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optical sensor for water in
acetonitrile based on propeller-structured
BODIPY-type pyridine–boron trifluoride complex†

Shuhei Tsumura, Kazuki Ohira, Keiichi Imato * and Yousuke Ooyama *

A propeller-structured 3,5,8-trithienyl-BODIPY-type pyridine–boron trifluoride complex, ST-3-BF3, which

has three units of 2-(pyridin-4-yl)-3-(thiophen-2-yl)acrylonitrile at the 3-, 5-, and 8-positions on the

BODIPY skeleton, was designed and developed as an intramolecular charge transfer (ICT)-type optical

sensor for the detection of a trace amount of water in acetonitrile. The characterization of ST-3-BF3 was

successfully determined by FTIR, 1H and 11B NMR measurements, high-resolution mass spectrometry

(HRMS) analysis, thermogravimetry-differential thermal analysis (TG-DTA), photoabsorption and

fluorescence spectral measurements, and density functional theory (DFT) calculations. ST-3-BF3 showed

a broad photoabsorption band in the range of 600 to 800 nm, which is assigned to the S0 / S1
transition of the BODIPY skeleton with the expanded p-conjugated system over the 2-(pyridin-4-yl)-3-

(thiophen-2-yl)acrylonitrile units at the 3-, 5-, and 8-positions onto the BODIPY core. In addition,

a photoabsorption band was also observed in the range of 300 to 550 nm, which can be assigned to the

ICT band between the 2-(pyridin-4-yl)-3-(thiophen-2-yl)acrylonitrile units at 3-, 5-, and 8-positions and

the BODIPY core. ST-3-BF3 exhibited a characteristic fluorescence band originating from the BODIPY

skeleton at around 730 nm. It was found that by addition of a trace amount of water to the acetonitrile

solution of ST-3-BF3, the photoabsorption band at around 415 nm and the fluorescence band at around

730 nm increased linearly as a function of the water content below only 0.2 wt%, which could be

ascribed to the change in the ICT characteristics due to the dissociation of ST-3-BF3 into ST-3 by water

molecules. Thus, this work demonstrated that the 3,5,8-trithienyl-BODIPY-type pyridine–boron

trifluoride complex can act as a highly-sensitive optical sensor for the detection of a trace amount of

water in acetonitrile.
Introduction

Optical methods utilizing colorimetric and uorescent sensors
for visualization as well as detection and quantication of water
in samples and products, such as solutions, solids, and gases or
water on substrate surfaces have been of considerable scientic
and practical concern in recent years, because of not only
fundamental studies in photochemistry, photophysics, and
analytical chemistry, but also their potential applications to
environmental and quality control monitoring systems and
industry.1–9 In fact, to date, some kinds of colorimetric and
uorescent sensors for water based on ICT (intramolecular
charge transfer),10,11 PET (photo-induced electron transfer),12,13

or ESIP (excited state intramolecular proton transfer)14 have
been designed and developed. Among them, the ICT-type
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33843
sensor, which has a donor–p–acceptor (D–p–A) structure with
photoabsorption and uorescence properties originating from
the ICT excitation from the electron-donating (D) moiety to the
electron-accepting (A) moiety, allows colorimetric and ratio-
metric uorescence measurements, which are preferable
because the ratio of photoabsorption or uorescence intensities
at two wavelengths is in fact independent of the total concen-
tration of the sensor, photobleaching, uctuations in light
source intensity, sensitivity of the instrument, etc. Indeed, in
ICT-type sensors based on a D–p–A structure for detecting
cations, anions, and neutral organic species, the dipole
moment and electronic structure changed due to the intermo-
lecular interaction (electrostatic interaction) between the
electron-donating or electron-accepting moiety of the sensors
and the species, resulting in changes in photoabsorption,
uorescence (intensity and wavelength), and electrochemical
properties (oxidation and reduction potentials) and enabling
the detection (recognition) of the analytes. For this reason, we
recently focused on D–p–A-type pyridine–boron triuoride (BF3)
complexes as colorimetric and uorescent sensors for water.11

In our previous work, we have designed and actually developed
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Proposed mechanisms of colorimetric and fluorescent sensors
(a) YNI-2-BF3, (b) 9-MP-BF3, and (c) propeller-structured BODIPY-
type pyridine–boron trifluoride complex ST-3-BF3 for the detection of
water in solvents.

