) and allowed the reaction mixture to stirred at 140 \degree C for 36 h for the product 2n formation. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate, 100 to 99 : 01), furnished the product 2n (68 mg, 75%) as pale yellow viscous liquid. [TLC control (petroleum ether/ethyl acetate 99 : 01), $R_f(1n) = 0.10$, $R_f(2n) = 0.60$, UV detection]. ¹H NMR (CDCl₃, 400 MHz): $\delta =$ 7.78 (s, 1H, Ar-O-CH), 7.54-7.41 (m, 4H, Ar-H), 7.28 (d, 2H, $J =$ 7.8 Hz, Ar-H), 7.05 (td, $1H, J = 9.1, 2.45$ Hz, Ar-H), 2.41 (s, 3H, Ar–CH₃) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 160.6$ (s, Ar–C), 158.3 (s, Ar–C), 152.0 (s, Ar–C), 142.7 (d, Ar–O–CH), 137.5 (s, Ar– C), 129.8 (d, 2C, 2 \times Ar–CH), 128.5 (s, Ar–C), 127.5 (s, Ar–C), 127.4 (s, Ar–C) 127.2 (d, 2C, 2 \times Ar–CH), 122.5 (s, Ar–C), 122.4 (s, Ar–C), 112.4 (d, Ar–CH), 112.3 (d, Ar–CH), 112.1 (d, Ar–CH), 106.2 (d, Ar–CH), 105.9 (d, Ar–CH), 21.23 (q, Ar–CH₃) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{15}H_{10}F]^{+} = [(M + H) + (-H_{2}O)]^{+}$: 209.0761; found 209.0765.

5-Methyl-3-(m-tolyl)benzofuran (2q).

GP was carried out with $1q$ (89 mg, 0.4 mmol) using Ni(acac)₂ $(5.2 \text{ mg}, 0.02 \text{ mmol})$, PPh₃ $(10.5 \text{ mg}, 0.04 \text{ mmol})$, TEMPO (6.3 mg, 0.04 mmol) and allowed the reaction mixture to stirred at 140 \degree C for 36 h for the product 2q formation. Purification of

the crude material by silica gel column chromatography (petroleum ether/ethyl acetate, 100 to 99 : 01), furnished the product 2q (70 mg, 79%) as pale yellow viscous liquid. [TLC control (petroleum ether/ethyl acetate 99 : 01), $R_f(1q) = 0.10$, $R_{\text{f}}(2\mathbf{q}) = 0.60$, UV detection]. ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.73 (s, 1H Ar–O–CH), 7.61 (s, 1H, Ar–H), 7.47–7.33 (m, 4H, Ar– H), 7.23–7.08 (m, 2H, Ar–H), 2.47 (s, 3H, Ar–CH3), 2.44 (s, 3H, Ar–CH₃) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 154.2$ (s, Ar–C), 141.4 (d, Ar–O–CH), 138.6 (s, Ar–C), 132.4 (s, Ar–C), 132.1 (s, Ar– C), 128.8 (d, Ar–CH), 128.2 (d, Ar–CH), 128.1 (d, Ar–CH), 126.6 (s, Ar–C), 125.7 (d, Ar–CH), 124.6 (d, Ar–CH), 122.0 (s, Ar–C), 120.2 (d, Ar–CH), 111.2 (d, Ar–CH), 21.5 (q, Ar–CH3), 21.5 (q, Ar– CH₃) ppm. HR-MS (ESI⁺) *m*/z calculated for $[C_{16}H_{18}NO]^+ = [M +$ NH₄]⁺: 240.1383; found 240.1373.

5-Ethyl-3-(m-tolyl)benzofuran (2r).

