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ased MIA-QSPR modeling of the
photodegradation half-lives for polychlorinated
biphenyl congeners

Nasser Jalili-Jahani, *a Azadeh Fatehia and Ehsan Zeraatkarb

Multivariate image analysis applied to quantitative structure–property relationships (MIA-QSPR) has been

used to predict photodegradation half-lives of polychlorinated biphenyls in n-hexane solution under UV

irradiation. Owing to the high cost and laboriousness in experimental tests, developing a simple method

to assess the photostability of the compounds is important in environmental risk assessment. The

predictor block was built by superposition of the chemical structures (2D images), which was unfolded

to a matrix, suitable for multilinear and classical partial least squares, N-PLS and PLS, respectively, as

regression methods, demonstrating different predictive capability to each other. Model performance was

improved after removing an outlier, and the results were in general more accurate than the ones

previously obtained through quantum chemical descriptors analysis. Model validation and Y-

randomization test proved that the developed model has goodness-of-fit, predictive power, and

robustness. Additionally, the applicability domain of the developed model was visualized by Williams plot.

This study showed that a simple procedure is able to give highly predictive models, useful in

ecotoxicology, independent of the regression method used for this class of compounds.
1 Introduction

Polychlorinated biphenyls (PCBs) are highly persistent, lipo-
philic and bioaccumulative toxic industrial chemicals that
occur as environmental contaminants.1,2 Although use of these
ubiquitous contaminants has been banned in industrialized
countries since the late 1970s, their continued presence in the
environment poses considerable hazards.3,4 Recent studies have
revealed that many PCBs are endocrine disrupting chemicals,
i.e. they are exogenous substances that cause adverse health
effects on an intact organism or its progeny, consequent to
changes in endocrine function.4–6 Moreover, the hydrophobicity
and inertness of PCBs suggest that they can undergo long-range
transport and be deposited into aquatic systems, especially
sediments, where they can bioaccumulate in food chains.7–9

Photolysis may be one of major abiotic transformations of
the chemicals in the environment. Many investigations on the
photodegradation of PCBs have been reported in recent
decades.10–13 PCBs are photosensitive to UV irradiation in
aqueous and organic solutions.10–13 Photochemical behaviors of
PCBs in organic solutions have been reported by many
researchers. For example, photochemistry of PCBs was investi-
gated in cyclohexane,14 in n-hexane,15,16 or in alkaline 2-
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propanol.17–20 Dechlorination appears to be the major photo-
chemical reaction of PCBs. Reportedly, highly chlorinated PCB
congeners particularly those with substitutions at the ortho
positions are most vulnerable to photochemical attack.21

Previous studies indicated that photoreactivities were lower in
symmetrical and coplanar PCB congeners, and reactivity was in
the order of chlorine at ortho- > meta- > para-positions of PCB
rings under UV irradiation in n-hexane.15,16 Chang et al. studied
the photolysis of 7 PCBs in water under 254 nm UV irradiation
and revealed that photodechlorination of PCBs in water is
similar to that in n-hexane.11

Because photochemical transformation is oen suggested as
a potentially important fate process for PCBs, photodegradation
half-life is one of the most important parameters and is indis-
pensable for environmental risk assessment of these chemicals.
However, measured data are rather scarce regarding photo-
degradation half-lives of PCBs in n-hexane because of large
expenditures of money, time, and equipment.10,12 Thus, it is of
great importance to develop quantitative structure–property
relationship (QSPR) relating photodegradation process data to
other physicochemical properties or structural descriptors.
When signicant QSPR models are obtained, they may provide
insight into which aspect of the molecular structure inuences
the property.22–25 Moreover, they may also enable simple and
fast estimation of photodegradation process and generate pre-
dicted photodegradation process data efficiently for these
compounds. Niu et al. conducted a QSPR study on photo-
degradation half-lives of 22 individual PCBs in n-hexane
RSC Adv., 2020, 10, 33753–33761 | 33753
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solution under UV irradiation.26 Establishment of their model
was implemented based on the calculation of quantum chem-
ical descriptors and partial least squares (PLS) regression.
Among ve descriptors used in this model, standard heat of
formation, total energy and molecular weight had a signicant
effect on photodegradation half-lives of PCBs. Model statistical
tests, which show its predictive power, led to a parameters
correlation coefficient of r2 ¼ 0.659, cross-validated correlation
coefficient of q2 ¼ 0.589, and standard error of SE ¼ 0.357.