Fig. 2 (a) FTIR spectra of ST-3 and ST-3-BF3. (b) TG curves for ST-3
and ST-3-BF3 at a heating rate of 10 �C min�1.
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a D–(p–A)2-type pyridine–BF3 complex YNI-2-BF3 composed of
a carbazole skeleton as a donor moiety and two pyridine–BF3
units as acceptor moieties (Fig. 1a).11a It was found that the blue-
shi of the photoabsorption and the enhancement of the
uorescence intensity in the low-water-content region could be
attributed to the change in the ICT characteristics due to the
dissociation of YNI-2-BF3 into the D–(p–A)2-type pyridine dye
YNI-2 by water molecules. Furthermore, a red-shi of uores-
cence bands with a decrease in the uorescence intensity in the
high-water-content region was observed because of the forma-
tion of the hydrogen-bonded proton transfer (PTC) complex
YNI-2-H2O with water molecules. Moreover, 9-methyl pyrido
[3,4-b]indole-BF3 complex, 9-MP-BF3, was designed and devel-
oped as a colorimetric and ratiometric uorescent sensor for
the detection of water in the low-, moderate-, and high-water-
content regions in solvents (Fig. 1b).11b It was found that in
the low-water-content region, the blue-shis of photo-
absorption bands with an isosbestic point and uorescence
bands with an isoemissive point could be attributed to the
dissociation of 9-MP-BF3 into 9-methyl pyrido[3,4-b]indole (9-
MP) by water molecules. In the moderate-water-content region,
the photoabsorption and the uorescence bands of 9-MP
gradually shied to a longer wavelength region with the
increase in the uorescence intensity, which can be ascribed to
the formation of the hydrogen-bonded complex (9-MP-H2O)
with water molecules. Furthermore, in the high-water-content
region, two photoabsorption bands and one uorescence
band gradually reappeared in a longer wavelength region with
simultaneous decreases in the photoabsorption and the uo-
rescence bands of 9-MP-H2O, which was attributed to the
formation of the PTC complex (9-MP-H+) with water molecules.
Consequently, our previous works proposed that the ICT-type
pyridine–BF3 complexes can act as colorimetric and uores-
cent sensors for the detection of water in the low-, moderate-,
and high-water-content regions in solvents.

In this work, in order to gain a further insight into the
impacts of uorophore and molecular structure on the optical
sensing properties of ICT-type pyridine–BF3 complexes for the
detection of water, we designed and developed propeller-
structured 3,5,8-trithienyl-BODIPY ST-3 (ref. 15) and its pyri-
dine–BF3 complex ST-3-BF3, which have three units of 2-
(pyridin-4-yl)-3-(thiophen-2-yl)acrylonitrile as strong electron-
withdrawing moiety at the 3-, 5-, and 8-positions on the BOD-
IPY skeleton, leading to the bathochromic shi of the photo-
absorption band due to the enhancement of the ICT
characteristics (Fig. 1c). 4,4-Diuoro-4-bora-3a,4a-diaza-s-inda-
cenes (boron dipyrromethene: BODIPY) dyes have created
considerable interest as optical sensors and probes,16 photo-
sensitizers17 for photodynamic therapy (PDT), and emitters18

