
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
O

ct
ob

er
 2

02
0.

 D
ow

nl
oa

de
d 

on
 7

/2
3/

20
25

 4
:2

9:
03

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Simplified compu
Department of Chemistry, Physical and The

of Oxford, South Parks Road, Oxford OX1

ac.uk

† Electronic supplementary informa
10.1039/d0ra06205g

‡ These authors contributed equally to th

Cite this: RSC Adv., 2020, 10, 38275

Received 16th July 2020
Accepted 12th October 2020

DOI: 10.1039/d0ra06205g

rsc.li/rsc-advances

This journal is © The Royal Society o
tational model for generating
biological networks†

Matthew H. J. Bailey, ‡ David Ormrod Morley ‡ and Mark Wilson ‡*

A method to generate and simulate biological networks is discussed. An expanded Wooten–Winer–Weaire

bond switching methods is proposed which allows for a distribution of node degrees in the network while

conserving the mean average node degree. The networks are characterised in terms of their polygon

structure and assortativities (a measure of local ordering). A wide range of experimental images are

analysed and the underlying networks quantified in an analogous manner. Limitations in obtaining the

network structure are discussed. A “network landscape” of the experimentally observed and simulated

networks is constructed from the underlying metrics. The enhanced bond switching algorithm is able to

generate networks spanning the full range of experimental observations.
Two dimensional random networks are observed in a range of
contexts across considerably different length scales in nature:
from nanometres, in the form of amorphous graphene; to
metres, in the form of the Giant's causeway; to tens of kilo-
metres, in the form of geopolitical borders.1–3 A framework for
describing these continuous random networks for chemical
systems was rst introduced by Zachariasen to describe silica-
like glasses, and has proved to be extremely versatile in the
years since,4 being used to describe biological networks,
including actin networks and basement membranes made of
collagen and laminin.5–8

Despite the physical diversity of continuous random
networks, they share some common properties which arise
from the fact that all planar 2D networks can be represented as
a tiled arrangement of polygons, joined at their edges.9 Viewing
a network as a collection of polygons explains some restrictions
on the nature of the network. For example, the angles at each
node must add up to 360� and the mean number of edges
connected to each node affects the mean number of edges [or
ring size] of each polygon. Traditionally, semi-empirical laws
provided a theoretical understanding of the complex behaviour
of real networks, most commonly for inorganic networks such
as MgO grains, silica, or epithelial cells.10–12 Some examples of
these laws include: Lewis' law,12 governing the distribution of
polygon areas; Lemâıtre's law,13 relating the number of hexa-
gons to the width of the polygon distribution; and the Aboav–
Weaire law,14 governing the preference of polygons to be
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surrounded by similar or dissimilar polygons. Recent work has
helped clarify the latter by re-casting the problem in terms of
the assortativity, a metric designed for network theorists to
describe social networks.15,16

Studying generic 2D networks in biology is a potentially
difficult task. There are a variety of different techniques used,
including uorescence light-, atomic force and electron-
microscopy.17–19 The resolution of light microscopy is limited by
diffusion,18 and the power of electron or laser beams have to be
limited to avoid damaging the delicate networks.17 However,
even when a high-quality image is obtained, there is further
difficulty in analysis. For example, each edge in a network is
a complex molecule made up of tens of thousands of atoms
whichmay not lie strictly in a single plane. In addition, themost
interesting dynamic behaviour oen occurs over very long
timescales – potentially decades. To make this complexity
scientically digestible, different simplied models have been
developed for biological networks, as well as semi-empirical
laws. A simplied model is useful for exploring the complex
behaviour of these biological networks, and to provide greater
understanding of experimental data by eliminating the effects
of nite sample size and providing precise control over the
conditions. These models can then be used to understand
macroscopic or mechanical properties of the networks, either
directly or to parameterise multiscale approaches.6,20 Examples
of existing simplied graph-based models include Erdös–Rényi
random graphs in which edges are randomly placed connecting
nodes, Mikado networks for many-layered systems in which
edges are randomly placed across one another, and bond
switching in which edges in an ordered graph are randomly
exchanged.21,22

In this work, an extension of a bond switching method,
known as the Wooten–Winer–Weaire (WWW) algorithm, is
presented to generate 2D networks which align with those
RSC Adv., 2020, 10, 38275–38280 | 38275
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observed in biological systems.23,24 Bond switching methods
offer good control over physical properties in the networks
generated, and are sufficiently exible to reproduce a wide
range of networks. To rigorously compare networks generated
by bond switching to real biological networks, key metrics are
extracted from a range of experimental microscopy images of
networks made of collagen IV or laminin.