GP was carried out with 1r (94 mg, 0.4 mmol) using $Ni(\text{acc})_2$ (5.2 mg, 0.02 mmol), PPh3 (10.5 mg, 0.04 mmol), TEMPO (6.3 mg, 0.04 mmol) and allowed the reaction mixture to stirred at 140 °C for 36 h for the product $2r$ formation. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate, 100 to 99 : 01), furnished the product 2r (71 mg, 76%) as pale yellow viscous liquid. [TLC control (petroleum ether/ethyl acetate 99 : 01), $R_f(1r) = 0.10$, $R_{\mathrm{f}}(2\mathbf{r}) = 0.60$, UV detection]. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.74$ $(s, 1H, Ar-O-CH), 7.62$ $(d, 1H, J = 0.1$ Hz, Ar–H $), 7.51$ –7.41 $(m,$ 3H, Ar–H), 7.39–7.33 (m, 1H, Ar–H), 7.21–7.15 (m, 2H, Ar–H), 2.77 (q, 2H, $J = 7.3$ Hz, Ar– CH_2CH_3), 2.44 (s, 3H, CH₃), 1.28 (t, $3H, J = 7.6$ Hz, Ar–CH₂CH₃) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 154.3$ (s, Ar–C), 141.5 (d, Ar–O–CH), 139.1 (s, Ar–C), 138.6 (s, Ar–C), 132.2 (s, Ar–C), 128.8 (d, Ar–CH), 128.2 (d, Ar–CH), 128.2 (d, Ar–CH), 126.6 (s, Ar–C), 124.7 (d, Ar–CH), 124.6 (d, Ar–CH), 122.2 (s, Ar–C), 119.0 (d, Ar–C), 111.3 (d, Ar–C), 29.0 (t, CH2), 21.5 (q, CH₃), 16.5 (q, CH₃) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{17}H_{19}NO]^+ = [M + NH_4]^+$: 253.1461; found: 254.2219.

3-(3-Fluorophenyl)-5-methoxybenzofuran (2t).

GP was carried out with 1t (98 mg, 0.4 mmol) using $Ni (acac)_2$ (5.2 mg, 0.02 mmol), PPh₃ (10.5 mg, 0.04 mmol), TEMPO (6.3 mg, 0.04 mmol) and allowed the reaction mixture to stirred at 140 \degree C for 24 h for the product 2t formation. Purification of

the crude material by silica gel column chromatography (petroleum ether/ethyl acetate, 100 to 99 : 01), furnished the product 2t (74 mg, 75%) as pale yellow viscous liquid. [TLC control (petroleum ether/ethyl acetate 99 : 01), $R_f(1t) = 0.10$, $R_{\rm f}(2{\rm t}) = 0.60,$ UV detection]. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.77$ $(s, 1H, Ar-O-CH), 7.49-7.43$ (m, 2H, Ar-H), 7.41 (dd, $J = 3.4$, 1.9 Hz, 1H, Ar-H), 7.32 (ddd, $J = 9.8, 2.4, 1.6$ Hz, 1H, Ar-H), 7.24 $(d, J = 2.6 \text{ Hz}, 1H, Ar-H)$, 7.11–7.03 (m, 1H, Ar–H), 6.98 (dd, J = 8.9, 2.6 Hz, 1H, Ar-H), 3.88 (s, 3H, OCH₃) ppm.¹³C NMR (100 MHz, CDCl₃) $\delta = 163.2$ (d, $J_{c-f} = 294$ Hz, Ar–CF), 156.38 (s, Ar–C), 150.76 (s, Ar–C), 142.57 (d, Ar–CH), 134.3 (d, $J_{c-f} = 8$ Hz, Ar–C), 130.5 (d, J_{c-f} = 9 Hz, Ar–CH), 126.57 (s, Ar–C), 123.02 (d, J_{c-f} = 2 Hz, Ar–CH), 121.4 (s, Ar–C), 114.2 (d, $J_{c-f} = 21$ Hz, Ar–CH), 114.2 (d, $J_{c-f} = 21$ Hz, Ar–CH), 113.50 (d, Ar–CH), 112.31 (d, Ar– CH), 102.65 (d, Ar-CH), 56.03 (q, OCH₃) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{15}H_{13}FKO_3]^+ = [(M + K) + (-H_2O)]^+$: 263.0269; found 263.0273. **BSC** Advances Contents by silen gel column chromatography the cude method by silen gel column chromatography commons Creative Commons Creative Commons Creative Commons Articles. The Creative Commons Article is licensed u

1-(3-Fluorophenyl)naphtho[2,1-b]furan (2u).