and dye-sensitizers19 for optoelectronic devices such as organic
light-emitting diodes (OLEDs) and dye-sensitized solar cells
(DSSCs). It is expected that the addition of a trace amount of
water to the solution of ST-3-BF3 causes the dissociation of ST-3-
BF3 into ST-3 by water molecules, resulting in the photo-
absorption and uorescence spectral changes. Herein we report
the preparation, the characterization, and the optical sensing
properties of the propeller-structured 3,5,8-trithienyl-BODIPY-
This journal is © The Royal Society of Chemistry 2020
type pyridine–BF3 complex for the detection of a trace amount
of water in acetonitrile based on FTIR, 1H and 11B NMR
measurements, high-resolution mass spectrometry (HRMS)
analysis, thermogravimetry-differential thermal analysis (TG-
DTA), photoabsorption and uorescence spectral measure-
ments of ST-3-BF3 in acetonitrile containing various concen-
trations of water, and density functional theory (DFT)
calculations.
Results and discussion
Characterization of ST-3-BF3

The propeller-structured 3,5,8-trithienyl-BODIPY-type pyridine–
BF3 complex ST-3-BF3 studied in this work was prepared by
treating ST-3 (ref. 15) with boron triuoride diethyl etherate
RSC Adv., 2020, 10, 33836–33843 | 33837
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Fig. 3 11B NMR spectrum of ST-3-BF3 in acetonitrile-d3.

Fig. 4 1H NMR spectra of (a) ST-3 in CDCl3 and (b) ST-3-BF3 in
acetonitrile-d3.

Fig. 5 (a) Photoabsorption and (b) fluorescence (lex ¼ 640 nm)
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(BF3–OEt2) and fully characterized by FTIR, 1H and 11B NMR
measurements, HRMS, and TG-DTA, although we could not
obtain the 13C NMR spectrum that is clear enough to be
assigned, due to the low solubility of ST-3-BF3 into solvent
(Fig. 2–4). In the FTIR spectra, the B–F and B–N stretching
bands originating from the BODIPY core were observed at 1082
and 1522 cm�1 for ST-3 and 1047 and 1504 cm�1 for ST-3-BF3,
respectively (Fig. 2a). In addition, for ST-3-BF3, the character-
istic C]N stretching band of the pyridyl group coordinated to
BF3, the B–N stretching band of the pyridine–BF3 complex, and
the B–F stretching band of BF3 were clearly observed at 1636,
1429, and 1024 cm�1, respectively. The TG-DTA of ST-3-BF3
indicated the decreased weight loss by 7.78% in comparison
with that of ST-3 at around 275 �C, which is in good agreement
with the calculated weight loss of 7.61% for the release of a BF3
unit from ST-3-BF3 (Fig. 2b). Moreover, the 11B NMR spectrum
of ST-3-BF3 in acetonitrile-d3 showed a singlet at �0.21 ppm,
which can be assigned to BF3 coordinated to the pyridyl group,
and a characteristic triplet with coupling constant (JB–F) of 33 Hz
at around 2–3 ppm, which indicates the presence of the BF2
group in BODIPY (Fig. 3). Based on this result, the ratio of the
peak integrals of BF3 and BF2 was 1 : 1. Obviously, the FTIR, TG-
DTA, and 11B NMR results demonstrated the presence of one
BF3 unit coordinated to the pyridyl group in ST-3-BF3, although
HRMS (ESI) of ST-3-BF3 showed the base peak corresponding to
the molecular ion for m/z of [ST-3 + 2H]2+ (calcd for
C45H27N8BF2S3, 412.07855; found 412.07918) due to the
measurement condition.
33838 | RSC Adv., 2020, 10, 33836–33843
For the 1H NMR spectrum of the propeller-structured 3,5,8-
trithienyl-BODIPY-type pyridine–BF3 complex, if it is assumed
that BF3 coordinates to a pyridyl group at the end of the 3- or 5-
position on the BODIPY core, the 1H NMR spectrum of ST-3-BF3
is expected to be more complex than that of ST-3. For example,
the 1-position protons on the pyridyl groups at the end of the 3-,
5-, and 8-positions on the BODIPY core will appear as three
different signals. On the other hand, if it is assumed that BF3
coordinates to the pyridyl group at the end of the 8-position on
the BODIPY core, the signal pattern in the 1H NMR spectrum of
ST-3-BF3 is expected to be similar to that of ST-3. In fact, the 1H
NMR spectrum of ST-3-BF3 demonstrated that the chemical
shis and signal pattern of the 1-position protons (Ha0 and Hl0)
on the pyridyl groups of ST-3-BF3 show little change from those
(Ha andHl) of ST-3, indicating the formation of the pyridine–BF3
complex coordinated to the pyridyl group at the end of the 8-
position on the BODIPY core (Fig. 4), although the comparison
of the 1H NMR spectra between ST-3 and ST-3-BF3 might be
difficult because different deuterated solvents were used for ST-
3 (in CDCl3) and ST-3-BF3 (in acetonitrile-d3).