Bond switching is a stochastic sampling (oen described as
a Monte Carlo) method, in which an initially regular network is
systematically modied by a series of edge deletion and addi-
tion moves (corresponding to bond-breaking and bond-creation
in chemical networks). In the WWW method,24 the moves are
chosen randomly to “switch” the coordination arrangements
around two nodes. These switches preserve the coordination
number k, of each node. For a more detailed discussion of the
original method and gures, see Wooten et al.24 However, in the
extended bond switching method, the mean coordination
number hki is xed at an initial value whilst the k of individual
nodes may change. A schematic image of this is available as
Fig. SI 1 in the ESI.† The changes in k are affected by the
potential model and the moves chosen. The relaxation of the
move selection criterion is especially useful for generating
biological continuous random networks as it can encompass
a range of different behaviours, for example cross-linking along
the backbone of biopolymers or lateral interactions of head
groups.

The steps in our algorithm are:
� Initialise using a network with known polygon structure,

calculating the energy according to a potential model.
� Select one edge between two nodes and make a trial move

by deleting it, and adding a new edge between the rst node and
a neighbour of the second.

� Locally optimise the geometry around the switching site
according to the potential model and recalculate the energy
(giving the energy difference DE).

� Accept or reject the trial move randomly with probability p,
determined by the Metropolis criterion:25

p ¼ min[1,exp(�DE/kBT)] (1)

� If the trial move was rejected, return to the previous
accepted state. If it was accepted, replace the network with the
trial network and repeat the process.

This algorithm is quick to compute, because the geometry
only needs to be optimised in a small region around the
switching site. The algorithm works best for potential models
with explicit bonds and well-dened neighbours. To this end,
a simplied Keating potential is applied which consists of
harmonic bond (of length r) and angular (of angle q) terms:26

Uðr; qÞ ¼ 1

2
kr
�
r� reqm

�2 þ 1

2
Kq

�
cosðqÞ � cos

�
qeqm

��2
; (2)

with the equilibrium bond length reqm xed at 1, and the

equilibrium angle qeqm chosen to be
2p
k

with k the coordination

number of the central node. The force constants kr and Kq are
both free parameters. When the coordination number of two
38276 | RSC Adv., 2020, 10, 38275–38280
nodes changes in the simulation, the qeqm is recalculated for
both of them. Fixing qeqm (i.e. not changing with k) led to the
nal networks exhibiting more artefacts and oen showing
signicant demixing of nodes.

This simple, but physically motivated, potential model is
useful to explore the range of networks that can be generated.
Future developments will show how more detailed and biolog-
ically accurate potential models, such as the exponential–
quadratic form used by Burd,27 may further improve agreement
with experimental observation. The simplicity of the potential
model could be useful as a framework to be combined with
more complex requirements. For example, a strong energetic
penalty could be applied to congurations exhibiting undesir-
able artefacts. In this work this technique is used to reject all
congurations in which any node has coordination number k$
8 or a polygon with side count n $ 20. Ormrod Morley and
Wilson extend this idea further; by using Monte Carlo to
minimise a cost function instead of energy directly they
demonstrate how key structural metrics (there the fraction of 6-
membered rings in amorphous graphene) can be targeted.23 It
is, however, useful to develop an understanding of the struc-
tures formed by simplistic models prior to considering how to
effectively contrain them to eliminate unphysical properties,
rather than pre-judging what is required.

A honeycomb network of hexagons with hki ¼ 3 is used as the
starting lattice, to allow comparison with previous networks.28,29

The use of a well-dened initial polygon structure, and moni-
toring the changes at each step, allows the algorithm to ensure
that the structure generated is physically acceptable. By con-
straining the mean node coordination, the mean number of
edges per polygon is also constrained because of Euler's char-
acteristic equation for polyhedra. For a 2D network which is
either periodic or innitely large, hki ¼ 3 corresponds to hni ¼ 6.
This does not hold for nite-size aperiodic networks, such as
those typically imaged experimentally. However, the approxi-
mation for aperiodic systems is small (for example, for 100
rings, hni ¼ 5.94).16

The biological networks considered are visually extremely
diverse. To demonstrate that diversity, three networks are
shown in Fig. 1, which are accompanied by snapshots of the
simulated networks, showing that these can qualitatively
replicate the range of observed structures. The more regular
networks in the gure are characteristic of those formed by
inorganic materials.16 The gure also highlights associated
structural metrics, the second moment of the ring distribution,
m2(k), and the assortativity, r, both of which are discussed below.
The difference in accompanying structural metrics in the
experimental and simulated congurations highlights the need
for a quantitative comparison instead of qualitative similarity.
The structural metrics were extracted by a combination of
image analysis tools and a mathematical approach based on
graph theory as described below. A microscope image can be
converted into an abstract graph by extracting the positions of
edges and nodes, here using the Ridge Detection plugin for the
image processing package ImageJ.30,31 The image analysis
algorithms are discussed in detail in the ESI.†Obtaining a set of
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Images of biological network from (left to right) Barnard et al.,32

