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In this study, we report the effects of Ti on the critical behavior of Lag 67Bag.25Cag.0eMNnO3 samples prepared
by the flux method. Moreover, the critical exponents 8, ¥ and é are estimated through numerous techniques
such as the modified Arrott plot, the Kouvel-Fisher method and critical isotherm analysis of the magnetic
measurements on record near the Curie temperature. Compared to standard models, the estimated critical
exponents are close to the theoretical values of the mean-field model for these samples. In order to
estimate the spontaneous magnetization at a given temperature, we used a process based on the
analysis, in the mean-field theory, of the magnetic entropy change (—ASu) vs. magnetization (M). An
excellent agreement was found between the spontaneous magnetization determined from —ASy vs. M?

Received 1st May 2020 ) ) > L .
Accepted 3rd June 2020 and the classical extrapolation from the Arrott curves (uogH/M vs. M), thus confirming that —ASy is
a valid approach to estimate the spontaneous magnetization in this system. The accuracy of the critical

DOI-10.1039/d0rad3949g exponent values was confirmed with the scaling hypothesis. The magnetization curves fall onto one of
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1. Introduction

Hole-doped manganite perovskites La; ,A,MnO; (A = Ca, Sr, and
Ba) have attracted extensive attention. This is owing to their
peculiar magnetic properties and their potential technological
applications and in particular the discovery of colossal magneto-
resistance (CMR) in recent years.' For x = 0, the ground state
compound of LaMnO; is an insulating A-type canted antiferro-
magnetic (AFM) state with Ty = 140 K.® With Sr-doped lanthanum
manganites, the magnetic properties highly depend on the
content of x.” The ferromagnetic (FM) materials generated by
doped holes are attributed to the double exchange (DE) effect, in
which eg electrons transfer between adjacent Mn*" and Mn**
ions, and to the Jahn-Teller effect.®* For x = 0.5, the compound
with a tetragonal phase is characterized by an FM curie temper-
ature (T¢) Tc = 310 K and undergoes a transition to the A-type
AFM order at Ty = 220 K.° To further understand the FM-para-
magnetic (PM) transition in the bulk material, M. Hazzez et al.
calculated the critical exponents of La, 551, sMnO; synthesized by
a solid state reaction and showed that the transition is of a second
order, corresponding to the mean-field model with critical
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exponents § = 0.507 and y = 1.107, which is dominated by long-
range interactions around 7T¢.'° Recently, the lanthanum stron-
tium manganites have been extensively studied on a nanoscale due
to the potential applications in magnetic refrigeration, biomedi-
cine and biological research."* Numerous attempts have been
made to investigate the magnetic nanoparticles for their inter-
esting size effects and surface magnetism.**® As the particle size
decreases, the surface and interface become more important due
to the increased surface atoms/bulk atom ratio. The magnetic
properties of nanomaterials are strongly influenced by the surface
spins and may differ significantly from the bulk material proper-
ties. Therefore, it is very important to gain an understanding of the
magnetic transition mechanism by investigating the critical
behaviors of nano-sized compounds. In the present study, we
study the effect of titanium on the critical behavior around the
FM-PM phase transition for Lage;Bag25Cao0sMnO; samples.
Moreover, the critical exponents (8, v and ¢ are estimated through
numerous techniques such as the modified Arrott plot (MAP),
Kouvel-Fisher (KF) method and critical isotherm (CI) analysis of
the magnetic measurements near 7c.

2. Experimental details

In this study, our samples were prepared by the flux method.
La,03, BaCO;, CaCO;, MnO, and TiO, precursors, with high
purity, were used. The mixture was ground in an agate mortar
for 2 h with an appropriate quantity of KCl. Then, the powder
was heated in an alumina crucible at 800 °C for 24 h. Further, it
was washed with hot distilled water to remove the KCl salts. The
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residue was dried at 100 °C in air. After being ground well,
the powders were pressed into circular pellets (¢ = 1 mm and
d = 10 mm) at 105 Pa. The pellets were sintered in the air at
1000 °C for 24 h.