GP was carried out with 1u (105 mg, 0.4 mmol) using $Ni (acac)_2$ $(5.2 \text{ mg}, 0.02 \text{ mmol})$, PPh₃ $(10.5 \text{ mg}, 0.04 \text{ mmol})$, TEMPO (6.3 mg, 0.04 mmol) and allowed the reaction mixture to stirred at 140 °C for 24 h for the product 2u formation. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate, 100 to 99 : 01), furnished the product 2u (82 mg, 88%) as pale yellow viscous liquid. [TLC control (petroleum ether/ethyl acetate 99 : 01), $R_f(1u) = 0.10$, $R_{\rm f}(2{\bf u}) = 0.60$, UV detection]. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.86$ $(d, J = 8.2$ Hz, 1H, Ar–H), 7.80 $(d, J = 8.0$ Hz, 1H, Ar–H), 7.63 (d, J) $= 9.0$ Hz, 1H, Ar–H), 7.55 (d, $J = 9.8$ Hz, 2H, Ar–H), 7.37–7.29 (m, 2H, Ar–H), 7.25 (t, $J = 7.5$ Hz, 2H, Ar–H), 7.18 (d, $J = 9.6$ Hz, 1H, Ar-H), 7.09-6.98 (m, 1H, Ar-H) ppm. 13 C NMR (100 MHz, CDCl₃) $\delta = 162.8$ (d, $J_{c-f} = 245$ Hz, Ar–C), 153.2 (s, Ar–C), 141.8 $(d, Ar-CH)$, 135.3 $(d, J_{c-f} = 8 Hz, Ar-C)$, 130.8 (s, Ar–C), 130.0 (d, $J_{\rm c-f}$ = 9 Hz, Ar–CH), 129.0 (d, Ar–CH), 128.1 (s, Ar–C), 126.1 (d, $J_{\rm c-}$ $_{f}$ = 5 Hz, Ar–CH), 125.6 (d, J_{c-f} = 3 Hz, Ar–CH), 124.5 (d, Ar–CH), 123.3 (d, $J_{c-f} = 2$ Hz, Ar–C), 123.2 (d, Ar–CH), 120.3 (s, Ar–C), 116.8 (d, $J_{c-f} = 22$ Hz, Ar–CH), 114.8 (d, $J_{c-f} = 21$ Hz, Ar–CH), 112.6 (d, Ar-CH) ppm. HR-MS $(ESI⁺)$ m/z calculated for $\left[C_{18}H_{12}FO\right]^+ = \left[M + H\right]^+$: 263.0867; found 263.0862.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

We are grateful to the Department of Science and Technology-Science and Engineering Research Board (DST-SERB) [No. EMR/2017/005312], New Delhi, for financial support. C. B. S thanks to UGC and D. S thanks to DST-SERB for the research fellowship.