Bos et al.,33 and Wang et al.34 respectively. The lower panels show
networks generated by our method that appear similar, from left to
right with {kl, Kq}¼ {0.01, 0.01}, {10, 0.01} and {100, 100}. The simulated
networks were chosen on grounds of visual similarity; the difference in
accompanying metrics (assortativity r and second moment of the k
distribution m2(k)) demonstrates why a more rigorous method of
comparison is needed. The structural metrics are discussed in more
detail in the body of the text. Reproduced from Barnard et al.32 and Bos
et al.,33 Copyright (1992) and (2001), with permission from Elsevier.
Reproduced from Wang et al.,34 Copyright (2017) with permission.

Fig. 2 The polygon structure of a collagen IV basement membrane as
imaged by Yurchenco and Furthmayr.35 The two images are different
ways of highlighting the polygons in the same image, according to
which ambiguous edges are included. Reprinted (adapted) with
permission from Yurchenco and Furthmayr.35 Copyright 1984 Amer-
ican Chemical Society.
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nodes and edges for each image allows the same analysis
methods to be applied for the simulated networks.

Images of biological networks produced by Barnard et al.,
Bos et al., Wang et al., and Yurchenco et al. taken between 1984
and 2017 were analysed.32–36 A subset of the results are shown in
Table 1, and the complete data can be found in the ESI.† The
experimental networks show a mean node coordination hki ¼
2.78, with a standard deviation of 0.237. The average number of
polygon sides hni is 6.88, with a standard deviation of 1.42. The
data seen in Table 1 show slightly lower hki and larger hni than
for randomised hexagonal networks (where hki ¼ 3 and hni ¼ 6).

However, some caution is required in the interpretation of
the results obtained with these methods. Fig. 2 demonstrates
the difficulty in assigning edges to an image. The experimental
image (le panel, from Yurchenco and Furthmayr35) is analysed
using two different manual interpretations of the network. As
Table 1 Statistics collected for a number of images of biological
networks (imaged under different conditions) showing the mean node
coordination, hki, the second moment, m2(k), the mean number of
polygon edges, hni, the number of polygons in each configuration, N,
and the assortativity, r. Two different analyses of the networks imaged
by Yurchenco et al.35 are shown in order to highlight the sensitivity of
the obtained metrics. A more detailed table is available in the ESI

Image hki m2(k) hni r N

Barnard et al.32 2.961 0.378 5.574 �0.109 135
Bos et al.33 2.780 0.335 5.825 �0.209 40
Wang et al.34 2.945 0.805 5.735 �0.057 498
Yurchenco and Furthmayr35 2.721 0.284 6.254 �0.181 61
Yurchenco and Furthmayr35 2.667 0.287 6.593 �0.184 54

This journal is © The Royal Society of Chemistry 2020
the assignment of the edges can be ambiguous, there are many
equally valid ways to select which edges are retained, and so
different polygon structures arise. Here, for example, a small
change in the algorithm identies more nodes with a small
associated increase in the mean node coordination, hki, and
reduction in the mean polygon side count hni (Table 1). Varia-
tions in hki are emphasised by an ambiguity as to whether an
edge in a biological network is best described as being one
biomolecule or two, which makes describing the fraction of 2-
coordinate nodes problematic. hki is also affected by the nite
size of an image, because where an edge is terminated by the
image boundary, we remove it from the calculations, reducing k
for edge nodes. Missing edges, either from low contrast or when
terminated by an edge, leads polygons to be counted as too large
or to not be counted at all respectively. These issues are more
signicant in smaller or lower-detail images, because the
contrast leads to worse ring identication and a greater fraction
of polygons are on the boundary.