The photoabsorption spectra of ST-3 and ST-3-BF3 in aceto-
nitrile revealed that the two dyes show a strong and broad pho-
toabsorption band in the range of 600 to 800 nm, which is
assigned to the S0 / S1 transition of the BODIPY skeleton with
the expanded p-conjugated system over the 2-(pyridin-4-yl)-3-
(thiophen-2-yl)acrylonitrile units at the 3-, 5-, and 8-positions
onto the BODIPY core (Fig. 5a). In addition, a photoabsorption
band was also observed in the range of 300 to 550 nm, which can
be assigned to the ICT band between the 2-(pyridin-4-yl)-3-
(thiophen-2-yl)acrylonitrile units at 3-, 5-, and 8-positions and
the BODIPY core.15,20 It is worth noting here that for ST-3, the
peak absorbance of the former photoabsorption band at 695 nm
is comparable with that of the latter ICT band at 415 nm, while
for ST-3-BF3, the peak absorbance of the former band at 695 nm is
lower than that of the latter band at 415 nm, which is attributed
to the enhanced ICT characteristics. Moreover, for ST-3, the peak
absorbance at 415 nm is higher than that at 450 nm, whereas for
ST-3-BF3, the peak absorbance at 415 nm is lower than that at
465 nm. The corresponding uorescence spectra of the two dyes
show a characteristic uorescence band at around 730 nm orig-
inating from the BODIPY skeleton, and the uorescence band of
ST-3-BF3 is broader than that of ST-3 (Fig. 5b). Consequently, the
characterization of the propeller-structured 3,5,8-trithienyl-
spectra of ST-3 and ST-3-BF3 in acetonitrile.

This journal is © The Royal Society of Chemistry 2020
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Fig. 6 Optimized geometries, HOMOs, and LUMOs of (a) ST-3 and (b)
ST-3-BF3 derived from DFT calculations at the B3LYP/6-31G(d,p) level.

Fig. 7 (a) Photoabsorption and (b) fluorescence spectra (lex ¼ 640
nm) of ST-3-BF3 (c ¼ 2.5 � 10�6 M) in acetonitrile containing water
(0.0046–0.98 wt%).

Fig. 8 (a) Absorbance at 415 and 695 nm, and (b) fluorescence peak
intensity at around 730 nm (lex ¼ 640 nm) of ST-3-BF3 as a function of
water content below 1.0 wt% in acetonitrile.
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BODIPY-type pyridine–BF3 complex is successfully determined by
the photoabsorption and uorescence spectral measurements as
well as FTIR, 1H and 11B NMR, HRMS, and TG-DTA. In order to
examine the electronic structures of the propeller-structured
3,5,8-trithienyl-BODIPY dyes, the molecular structures and
molecular orbitals of ST-3 and ST-3-BF3 were calculated using
DFT at the B3LYP/6-31G(d,p) level (Fig. 6). For the two dyes, the
HOMOs are mostly localized on the BODIPY core and the two
thienyl groups at the 3- and 5-positions. On the other hand, the
LUMO of ST-3 is mostly localized on the BODIPY core and the
three thienyl groups at the 3-, 5-, and 8-positions, but that of ST-3-
BF3 is mostly localized not only on the BODIPY core and the two
thienyl groups at the 3- and 5-positions but also over the 2-
(pyridin-4-yl)-3-(thiophen-2-yl)acrylonitrile unit at the 8-position.
Thus, the DFT calculations suggest that the dissociation of ST-3-
BF3 into ST-3 by water molecules results in the photoabsorption
and uorescence spectral changes based on their ICT character-
istics due to the perturbation in the LUMO over the 2-(pyridin-4-
yl)-3-(thiophen-2-yl)acrylonitrile unit of ST-3-BF3.
Optical sensing ability of ST-3-BF3 for water in acetonitrile