MIA-QSPR (multivariate image analysis applied to quantita-
tive structure–property relationship) modeling is another tech-
nique applied to predict properties, providing models with
satisfactory predictive capability.27 Its main advantage over
most of the structure based methodologies lies on the no need
for conformational screening and 3D alignment; it just requires
a 2D alignment, which refers to simply superimpose 2D
images–2D chemical structures drawn with the aid of an
appropriate drawing program.

In most of the QSPR studies, PLS is the main regression
method applied to correlate descriptors with the corresponding
dependent variables.28 However, multilinear PLS (N-PLS) is
supposed to be superior to the unfolding PLS due to its
simplicity (the number of variables can be effectively reduced)
and predictive ability.29,30 This study is devoted to building
a reliable MIA-QSPR model for estimating photodegradation
half-life of PCBs in n-hexane. The goal of our work is to compare
the abilities of prediction from PLS and N-PLS regressions. The
comparison has been carried out such that the best perfor-
mance of each method is compared.
Table 1 Half-life of PCB congeners upon exposure to UV radiation
(254 nm) in n-hexane solution

PCB no. Structure Half-life (min)

4 2, 20 10.2 � 2.2
5 2, 3 9.0 � 2.2
6a 2, 30 11.4 � 1.6
8 2, 40 6.6 � 2.1
10 2, 6 22.2 � 3.3
17 2, 20, 4 96.6 � 18.3
18 2, 20, 5 164.2 � 11.1
19 2, 20, 6 196.2 � 15.7
27a 2, 30, 6 135.0 � 20.9
34 20, 3, 5 100.2 � 7.8
47 2, 20, 4, 40 926.4 � 11.8
49 2, 20, 4, 50 100.2 � 12.5
50a 2, 20, 4, 6 170.4 � 23.2
51 2, 20, 4, 60 139.8 � 12.1
52 2, 20, 5, 50 802.8 � 47.7
53 2, 20, 5, 60 124.8 � 5.3
62 2, 3, 4, 6 121.2 � 35.2
73 2, 30, 50, 6 154.8 � 20.9
104 2, 20, 4, 6, 60 115.2 � 17.4
118 2, 30, 4, 40, 5 79.2 � 5.2
121a 2, 30, 4, 50, 6 110.4 � 6.2
126 3, 30, 4, 40, 5 621.0 � 7.5

a Test set.
2 Theoretical backgrounds
2.1 Partial least squares

The two-way PLS model consists of two groups of variables,
commonly referred to as the predictor X and the response Y. The
goal is to successively nd orthogonal linear combinations of
the predictor and response variables, known as predictor/
response scores, that account for as much as possible of the
covariation between X and Y. Specically, PLS model can be
represented by two outer relations that decompose the data
blocks into sum of components:

X ¼ TP
0 þ E ¼

XI

i¼1

tip
0
i þ E (1)

Y ¼ UQ
0 þ F ¼

XI

i¼1

uiq
0
i þ F (2)

and an inner relation which ensures the maximal covariance
between scores for each component

ui ¼ biti + ei, i ¼ 1, ., I (3)

where I denotes the total number of PLS components. The
vectors ti and ui are the scores of the ith PLS component for X
and Y, respectively. pi and qi are the associating normalized
loading vectors. bi is the regression coefficient for the ith
33754 | RSC Adv., 2020, 10, 33753–33761
component. E and F are residual matrices. The Y-residuals F
express the deviations between the observed and modeled
responses. The number of components needed to describe the
data blocks can be determined based on the amount of varia-
tion that remains in the residual matrices.31

Estimation of the PLS model is done in sequential fashion,
component by component. The estimation starts with a random
initialization of the response score u1. This vector is regressed
on the predictor block X to give the block weight
w1 ¼ X 0u1=u