References

- 1 (a) S. O. Simonetti, E. L. Larghi, A. B. J. Bracca and T. S. Kaufman, Nat. Prod. Rep., 2013, 30, 941; (b) J. A. Builla, J. J. Vaquero and J. Barluenga, Mod. Heterocycl. Chem., 2011, 1, 238; (c) J. J. L. Clair, A. L. Rheingold and M. D. Burkart, J. Nat. Prod., 2011, 74, 2045.
- 2 (a) R. R. Rodrigues, W. G. D. Santos, A. B. Oliveira, V. Snieckus, C. L. Zani and A. J. Romanha, Bioorg. Med. Chem. Lett., 1995, 5, 1509; (b) H. Dehmlow, J. D. Aebi, S. S. Jolidon, Y. H. Ji, E. M. V. D. Mark, J. Himber and O. H. Morand, J. Med. Chem., 2003, 46, 3354; (c) Y. Okamoto, M. Ojika, S. Suzuki, M. Murakami and Y. Sakagami, Bioorg. Med. Chem., 2001, 9, 179; (d) H. Greve, S. Meis, M. U. Kassack, S. Kehraus, A. Krick, A. D. Wright and G. M. J. Konig, J. Med. Chem., 2007, 50, 5600.
- 3 (a) B. Carlsson, B. N. Singh, M. Temciuc, S. Nilsson, Y. L. Li, C. Mellin and J. Malm, J. Med. Chem., 2002, 45, 623; (b) B. L. Flynn, E. Hamel and M. K. Jung, J. Med. Chem., 2002, 45, 2670; (c) Y. Okamoto, M. Ojika and Y. Sakagami, Tetrahedron Lett., 1999, 40, 507; (d) K. C. Ravindra, H. M. Vagdevi, P. V. Vaidya and B. Padmashali, Indian J. Chem., 2006, 45B, 2506; (e) S. F. Wu, F. R. Chang, S. Y. Wang, T. L. Hwang, C. L. Lee, S. L. Chen, C. C. Wu and Y. C. Wu, J. Nat. Prod., 2011, 74, 989; (f) K. Ando, Y. Kawamura, Y. Akai, J. I. Kunitomo, T. Yokomizo, M. Yamashita, S. Ohta, T. Ohishi and Y. Ohishi, Org. Biomol. Chem., 2008, 6, 296; (g) V. Srivastava, A. S. Negi, J. K. Kumar, U. Faridi, B. S. Sisodia, M. P. Darokar, S. Luqman and S. P. S. Khanuja, Bioorg. Med. Chem. Lett., 2006, 16, 911; (h) P. Quillardet, D. Boscus, E. Touati and M. Hofnung, Mutat. Res., Fundam. Mol. Mech. Mutagen., 1998, 422, 237; (i) C. H. Cho, B. Neuenswander, G. H. Lushington and R. C. Larock, J. Comb. Chem., 2008, 10, 941; (j) C. Zwergel, S. Valente, A. Salvato, Z. Xu, O. Talhi, A. Mai, A. Silva, L. Altucci and G. Kirsch, Med. Chem. Comm., 2013, 4, 1571. **Paper**
 Commons Article is licensed on 10 States Article is article is article in the commons are commons and the commons are commons at $\sqrt{2}$ **an**
	- 4 (a) K. W. Anderson, T. Ikawa, T. E. Tundel and S. L. Buchwald, J. Am. Chem. Soc., 2006, 128, 10694; (b) K. C. Nicolaou, S. A. Snyder, A. Bigot and J. A. Pfefferkorn, Angew. Chem., Int. Ed., 2000, 39, 1093; (c) M. Carril, S. R. Martin, E. Dominguez and I. Tellitu, Green Chem., 2007, 9, 219; (d) M. C. Willis, D. Taylor and A. T. T. Gillmore, Org. Lett., 2004, 6, 4755; (e) N. A. Markina, Y. Chen and R. C. Larock, Tetrahedron, 2013, 69, 2701.
	- 5 (a) X. Guo, R. Yu, H. Li and Z. Li, J. Am. Chem. Soc., 2009, 131, 17387; (b) B. Xiao, T. J. Gong, Z. J. Liu, J. H. Liu, D. F. Luo, J. Xu and L. Liu, J. Am. Chem. Soc., 2011, 133, 9250; (c) M. R. Kuram, M. Bhanuchandra and A. K. Sahoo, Angew. Chem., Int. Ed., 2013, 52, 4607; (d) R. Zhu, J. Wei and Z. Shi, Chem. Sci., 2013, 4, 3706; (e) W. Zeng, W. Wu, H. Jiang, L. Huang, Y. Sun, Z. Chen and X. Li, Chem.

Commun., 2013, 49, 6611; (f) D. H. Lee, K. H. Kwon and C. S. Yi, J. Am. Chem. Soc., 2012, 134, 7325; (g) T. Kobatake, D. Fujino, S. Yoshida, H. Yorimitsu and K. Oshima, J. Am. Chem. Soc., 2010, 132, 11838; (h) Y. Ookubo, A. Wakamiya, H. Yorimitsu and A. Osuka, Chem.–Eur. J., 2012, 18, 12690.