In order to investigate the optical sensing ability of ST-3-BF3 for
water in acetonitrile, the photoabsorption and uorescence
spectra of ST-3-BF3 were measured in acetonitrile that con-
tained various concentrations of water (Fig. 7). With the
increase in the water content in acetonitrile solution, a red-shi
of the photoabsorption band at 465 nm with a decrease in the
absorbance and simultaneous increases in the absorbance of
the two photoabsorption bands at around 415 and 695 nm were
observed, which could be ascribed to the dissociation of ST-3-
BF3 into ST-3 by water molecules (Fig. 7a). On the other hand,
the corresponding uorescence spectra of ST-3-BF3 underwent
an increase in the intensity of the uorescence band at around
730 nm (Fig. 7b). To estimate the sensitivity and accuracy
characteristics of ST-3-BF3 for the detection of water in aceto-
nitrile, the changes in the absorbance and uorescence inten-
sity were plotted against the water fraction in acetonitrile
(Fig. 8). The plots of absorbance in the water content region
This journal is © The Royal Society of Chemistry 2020
below 1.0 wt% demonstrated that the absorbance at around
415 nm increased linearly as a function of the water content, but
the absorbance at around 695 nm slightly increased as a func-
tion of the water content (Fig. 8a). Moreover, the plot of uo-
rescence intensity at around 730 nm in the water content region
below 1.0 wt% demonstrates that the uorescence peak inten-
sity increases almost linearly as a function of the water content
(Fig. 8b). The increases in the absorbance and uorescence
intensity leveled off in the water content region above 0.2 wt%.
Thus, it was found that the addition of a trace amount of water
to the acetonitrile solution of ST-3-BF3 causes the change in the
ICT characteristics due to the dissociation of ST-3-BF3 into ST-3
by water molecules, and as the result, the photoabsorption band
at around 415 nm and the uorescence band at around 730 nm
increase linearly as a function of the water content below only
0.2 wt%. Consequently, this work demonstrated that the 3,5,8-
trithienyl-BODIPY-type pyridine–BF3 complex can act as a high-
sensitive optical sensor for the detection of a trace amount of
water in acetonitrile.

Conclusions

We have designed and developed the propeller-structured 3,5,8-
trithienyl-BODIPY-type pyridine–boron triuoride complex, ST-
3-BF3, which has three units of 2-(pyridin-4-yl)-3-(thiophen-2-yl)
acrylonitrile at the 3-, 5-, and 8-positions on the BODIPY skel-
eton, as an intramolecular charge transfer (ICT)-type optical
sensor for the detection of a trace amount of water in acetoni-
trile. It was found that the addition of a trace amount of water to
RSC Adv., 2020, 10, 33836–33843 | 33839
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the acetonitrile solution of ST-3-BF3 causes the photoabsorption
and uorescence spectral changes based on the ICT character-
istics due to the dissociation of ST-3-BF3 into ST-3 by water
molecules. Indeed, the absorbance and uorescence intensity
increased linearly as a function of the water content below only
0.2 wt%. Based on the optical sensing mechanism of ST-3-BF3,
we demonstrated that the 3,5,8-trithienyl-BODIPY-type pyri-
dine–boron triuoride complex can act as a high-sensitive
optical sensor for the detection of a trace amount of water in
acetonitrile. Thus, our continuous works regarding optical
sensors for water conrm that the ICT-type pyridine–boron
triuoride complex is one of the most promising colorimetric
and uorescent sensors for the detection of water in the low-,
moderate-, and high-water-content regions in solvents. More-
over, NIR dyes such as ICT-type pyridine–boron triuoride
complex which make it possible to control the intensity of NIR
luminescence by the presence or absence of water, may be
applicable to the wavelength conversion dye-doped lms for
controlling the plant growth (photomorphogenesis).
Experimental
General