0
1u1, which is normalized and multiplied with X to

give the predictor score t1 ¼ Xw1. For the response variables, the
regression is done similarly: t1 is regressed on Y to yield block
loading vector q1 ¼ Y 0t1=t

0
1t1 and a new u1 ¼ Yq1=q

0
1q1. This is

repeated until t1 and u1 converge to a predened precision, i.e.,
ktold � tnewk/ktnewkh3, where 3 is “small”, e.g., 10�6 or 10�8. Aer
convergence, loading vector p1 is calculated by regressing t1 on
X and the data blocks are deated by subtracting t1p

0
1 from X

and u1q
0
1 from Y. The second pair of PLS components,

orthogonal to the rst, can be determined by setting E¼ X and F
¼ Y and repeating the iteration until cross-validation indicates
that there is no more signicant information in X about Y. The
complete algorithm for estimating two-way PLS model is given
in Geladi and Kowalski.31
2.2 Multilinear partial least squares

The multilinear PLS models are called N-PLS models in general.
N-PLS is an algorithm of the PLS family adapted to multimodal
data (tensor variables). Tensors, or multi-way arrays, are higher
order generalizations of vectors and matrices. Elements of
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Dechlorination pathways of PCBs in water under UV irradiation [10,11]. Image superposition, building of the three-way array (X, suitable to
N-PLS regression), and unfolding to a two-way array (X-matrix, suitable to PLS regression). The arrow in the molecular structure indicates a pixel
in common among the whole set of images (2D chemical structures) fitted at the 138.53 coordinated used for the 2D alignment step.
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a tensor X ˛ RI1�I2�.� IN are denoted xi1,i2,.,iN. Here, N is the
order of the tensor, i.e., the number of dimensions, also known
as ways or modes. Bilinear PLS can cope with multi-way data by
unfolding the data arrays to matrices along the ith mode,32 but
the method itself is not multi-way and do not take advantage of
any multi-way structure in the data.33 Unfolding can be unfa-
vorable for several reasons: (1) unfold models are complex
(many parameters), (2) unfold models are difficult to interpret
(confounding of modes), (3) multi-way information is thrown
away, and (4) risk of poor predictive power.

N-PLS models a linear relationship between input (X) and
output variables (Y). The goal of the algorithm is to make
a decomposition of the array X(I � J � K) into triads similar to
the PARAFAC (parallel factor analysis) model. A triad consists of
one score vector (t) and two weight vectors; one in the second
mode called wJ and one in the third mode called wK.34 N-PLS is
not tted in a least squares sense but seeks in accordance with
the philosophy of PLS to nd a set of weight vectors wJ and wK

that produces a score vector (t) with maximal covariance with
Y.34 This is obtained by making a matrix Z ¼ X 0u1, by decom-
posing the matrix Y into one score vector u1 and one weight
vector q1, and then decomposing Z by SVD (singular value
decomposition) into two loading vectors w1

J and w1
K, which,

normalized, then determines the score vector t1 ¼ Xw1 as the
least squares solution.34 Where X is the array X unfolded to an (I
� JK) matrix and w1 ¼ w1

J 5 w1
K. The symbol 5 denotes the

Kronecker product.35 The coefficient b1 of regression is
This journal is © The Royal Society of Chemistry 2020
calculated as b1 ¼ t01Y=t
0
1t1. Aer convergence, the data blocks

are deated by subtracting t1w1
1(w1

2)0 from X and t1b1 from Y.
Then, factors are calculated in the same way by setting E ¼ X
and F ¼ Y and applying the procedure iteratively to the resid-
uals. A detailed description of N-PLS can be found, for example,
in literature.29,36
2.3 Applicability domain

A common way to show the scope and limitations of a QSPR
model, i.e. the range of structural information (parameters) and
activities/properties of the structures is checking the applica-
bility domain (AD) by the aid of leverage. The leverage provides
a measure of the distance of the each sample from the centroid
of the model space and as another word, indicates multivariate
normality of observations. Compounds close to the centroid are
less inuential in modeling process.