Magnetization isotherms were measured in the range of 0-5 T
and with a temperature interval of 3 K in the vicinity of Tc. These
isotherms are corrected by a demagnetization factor D that was
determined by a standard procedure from low-field dc magneti-
zation measurement at low temperatures (uoH = woHapp — DM).

3. Scaling analysis

In order to clarify the nature of the FM-PM phase transition,
deeper insight into the magnetic phase transition should be
obtained by analyzing the critical region around 7c. In general,
the critical phenomena cannot define the first-order transition
for because the magnetic field can affect the transition” and
create a discontinuity of the order parameter in the vicinity of
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the critical temperature. Based on the scaling hypothesis, the
critical behavior of our samples, around T¢, was studied using
Arrott plots and the critical exponents. § is associated with Mg
just below T, v is related to the critical magnetization isotherm
at Tc, and ¢ is related to the initial magnetic susceptibility just
above Tc."®* As is known, four models can usually describe the
magnetic interactions in manganites: the mean-field (8 = 0.5,
v =1.0 and 6 = 3.0), tri-critical mean-field (8 = 0.25, y = 1.0 and
6 = 5.0), three-dimensional (3D) Heisenberg (6 = 0.365,
v =1.336 and ¢ = 4.8) and 3D-Ising (8 = 0.325, v = 1.24 and
6 = 4.82) models. This method was based on the equation of
state:

[%] Yt ; Tc]

The exponent's equations from M measurements are given
below:

+ M (1)
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Fig.1 MAP for x = 0.05, an example: Mean-Field model (8 = 0.25, y = 1), tri-critical Mean-Field model (8 = 0.25, y = 1), 3D-Heisenberg model (8

= 0.365, y = 1.336) and 3D-Ising model (8 = 0.325, y = 1.24).
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Ms(T) = mo(—e)’; T< T, e <0 (2)
X0 = (@)ey; T>Tc, e>0 3)

My
M(uoH) = D(uoH)"*; T = Tc, e = 0 4

Where ¢ = (T — T¢)/Tc and M,, (ho/M,) and D are the critical
amplitudes.

Furthermore, in the critical region, M and the internal field
should obey the universal scaling behavior, which can be
written as:

M(uyH,¢) = |el'f.M (Qﬁ) (5)
where f, for T> T¢ and f_ for T < Tc. Eqn (5) implies that M/|e|?
vs. H/|¢|**" yields two universal curves for a true scaling relation
and good values of critical exponents: one for temperatures
below T¢ and the other for temperatures above Tc.

4. Results and discussion

Using the experimental M data obtained for all of the studied
compounds, we determined MAP in order to better understand
the nature of the transition around 7. These curves are ob-
tained from the following equation:*

Lao s7Bao2sCao.0s MnO3
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Here, ‘@’ and ‘b’ are constants.

Fig. 1 shows M"? vs. (H/M)"” based on the Arrott-Noakes
equation of state eqn (6) at different temperatures for the
x = 0.05 sample as an example, deduced by using trial critical
exponents from several models: mean-field, 3D-Heisenberg, 3D-
Ising and tri-critical mean-field. For this analysis, only the high-
field linear region is used because at low magnetic fields the
magnetic multi-domains are not totally aligned and the MAP
deviates from linearity. It is evident in Fig. 1 that all of the
models yield quasi-straight and nearly parallel lines in the high
field region, making it difficult to decide which model is best to
determine the critical exponent.

Thus, to confirm the best model to fit our experimental data,
we calculated the so-called relative slope (RS) defined at the
critical point as:

RS = S(TV/S(Te) ?)
where S(T) is the slope of M"/® versus uo(H/M)"'") and S(T¢) is the
slope for the curve recorded at T = T.. The most satisfactory
model should be the one with the closest RS to 1 (unity).>*
According to this criterion, and as shown in Fig. 2, mean-field is
the most suitable model for all our samples.” Based on the
chosen model, Mg (T,0) and the inverse magnetic susceptibility
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Fig. 2 RS of our samples as a function of temperature defined as RS = S(T)/S(T¢) using several methods.
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Table 1 Comparison of critical exponents for our sample from various models: MAP, KF and CI