- 6 (a) A. Arcadi, S. Cacchi, M. Del Rosario, G. Fabrizi and F. Marinelli, J. Org. Chem., 1996, 61, 9280; (b) J. R. Wang and K. Manabe, J. Org. Chem., 2010, 75, 5340; (c) M. Yamaguchi, H. Katsumata and K. Manabe, J. Org. Chem., 2013, 78, 9270; (d) R. Zhou, W. Wang, Z. J. Jiang, K. Wang, X. I. Zheng, H. Y. Fu, H. Chen and R. X. Li, Chem. Commun., 2014, 50, 6023.
- 7 (a) D. N. Nicolaides, K. C. Fylaktakidou, K. E. Litinas and S. G. Adamopoulos, J. Heterocycl. Chem., 1998, 35, 91; (b) A. Lattanzi, A. Senatore, A. Massa and A. Scettri, J. Org. Chem., 2003, 68, 3691; (c) X. F. Duan, J. Zeng, Z. B. Zhang and G. F. Zi, J. Org. Chem., 2007, 72, 10283; (d) I. Kim and J. Choi, Org. Biomol. Chem., 2009, 7, 2788; (e) I. Kim, S. H. Lee and S. Lee, Tetrahedron Lett., 2008, 49, 6579; (f) D. Yue, T. Yao and R. C. Larock, J. Org. Chem., 2005, 70, 10292.
- 8 (a) S. N. Aslam, P. Stevenson, S. J. Phythian, N. C. Veitch and D. R. Hall, Tetrahedron, 2006, 62, 4214; (b) G. Cardillo, R. Cricchio and L. Merlini, Tetrahedron, 1971, 27, 1875; (c) B. Lakshminarayana, T. Vinodkumar, G. Satyanarayana and Ch. Subrahmanyam, RSC Adv., 2020, 10, 4568–4578.
- 9 (a) W. Chen, P. Li, T. Miao, L. G. Meng and L. Wang, Org. Biomol. Chem., 2013, 11, 420; (b) J. Liu, W. Chen, Y. Ji and L. Wang, Adv. Synth. Catal., 2012, 354, 1585.
- 10 (a) S. Wang, P. Li, L. Yu and L. Wang, Org. Lett., 2011, 13, 5968; (b) Y. Hu, Y. Zhang, Z. Yang and R. Fathi, J. Org. Chem., 2002, 67, 2365; (c) H. Kwiecień, M. Witczak, M. Kowalewska and M. Augustyniak, Chem. Heterocycl. Compd., 2010, 46, 20; (d) W. Zeng, W. Wu, H. Jiang, L. Huang, Y. Sun, Z. Chen and X. Li, Chem. Commun., 2013, 49, 6611; (e) R. Zhu, J. Wei and Z. Shi, Chem. Sci., 2013, 4, 3706; (f) J. Yang, G. Shen and D. Chen, Synth. $Common, 2013, 43, 837; (g)$ J. Bonnamour, M. Piedrafita and C. Bolma, Adv. Synth. Catal., 2010, 352, 1577.
- 11 (a) C. Sreenivasulu, A. G. K. Reddy and G. Satyanarayana, Org. Chem. Front., 2017, 4, 972; (b) C. Sreenivasulu and G. Satyanarayana, Eur. J. Org. Chem., 2018, 2846; (c) C. Sreenivasulu, D. A. Thadathil, S. Pal and G. Satyanarayana, Synth. Commun., 2020, 50, 112.
- 12 D. Yang, Y. Zhu, N. Yang, Q. Jiang and R. Liua, Adv. Synth. Catal., 2016, 358, 1731.
- 13 V. K. Rao, G. M. Shelke, R. Tiwari, K. Parang and A. Kumar, Org. Lett., 2013, 15, 9.
- 14 D. Kundu, M. D. Samim, A. Majee and A. Hajra, Chem.-Asian J., 2011, 6, 406.
- 15 D. G. A. Kraus and J. D. Schroeder, Synlett, 2005, 2504.
- 16 U. Sharma, T. Naveen, A. Maji, S. Manna and D. Maiti, Angew. Chem., Int. Ed., 2013, 52, 12669.
- 17 (a) R. Adams and L. Whitaker, J. Am. Chem. Soc., 1956, 78, 8; (b) K. Kalyanasundaram, S. Rajagopalan and S. Swaminathan, Tetrahedron Lett., 1980, 21, 4391; (c) J. B. Wright, J. Org. Chem., 1960, 25, 1867; (d) E. Royer,