The leverages or hat value (hi) of the ith compound in the
descriptor space was computed as below:37

hi ¼ xi

�
X 0X

��1
x
0
i (4)

where X is the descriptor matrix of the training set and xi is the
descriptor row vector of the desired compound (in training or
test set). If a mixture obtains a leverage lower than the warning
value, this mixture is in the AD. The warning leverage (h* or 3h)
is dened as h* ¼ 3p/n, where n is the number of training
mixtures, and p is the number of model variables plus one.
RSC Adv., 2020, 10, 33753–33761 | 33755
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Fig. 2 Influence of number of (A) N-PLS and (B) PLS components
added on total variance explained in Y-block.
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It should be noted that the leverage is not an enough factor
to judge about the AD. In addition to the high leverage values,
compounds may also fall outside the AD, because of their large
“standardized residuals”.38 A Williams plot considers both
leverage and standard residual.38
3 Experimental
3.1 Data set

A data set consisted of photodegradation half-life for 22 PCB
congeners with 2–5 chlorinated substitutions (including 21
non-coplanar ortho substituted and one non-ortho substituted)
in n-hexane solution was obtained from the literature10 to assess
the performance of the N-PLS and PLS models. According this
reference, each test solution (100 mL) containing an individual
PCB congener (2 mg mL�1 in n-hexane) was irradiated under
a 15 W UV lamp at a wavelength of 254 nm in a separate glass
beaker. The chemical structures of these compounds and their
33756 | RSC Adv., 2020, 10, 33753–33761
photodegradation half-lives have been listed in Table 1 which
shows a great different half-lives range from 6.6–926.4 min for
different PCBs in this study. Thus, the original data were con-
verted to the logarithmic scale (log(t1/2)) before analysis. More-
over, it appears that the PCB congeners with two chlorines
substituted are photodegraded in 6.6–22.2 min, but if more
than three chlorines are present, the photodechlorination of
PCB needed 79.2–926.4 min, indicating the half-lives are
affected by the molecular size.
3.2 Model development

The 2D chemical structures were built using the ChemSketch
program,39 then aligned by a common pixel among them in
a dened workspace of dimension 150 � 200 pixels (Fig. 1), and
nally saved as bitmaps. According to Fig. 1, the 22 images were
read as double arrays in Matlab40 and aligned to give a 22 � 150
� 200 three-way array (X). The lateral and frontal slices indi-
cating no variances were removed from the three-way data. This
process gave a three-way array of 22 � 86 � 166 dimension,
which was regressed against the Y-block through N-PLS. Then,
the three-way data was unfolded to a two-way data X-matrix of 22
� 14 276 dimension. The size of the matrix was reduced (22 �
1493) aer removing columns indicating no variances as
a blank workspace or congruent structures. Subsequently, the
X-matrix was regressed against the Y-block through PLS. The
superposition of congruent structural scaffolds, the generation
of the three-way array and the unfolding step are illustrated in
Fig. 1. The statistical parameters used to evaluate the model
performances were the root mean square errors of calibration
(RMSEC), leave-one-out (LOO) cross-validation (RMSECV),28 and
leave-20%-out (L20%O) cross-validation (RMSECV20%),28 and
the squared correlation coefficients of the regression lines of
experimental vs. tted (r2) and predicted (q2 or q20%2).28
4 Results and discussions

The photodegradation half-life of a pesticide can give scientists
an indication of how easily a pesticide might be photo-
degradated under sunlight irradiation in natural surface waters,
and is useful for assessment of its toxicity to animals and
aquatic life. This parameter is usually represented by the loga-
rithmic scale (log(t1/2)), which may be easily estimated through
calculations. However, we have found that a simple correlation
result between calculated molecular structural descriptors
(such as constitutional descriptors, electrostatic descriptors,
topological descriptors, geometrical descriptors and quantum
chemical descriptors), and log(t1/2) for the 22 title-based
compounds was very poor.26 Therefore, MIA-QSPR arises as an
alternative method to derive useful models without having to
proceed with conformational screening and 3D optimization.
The log(t1/2) values for the 22 PCBs used in development of the
PLS and N-PLS models are listed in Table 1.