Samples Tc (K) 6 ¥ 0 Ref.
x = 0.00 MAP 301 0.48 1.06 — This work
KF 304.15(5) 0.47(5) 1.13(3) —
CI(exp) 300 — — 3.31(1)
CI(cal) — — — 3.37(8)
x = 0.05 MAP 291.17(8) 0.45(4) 1.02(0) — This work
KF 291.69(3) 0.46(1) 1.03(0) —
CI(exp) 287 — — 3.25(2)
CI(cal) — — — 3.23(4)
x =0.10 MAP 280.08(4) 0.48(8) 1.09(8) — This work
KF 279.99(2) 0.478(8) 1.12(5) —
CI(exp) 277 — — 3.22(5)
CI(cal) — — 3.33(9)
Mean field model — 0.5 1 3 30
3D Heisenberg model — 0.365 1.336 4.80 30
3D Ising model — 0.325 1.241 4.82 30
Tricritical model — 0.25 1 5 31
Lag 6,Ca, 33Mng osF€g 0503 162 0.552 1.024 2.801 32
La,y 6Cay4MnO; 267.88 0.248 0.995 4.896 33
Lag ¢,Ba0 35MNg, 05 Tio.0203 310 0.551 = 0.008 1.020 + 0.024 2.851 34
Lay ;Ca 3Mng 05Tig 0503 136 0.601 + 0.02 1.171 + 0.01 2.95 =+ 0.01 35
Lag.¢;Bag 33MnO;, 306 0.356 =+ 0.004 1.120 + 0.003 4.15 + 0.05 36

[xo '(7)] were obtained from the intersections of the linear
extrapolation line in the high field region of (Ms)"* with the (H/
M)"" axis.

Fig. 3 shows the power law fittings of the temperature
dependence of Mg(T,0) and x, *(T,0). New values of 8, v and T¢
were obtained by fitting the plots of Mg(T,0) and x, " (7,0) with
eqn (1) and (2), respectively. The results of the fits for our

samples are also presented in the same figure and listed in
Table 1. Subsequently, convergence was reached by the
reasonable values of the critical parameters. These values are
very close to the critical exponents of the mean-field model, as
displayed in Table 1.

The third parameter ‘6’ was determined precisely from M(7T,
uoH) at T = T¢ using eqn (4). We plotted these isotherms
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Fig. 3 Temperature dependence of the spontaneous magnetization Mg (T,0) (left) and the inverse initial susceptibility xo *(T) (right), with the

fitting curves based on the power laws.
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linear fit following eqn (4) for the determination of the critical exponent 4.

together with the log-log plot of M versus uyH (inset of Fig. 4). As
seen in the high-field region, the log-log plots are straight lines
with the slope 1/6. The critical exponents from this static scaling
analysis are related to the Widom scaling relation ¢ = 1+ y/8.*
Using this relation and the estimated values of v and § (ob-
tained above) from the mean-field method, we obtained results

equations:*

close to the values obtained from the critical isotherms. The

Isothermal M(T¢, uoH) plot for our samples at Tc. The insets show the same plot in log—log scale for each sample, and the solid line is the

estimated values of ¢ for all of the samples are given in Table 1.
These values are consistent with the prediction of the mean-
field theory (8 = 0.5, y = 1, and 6 = 3).**

Another method to find the critical exponents and T more
accurately is the KF method, which is expressed in the following
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Fig. 5 KF plots for the spontaneous magnetization (left) and the inverse initial susceptibility xo X(7) (right) for our samples.
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The temperatures of M;(T) {%M%T()T)} B and
Xo H(T) {dx%;()T)} . are shown in Fig. 5. The fit of these curves

by eqn (8) and (9) leads to the determination of the critical
exponents vy, 6 and Tc. The obtained values for these exponents
are summarized in Table 1. Noticeably, these values are also in
a good agreement with those obtained from MAP.

The Widom relationship was tested by plotting M(T = T¢)
versus (uoH) #®*7) and checking the linearity of the curve, as
shown in Fig. 6.