The data extracted from the experimental images (Table SI 1
in the ESI†) indicate that the most useful metrics for describing
these networks are the width of the node distribution (charac-
terised by the second moment, m2(k)), and the assortativity r, as
described by Newman.15 For hexagonal inorganic networks,
m2(k) ¼ 0, whereas all of the simulated and imaged networks
have 0.3 ( m2(k) ( 1.2. The assortativity represents the simi-
larity of neighbouring polygons, and is bounded as �1 # r # 1
with a negative value corresponding to polygons being neigh-
bours to dissimilar polygons, and positive values indicating
similar neighbours. An assortativity of r ¼ 0 means that there is
no preference for similar or dissimilar neighbours, and is seen
in Erdös–Renyi random graphs. If the assortativity were ruled by
geometrical constraints alone in a random point process, we
would expect r z �0.15.16 Hard-disk simulations of colloids
have shown positive assortativities of �0.4,38 networks of bio-
logical reactivity have small negative assortativities,15 whilst
inorganic networks show negative values whose magnitudes
depend on the details of the building blocks.16

Although the polygon side count distributions (characterised
by the mean number of sides, hni and its secondmoment, m2(n))
have been extensively used to characterise more regular
RSC Adv., 2020, 10, 38275–38280 | 38277
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networks (see, for example, Ormrod Morley and Wilson23 and
references therein) the greater disorder inherent in the
networks considered here makes these measures more difficult
to assess. For example, hni is highly sensitive to nite size
effects, whilst m2(n) appears equally sensitive to the presence of
(rare) large polygons. Fig. 3(a) shows the variation of r as
a function of m2(k) for the experimental networks, an effective
“network landscape”. The experimental networks show signi-
cant range of {m2(k), r} values, with the majority (14 of 19) in the
range �0.25 # r # 0. There is a weak correlation between the
two metrics with r becoming less negative as m2(k) increases (see
below).

To develop a systematic understanding of the range of
networks formed, networks were generated using a wide range
of potential model parameters. Network congurations were
generated with kl and Kq ranging from 0.01 to 100 reduced units,
changing from networks dominated by bond strain to those
dominated by angle strain. The main method of network
generation was simulated annealing. First, the networks were
thermalised at very high temperature (corresponding to 1 � 104

temperature units), effectively accepting all physical Monte
Carlo moves. The thermalisation continued for 10 000 steps at
that high temperature, which led to complete melting. Aer
thermalisation, the networks were cooled. The cooling pro-
ceeded by making n moves at a temperature T, then reducing T
Fig. 3 The “network landscape” showing both the simulated and
experimental networks. In subfigure (a) different markers represent
sets of simulated results, and outlined circles represent experimental
data from the references indicated.32–37 Grey and pink squares repre-
sent the networks generated by the simulated annealing method with
different bond and angle strength parameters. The subfigures highlight
subsections of that landscape under different conditions with
consistent markers to subfigure (a)—for example, triangles in subfigure
(a) represent the same data as the triangles in subfigure (c). The sub-
figures are coloured according to which parameter was varied in the
simulation. In (b), this is the minimum temperature Tmin the simulation
reached. In (c), this is the maximum coordination number of an indi-
vidual node kmax. In (d), it was the fixed temperature Tfixed the networks
were heated at.

38278 | RSC Adv., 2020, 10, 38275–38280
by a constant multiplicative factor and making another n steps.
This was repeated until a pre-set minimum temperature was
reached. One example simulation had 1000 moves made at T ¼
1 � 104, then a further 1000 moves at T ¼ 1 � 103.8, and so on
until T ¼ 1 � 10�2. The logarithmic nature of the temperature
scaling was necessary to access the wide range of temperatures
between the melted and frozen states in a computationally
efficient manner.

Fig. 3 shows the range of different networks which can be
generated. There is a great deal of uncertainty around each
experimental point, owing to the ambiguity previously dis-
cussed. Fig. 3(b)–(d) show the evolution of r as a function of
m2(k) for the simulated networks generated under different
conditions.

Fig. 3(b) shows the effect of cooling the networks for
different lengths of time, but at the same rate. Networks that
were cooled for longer are in blue, and it shows a reversal of the
entropy driven effects evident in Fig. 3(b). This demonstrates
the sensitivity of the networks to the annealing procedure. As
networks are cooled for longer, the assortativity remains
broadly unchanged, but the node distribution histograms
become narrower; the highly coordinated nodes were
enthalphically unfavourable because of the angular strain they
induced in the nodes around them.

Finally, Fig. 3(c) shows the effect of limiting the maximum
permissible node coordination to be in the range 2 # k # kmax.
For a low kmax ¼ 4, the networks have narrow node distributions
and polygon assortativities close to the random limit. However,
as kmax increases to 10, the widths of the node distributions
increase and the networks become assortative. Nodes with large
k were oen surrounded by narrow triangles to accommodate
the angular strain. Since there are k neighbouring triangles
around each node this leads to a positive assortativity.