In any empirical modeling, it is essential to determine the
correct complexity of the model. With numerous and correlated
X-variables there is a substantial risk for a “over-tting”, i.e.,
getting a well tting model with little or no predictive power.
This journal is © The Royal Society of Chemistry 2020
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Table 2 Experimental, calibrated, cross-validated, and predicted photodegradation half-lives (log(t1/2)) of polychlorinated biphenyls

PCB no. Exp.

MIA-QSPR/N-PLS MIA-QSPR/PLS MIA-QSPR/PLS

Cal. LOO L20%O Cal. LOO L20%O Cal. Predicted

4 1.01 1.53 1.58 1.62 1.35 1.16 1.40 1.36
5 0.95 0.82 0.89 1.03 0.75 0.87 0.81 0.85
6 1.06 1.31 1.35 1.37 1.03 1.43 1.41 1.15
8 0.82 1.06 1.20 1.30 1.11 1.17 1.02 1.01
10 1.35 1.46 1.37 1.24 1.34 1.25 1.12 1.50
17 1.98 1.60 1.64 1.72 1.90 1.88 1.93 1.68
18 2.22 1.90 1.92 2.05 2.24 2.26 2.24 1.84
19 2.29 2.18 2.08 1.90 2.04 2.86 1.82 2.20
27 2.13 1.97 1.88 1.80 1.76 2.16 2.29 1.94
34 2.00 2.31 2.32 2.47 2.53 2.19 2.50 2.32
47 2.97 2.36 2.31 2.37 2.93 2.88 2.83 2.55
49 2.00 2.31 2.30 2.37 2.18 2.12 2.22 2.12
50 2.23 2.74 2.66 2.53 2.17 2.40 2.39 2.70
51 2.15 2.04 2.07 2.07 2.28 2.23 2.24 2.08
52 2.90 2.75 2.70 2.62 2.61 2.69 2.70 2.68
53 2.10 2.15 2.11 2.15 2.12 2.12 2.08 2.25
62 2.08 1.76 1.72 1.70 1.90 1.90 1.90 1.97
73 2.19 2.21 2.22 2.24 2.20 2.06 2.16 1.73
104 2.06 1.87 1.90 1.83 2.04 1.92 2.06 2.01
118 1.90 1.97 2.10 2.12 2.11 1.41 2.09 2.14
121 2.04 2.44 2.35 2.16 1.99 2.08 2.58 2.30
126 2.79 2.48 2.51 2.64 2.66 2.99 2.61 2.75
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Hence, a strict test of the predictive signicance of each N-PLS
or PLS component is necessary, and then stopping when
components start to be non-signicant. In this study, the best
number of latent variables was searched using the break-point
algorithm to avoid over-correlation of the regression equa-
tions.41 This procedure shows the break-point (the change in the
slope) in the plot of percent variance explained in Y versus the
number of components added (Fig. 2).

In a rst approach, an MIA-QSPR model was built using N-
PLS to correlate the three-way array X (the descriptors block)
with the log(t1/2) values. Four N-PLS components were found to
be optimum using the break-point algorithm (Fig. 2(A)). A
reasonable r2 of 0.732 (RMSEC ¼ 0.300) was achieved, where r2

of 0.659 was obtained using quantum chemical descriptors in
the previous study.26 The N-PLS based model was validated
through LOO cross-validation, in which 22 models were devel-
oped with one different prediction sample at a time; a q2 of
0.718 (RMSECV ¼ 0.310) was obtained. LOO cross-validation
has oen been considered to be an incomplete validation
method; external validation has been strongly recommended
instead.42 Randomly selected samples, 20% from the total series
of 22 compounds, were also used as the external test set.
Randomization was performed 10 times, and an average q20%2
was considered, i.e. 0.699 (RMSECV20%¼ 0.321). The estimation
and prediction usingMIA-QSPR/N-PLS are shown in Table 2 and
illustrated in Fig. 3(A).