The reliability of the critical exponents determined experi-
mentally can be verified using a more rigorous method*® based
on the prediction of the scaling hypothesis in the critical region,
through which the applied magnetic field uoH and M can be
related in the vicinity of T¢ by eqn (5). Fig. 7 shows that for each
compound, two universal curves are obtained: the first one for
temperature values below T and the second one for tempera-
ture values above T.. Hence, the critical exponents and the
critical temperature T agreed well with the scaling hypothesis.

This journal is © The Royal Society of Chemistry 2020

T
1,2 1,4 1,6 1,8

In addition, in homogeneous magnets and based on the
renormalization group analysis of systems performed by Fisher
et al., the universality class of the magnetic phase transition
depends strongly on the range of the exchange interaction, as
described by the following equation:**

Jr) = 1r"e (10)
where r is the distance between the interaction spins, d is the
dimension of the system and ¢ > 0 is the range of the
interaction.

For a three-dimensional material (d = 3), the relationship is J(r)
= 1/r"" with 3/2 < ¢ =< 2. In general, if J(r) decreases faster than r°
(r greater than 2), the Heisenberg exponents (8 = 0.365, y = 1.336
and ¢ = 4.8) are valid for a 3D-isotropic ferromagnet. However the
MF-theory (8 = 0.5, v = 1.0 and 6 = 3.0) exponents are valid for o <
1/2 if J(r) decreases with the “long-range” distance slower than
r~*°.In the intermediate range, if 1/2 < o <2, the exponents belong
to other universality classes (such as the TMF theory and the 3D-
Ising model). In the case of our samples, the values of the crit-
ical exponents are in agreement with the mean-field model.
Consequently, (d + o) will be smaller than 4.5, and the exchange
interaction J(r) drops slower than r~*? for our samples.

The following section shows an attempt to do theoretical
modeling of Mg based on the mean-field analysis of —ASy.>” A
general result issued from the mean-field theory reveals the
dependence of —ASy; on the relative M is described as:***®
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Fig. 9 Spontaneous magnetization of our samples deduced from the extrapolation of the isothermal —ASy vs. M? curves and from the Mean-

Field results.

2J +1

i h< Bfl(a)>
S(c) = —Nkg |[In(2J +1) — In

sinh <$B{' (0)) oo

(11)
where N is the number of spins, kg is the Boltzmann's constant,
J is the spin value, B, is the Brillouin's function for a given
value, and the reduced magnetization is (¢ = (M/gJN)ug)).

For small M values, eqn (11) can be performed using a power
expansion, and —ASy, is proportional to M*:

—S(a) . LNkBa2 +0(c%)

T 27+1 (12)

Moreover, below T, the material produces Ms. For this
reason, the state r = 0 is never reached. If we consider only the
first term of expansion of eqn (12), it is equivalent to:

_S(0) = 3 J

= 5 J—HNkB (02 + 052)

(13)

Eqn (13) proves that the —ASy, curve with respect to M> has
a linear variation.

As seen in Fig. 8, all the curves at different temperatures
(266-284 K) respect the same regularities and a clear linear
variation with a nearly constant slope (0.0034), indicating that it
is appropriate to analyze the current experimental results with
the mean-field theory. Mg(7) is then estimated from the linear
adjustments of the —ASy, curve with respect to the M> curve at

This journal is © The Royal Society of Chemistry 2020

different temperatures, as shown in Fig. 9. We can see that as
the temperature decreases, Mg becomes larger and larger, sug-
gesting that the compound is close to a state of rotational order
at lower temperatures. The excellent agreement between the two
methods confirms the validity of this process for estimating the
Mg magnetization value using the mean-field analysis of —ASy
in our systems.

5. Conclusion

In summary, we have used magnetization measurements to
study the critical phenomena at temperatures around the PM-
FM phase transition in Lag 67Bag.25Ca9.0sMnN(; ) Ti, O3 (x = 0.00,
0.05 and 0.10) samples. The critical exponents (3, ¥ and ¢) were
obtained based on various research techniques including MAP,
the KF method, and CI analysis. The estimated critical expo-
nents confirm that the experimental values agree well with the
mean-field model for our samples. The field and temperature
dependent M follows the scaling theory, and all of the data fall
on two distinct branches, one for T < T and another for 7> T,
indicating that the critical exponents obtained in this work are
accurate.
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