Fig. 3(d) shows networks generated using an alternative
method to the simulated annealing protocol described above.
Here, networks are partially thermalised at a range of xed
temperatures with xed potential parameters kl and Kq. At low
temperatures the networks formed are highly correlated (dis-
assortative) whilst at higher temperatures the networks formed
are mildly assortative, corresponding to a partial demixing.
There are two main areas in this landscape, found at the
bottom-le (negative r and low m2(k)) and the top right (positive
r and high m2(k)). The bottom-le region is occupied by
networks generated at low temperatures, and corresponds to
the presence of uncorrelated defects in the regular lattice
structure. The defects are similar to those described as Stone–
Wales defects in carbon networks, and since they are sur-
rounded by ordered structures this leads to disassortative mix-
ing.39 The concentration of independent defects is a function of
temperature, and hence an increased temperature leads to
a larger m2(k) as more defects appear. At higher temperatures, in
the top-right region, the networks are dominated by entropy.
The width of the node distribution function increases to
amaximum, which is discussed below, and the networks end up
close to the random limit.

Fig. 3(a) shows the combined metrics from Fig. 3(b)–(d)
along with the full sets of results obtained by varying kl and Kq.
This journal is © The Royal Society of Chemistry 2020
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The experimental data, taken from ref. 32–37, lies at relatively
low m2(k) and negative r. This low m2(k) and negative r region is
occupied by relatively few simulated networks, with most
simulated networks showing a larger m2(k) value. This is
a combination of multiple factors that were explored in the
panels of Fig. 3. Highly coordinated tangles such as those seen
experimentally in Fig. 1(b) are relatively rare, and node coordi-
nations above 4 are geometrically unstable with respect to
splitting into two 3-coordinate nodes. This naturally limits the
width of the node distribution histograms, and hence m2(k).
Next, many biological networks are constructed in an ordered
manner, or enthalpically driven in their assembly. For example,
collagen IV in basement membranes has been hypothesised to
have a square or a regular hexagonal structure.27,40 The images
analysed here could be of regular networks with defects, either
from aging or from preparation for imaging. Finally, the posi-
tion of experimental data shows that real networks are not close
to the random limit. This matches up with our intuition, as
maximised entropy limits the amount of useful work that can be
extracted from a system, which is an unhelpful property for
biological networks. We anticipate that future network models
which take the enthalpic factors into account more accurately
(such as having terms in the potential that disfavour demixing)
will ll in the “valley” observed in the landscape.

The simulated networks show interesting physical proper-
ties, including demixing, which are not observed in the exper-
imental images. Similar polygons tended to cluster together and
become more convex as the networks were cooled for longer
periods of time. This demixing is driven enthalpically, as it
appears stronger at low temperatures. The enthalpic drive arises
from accommodating angular strain, for example, four-
coordinate nodes are least strained when in a region of
squares, and two-coordinate nodes are least strained when they
are part of a long boundary between two large rings. Aer
demixing, the networks show a positive assortativity because of
this strain-driven preference for similar shapes to be adjacent.
The potential slow evolution of structure has signicant
implications for the network aging process. This could be
important, for example, in the collagen-IV network in the eye.

In conclusion, the bond switching method developed here
can generate 2D polygonal networks similar to those found in
biology. It can generate networks with a wide range of polygon
side counts and node coordination distributions, mirroring the
diversity exhibited by biological networks. A number of experi-
mental biological networks were studied using methods previ-
ously used for inorganic chemical networks, and techniques
from network theory were applied to understand their short
range structure. The biologically-inspired networks showed the
importance of letting the node distribution vary, and were
almost all disassortative. However, the simulated networks
show a range of assortativities approximately in the range �0.2
# r # 0.2. This is an interesting result, as the extra degree of
freedom allowed in the simulations by varying k allows the
polygon networks to get closer to the maximum entropy solu-
tion (with r z 0), which is not possible in traditional bond
switching approaches.16 The enthalphic drive towards dis-
assortative mixing in real networks is an interesting topic, and
This journal is © The Royal Society of Chemistry 2020
could be studied in future by improvements to the simplied
potential model presented here. Analysing these biological
networks presented challenges because of the ambiguity in
identifying edges, and it is anticipated that the simulated
networks can be used to help resolve this. The simulated
networks can bridge the gap between the hexagonal networks
favoured by inorganic materials and more disordered biological
networks, as well as showing interesting physical properties of
their own, such as demixing. The additional degree of freedom
allows for more entropically-dominated polygon networks,
which allows the assortativity to approach zero. Future work will
build on these methods utilising improved potentials, and
exploring further the role of entropy, in order to understand the
factors which underpin the observed network landscape.
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