The three-way array used for the N-PLS treatment was
unfolded to a two-way array, an X-matrix of dimension 22 �
1493 suitable to be regressed against the log(t1/2) values through
classical (bilinear) PLS. Fig. 2(B) reveals the notion that
This journal is © The Royal Society of Chemistry 2020
increasing the number of parameters only up to ve has a large
inuence on total percent variance explained in Y. The cali-
bration using ve PLS components gave an r2 of 0.871 (RMSEC
¼ 0.208) (Table 2 and Fig. 3(B)), which is superior to the
correlation found in the literature.26 The calibration model was
validated by LOO and L20%O cross-validations, giving q2 of
0.857 (RMSECV ¼ 0.226) and q20%

2 of 0.819 (RMSECV20% ¼
0.254). A comparison of the developed models shows that the
MIA-QSPR/PLS model can simulate the relationship between
obtained descriptors by MIA and the log(t1/2) values of studied
PCBs more accurately. Unfortunately, the compounds in model
only contain PCB congeners with 2–5 chlorinated substitutions
due to a lack of experimental data. The model is thus limited
due to its domain of application.

Next, the whole data set was in fact randomly split into
training (80% of the whole set of compounds) and test sets (one
randomly selected among the DiCBs, TriCBs, TetraCBs, and
PentaCBs, respectively), as depicted in Table 1, in order to give
insight about a real external validation; ve PLS components
were found to be better, and r2 of 0.842 and rtest

2 of 0.829 were
achieved. According to Table 2, increasing molecular graph of
the PCBs leads to increase of the log(t1/2) values. As all the PCB
molecules have a same parent biphenyl, it can be concluded
that the more chlorine atoms in the parent molecule, the higher
the log(t1/2) values. This conclusion is consistent with the result
from Chang et al., who found that photodegradation rates of
PCB congeners decreased with the increasing of chlorides in the
biphenyl.10 The results also are similar to the observations of
Chen et al., who reported QSPR models on direct photolysis of
them dissolved in water : acetonitrile solution.22,23 In addition,
RSC Adv., 2020, 10, 33753–33761 | 33757
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Fig. 3 The scatter plots of experimental vs. calibrated and predicted
the logarithmic scale half-life values for the (A) N-PLS and (B) PLS
based MIA-QSPR models built.

Fig. 4 The plot of (A) t5 (X-score) vs. u5 (Y-score) and (B) X-scores (t1
vs. t2) of the studied PCBs in the developed five component MIA-
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Niu et al. investigated photolysis of PCBs on y ash surfaces and
irradiated by UV simulated sunlight, and found the similar
conclusion.24

Additional statistic has been proposed in order to test the
external predictability, namely rm

2 which is dened as:43

rm
2 ¼ r2[1 � (r2 � r0

2)1/2] (5)

where r2 and r0
2 are the squared correlation coefficient values

between observed and predicted values of the test-set
compounds with and without the intercept, respectively. For
a model with good external predictability, the rm

2 value should
be greater than 0.5. The rm

2 value for the PLS model for test set
was 0.803. Therefore, the model is equally predictive according
to this validation method.

T(X-scores) vs. U(Y-scores) plots were used for homogeneity
analysis and evaluating the prediction performance of the
33758 | RSC Adv., 2020, 10, 33753–33761
image regression model.44 Homogeneity means that the inves-
tigated system or process must be in a similar state throughout
all the investigation and the mechanism of inuence of X on Y
must be the same. With ve signicant PLS components (t1 �
t5), rst, the most important factor was identied using serially
correlating of each component to Y and the resulting values
were 27.0%, 1.3%, 6.0%, 19.4%, and 32.4%, respectively. As
shown, the results have rank 1 in the h component. The plot
of X-score t5 vs. corresponding Y-score u5 shows that only the
PCB-34 may be show a much worse t than the others, indi-
cating an inhomogeneity in the data (Fig. 4(A)). To investigate
this, a second round of analysis was made with a reduced data
set, N ¼ 21, without the PCB-34. The modeling of N ¼ 21 PCBs
QSPR/PLS model.

This journal is © The Royal Society of Chemistry 2020
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Fig. 5 William's plot of generated PLS based MIA-QSPR model.