E. Bisagni, C. Hudry, A. Cheutin and M. Desvoye, Bull. Soc. Chim. Fr., 1963, 1003; (e) T. Suzuki, T. Horagugchi, T. Shimizu and T. Abe, Bull. Chem. Soc. Jpn., 1983, 56, 2762; (f) R. Romagnoli, P. G. Baraldi, M. D. Carrion, C. L. Cara, O. C. Lopez, M. Tolomeo, S. Grimaudo, A. D. Cristina, M. Pipitone, J. Balzarini, N. Zonta, A. Brancale and E. Hamel, Bioorg. Med. Chem., 2009, 17, 6862.

- 18 T. Yanagi, S. Otsuka, Y. Kasuga, K. Fujimoto, K. Murakami, K. Nogi, H. Yorimitsu and A. Osuka, J. Am. Chem. Soc., 2016, 138, 14582.
- 19 B. Wang, J. Zhang, J. Liao, Y. Peng and H. Zheng, Hetrocycles, 2016, 92, 1468.
- 20 (a) J. Ghorai, A. C. S. Reddy and P. Anbarasan, Chem.–Eur. J., 2016, 22, 16042; (b) Z. Wang, J. Gu, H. Jing and Y. Liang, Synth. Commun., 2009, 39, 4079; (c) B. Lakshminarayana, J. Chakraborty, G. Satyanarayana and C. Subrahmanyam, RSC Adv., 2018, 8, 21030–21039.
- 21 H. Zheng, B. Wang, J. Hu and F. Zhang, Hetrocycles, 2016, 92, 103.
- 22 (a) V. K. Rao, P. Kaswan, G. M. Shelke, A. Ryan, M. Jha and A. Kumar, Synthesis, 2015, 47, 3990; (b) S. Agasti,

U. Sharma, T. Naveen and D. Maiti, Chem. Commun., 2015, 51, 5375; (c) Y. Zou, Z. Yue, J. Xu and J. S. Zhou, Eur. J. Org. Chem., 2014, 5901; (d) M. J. Moure, R. S. Martin and E. Dominguez, Angew. Chem., Int. Ed., 2012, 51, 3220; (e) M. P. Jagdish and S. S. Shubhangi, J. Heterocycl. Chem., 2007, 44, 945; (f) H. M. Meshram, K. C. Sekhar, Y. S. S. Ganesh and J. S. Yadav, Synlett, 2000, 1273; (g) B. Lakshminarayana, L. Mahendar, J. Chakraborty, G. Satyanarayana and C. Subrahmanyam, J. Chem. Sci., 2018, 130, 47.

23 (a) L. Mahendar, J. Krishna, A. G. K. Reddy, B. V. Ramulu and G. Satyanarayana, Org. Lett., 2012, 14, 628; (b) L. Mahendar and G. Satyanarayana, J. Org. Chem., 2014, 79, 2059; (c) L. Mahendar, A. G. K. Reddy, J. Krishna and G. Satyanarayana, J. Org. Chem., 2014, 79, 8566; (d) D. Ravi Kumar and G. Satyanarayana, Org. Lett., 2015, 17, 5894; (e) B. Suchand, C. Sreenivasulu and G. Satyanarayana, Eur. J. Org. Chem., 2019, 4832; (f) B. Trisha, B. Suchand, C. Sreenivasulu, B. Lakshminarayana, C. Subrahmanyam and G. Satyanarayana, ChemistrySelect, 2020, 5, 1349. **PSC Advances**
 Example 2020
 Common Access Article is article. Published on 10 June 2020
 Common Access Article is article. The common Access Article is article is article. The common Access Article is article is art