IR spectra were recorded on a SHIMADZU IRTracer-100 using
ATR method. 1H NMR and 11B NMR spectra were recorded on
a Varian-500 (500 MHz) FT NMR spectrometer. High-resolution
mass spectral data by ESI were acquired on a Thermo Fisher
Scientic LTQ Orbitrap XL. Photoabsorption spectra were
observed with a SHIMADZU UV-3150 spectrophotometer.
Fluorescence spectra were measured with a Hitachi F-4500
spectrophotometer. Super dehydrated acetonitrile was used
for all the experiments. The addition of water to acetonitrile
solutions containing ST-3-BF3 was made by weight percent
(wt%). The determination of water in acetonitrile was done with
an MKC-610 and MKA-610 Karl Fischer moisture titrator (Kyoto
Electronics manufacturing Co., Ltd.) based on Karl Fischer
coulometric titration.
Synthesis

(2Z,20Z,200Z)-3,30,300-((5,5-diuoro-5H-4l4,5l4-dipyrrolo[1,2-
c:20,10-f][1,3,2]diazaborinine-3,7,10-triyl)tris(thiophene-5,2-
diyl))tris(2-(pyridin-4-yl)acrylonitrile)-boron triuoride complex
(ST-3-BF3). To a solution of ST-3 (ref. 15) (5.0 mg, 6.1 mmol) in
acetonitrile (5.0 mL) under a nitrogen atmosphere was added
dropwise 47% BF3–OEt2 (4.6 mL, 37 mmol) diluted with aceto-
nitrile (1.0 mL) for 10 min, and then, the solution was stirred for
3 h at room temperature. Next, to toluene was added dropwise
the reaction mixture, and then, the resulting precipitate was
ltered to give ST-3-BF3 (4.0 mg, 74% yield) as a black solid; FT-
IR (ATR): ~n ¼ 1636 (C]N str. for pyridyl group coordinated to
BF3), 1504 (B–N str. for BODIPY core), 1429 (B–N str. for pyri-
dine–BF3 complex), 1047 (B–F str. for BF2 in BODIPY core), 1024
(B–F str. for BF3) cm

�1; 1H NMR (500 MHz, acetonitrile-d3): d ¼
7.30 (d, J ¼ 4.5 Hz, 2H), 7.42 (d, J ¼ 4.7 Hz, 2H), 7.78 (d, J ¼
4.0 Hz, 1H), 8.03 (d, J¼ 4.3 Hz, 2H), 8.10 (d, J¼ 3.8 Hz, 1H), 8.20
(d, J ¼ 7.0 Hz, 4H), 8.23 (d, J ¼ 7.5 Hz, 2H), 8.34 (d, J ¼ 4.3 Hz,
33840 | RSC Adv., 2020, 10, 33836–33843
2H), 8.54 (s, 2H), 8.61 (s, 1H), 8.69 (d, J¼ 7.0 Hz, 4H), 8.72 (d, J¼
7.1 Hz, 2H) ppm; 11B NMR (160 MHz, acetonitrile-d3) d ¼ �0.21
(s), 2.55 (t, JB–F ¼ 33 Hz) ppm; HRMS (ESI): m/z (%): [M + 2H]2+

calcd for C45H27N8BF2S3, 412.07855; found 412.07918.
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