Table 3 Obtained squared correlation coefficients of the regression
lines of experimental vs. fitted (r2) and predicted (q2) by Y-
randomization

Iteration r2 q2

1 0.110 0.153
2 0.202 0.255
3 0.131 0.238
4 0.250 0.111
5 0.018 0.048
6 0.145 0.194
7 0.078 0.055
8 0.106 0.158
9 0.029 0.133
10 0.109 0.202
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with the same linear model as before gives a slightly better
result with r2 of 0.892 and q2 of 0.871. Thus, this molecule
cannot be assumed to be an outlier.

Score plots T(X-scores) are important to explore the distri-
bution of molecules in the latent variable space and shows
object similarities and dissimilarities.44 The scores obtained
from rst two components t1 vs. t2 are only plotted here to see
the distribution of molecules and also check any outliers are
present in the dataset or not. If any compound is positioned
outside the ellipse (at 99% signicance level), then we can
consider that compound as an outlier. In the score plot, the
ellipse represents the applicability domain of the PLS model
developed by using PCBs as dened by Hotelling's T2. Hotel-
ling's T2 is a multivariate generalization of Student's t-test.45 We
can identify the outliers from this plot. Fig. 4(B) shows that
compounds which are situated in the le hand corner bearing
similar properties whereas the compounds which are far apart
from each other like those situated in the lower right hand
corner represent dissimilar compounds. As shown, there is not
a clear overlapping point between compounds. The data sepa-
ration is very important in the development of reliable and
robust QSPR models. It has also been found from the Fig. 4(B)
that PCB-118 is situated outside the ellipse and indicated as an
outlier. This time, the above-mentioned outlier detection
strategy gives a substantially better result with r2 of 0.938 and q2

of 0.925, conrming the legitimacy of PCB-118 as an outlier.
In order to use MIA-QSPR model to assess new chemicals, its

applicability domain needs to be dened and only those
predictions that fall within this domain may be regarded as
reliable.37 The applicability domain of the developedMIA-QSPR/
PLS model was validated by an analysis of the Williams graph of
Fig. 5, in which the standardized residuals and the leverage
value (h) are plotted. It can be clearly seen that all of the 22
compounds were located within the boundaries of applicability
domain, which indicated that our proposed MIA-QSPR/PLS
model had a well-dened AD. In addition, the random distri-
bution of residuals on both sides of zero line indicates that
there is no systematic error in the development of the MIA-
QSPR/PLS model.
This journal is © The Royal Society of Chemistry 2020
Moreover, the robustness of the MIA-QSPR/PLS models was
further evaluated using the Y-randomization test in this
contribution.28 The dependent variable vector (the log(t1/2)
values) was randomly shuffled and new MIA-QSPR models were
developed using the original variable matrix. The new MIA-
QSPR/PLS models are expected to show a low value for r2 and
q2. Several random shuffles of the Y-vector were performed for
which the results are shown in Table 3.

Overall, we found that N-PLS and PLS behaved very satis-
factorily when applied to solve MIA-QSPR analysis for a series of
22 PCBs. Also, this work was an attempt to show that a general
statement that N-PLS is better than PLS in all QSARs is inade-
quate, and the results are in good agreement with the ones re-
ported in the literature.46,47 In fact, the MIA-QSPR/N-PLS model
was slightly more parsimonious than the PLS based model (four
N-PLS components used in the modeling using the whole data
set against ve PLS components), but the predictive ability of
both models were comparable to the available data from the
literature,26 only requiring a modest computational investment
and neither conformational screening nor 3D optimization
rules to achieve reliable models to predict photostability of
compounds harmful to the environment.
5 Conclusions

In the present study, pixels of chemical structures (2D images)
stand for descriptors, and structural changes account for the
variance in photodegradation half-lives of PCB congeners in n-
hexane under UV irradiation. PLS and N-PLS were applied as
regression methods demonstrating greater advantage of pho-
todegradation half-lives prediction based on PLS. The LOO
cross-validated value of q2 for the optimal MIA-QSPR/PLS model
is 0.857, indicating a good predictive capability for the log(t1/2)
values of PCBs. The results obtained are consistent with the
result from previous researchers who found that photo-
degradation rates of PCB congeners decreased with the increase
of chlorides in the biphenyl.
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