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interpretation of deep learning
methods for the geographical origin identification
of Radix Glycyrrhizae using hyperspectral imaging

Tianying Yan, ab Long Duan,ab Xiaopan Chen,a Pan Gao *ab and Wei Xu*cd

Radix Glycyrrhizae is used as a functional food and traditional medicine. The geographical origin of Radix

Glycyrrhizae is a determinant factor influencing the chemical and physical properties as well as its

medicinal and health effects. The visible/near-infrared (Vis/NIR) (376–1044 nm) and near-infrared (NIR)

hyperspectral imaging (915–1699 nm) were used to identify the geographical origin of Radix

Glycyrrhizae. Convolutional neural network (CNN) and recurrent neural network (RNN) models in deep

learning methods were built using extracted spectra, with logistic regression (LR) and support vector

machine (SVM) models as comparisons. For both spectral ranges, the deep learning methods, LR and

SVM all exhibited good results. The classification accuracy was over 90% for the calibration, validation,

and prediction sets by the LR, CNN, and RNN models. Slight differences in classification performances

existed between the two spectral ranges. Further, interpretation of the CNN model was conducted to

identify the important wavelengths, and the wavelengths with high contribution rates that affected the

discriminant analysis were consistent with the spectral differences. Thus, the overall results illustrate that

hyperspectral imaging with deep learning methods can be used to identify the geographical origin of

Radix Glycyrrhizae, which provides a new basis for related research.
1. Introduction

Glycyrrhiza is a perennial herb with a thick rhizome, and its
medicinal parts are the root and rhizome.1,2 As a therapeutic
part of Glycyrrhiza, Radix Glycyrrhizae is a type of traditional
Chinese functional food and the most common clinical medi-
cine. Radix Glycyrrhizae is widely welcomed in China, Japan,
and Korea because it can clear the heat and detoxify, moisten
the lungs, relieve cough, and replenish the spleen and shortness
of breath.3–5 Radix Glycyrrhizae contains complex chemical
compositions, including glycyrrhizin, glycyrrhetinic acid, liquir-
itigenin, isoliquiritigenin, and neoliquiritigenin.6,7

Glycyrrhiza grows mostly in the arid and semi-arid desert
steppe, desert edge, and loess hilly area, such as Gansu Prov-
ince, China; Inner Mongolia Autonomous Region, China;
Ningxia Hui Autonomous Region, China; and Xinjiang Uygur
Autonomous Region, China. The content of the chemical
components of Radix Glycyrrhizae affects its quality;8 different
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natural conditions in different geographical origins such as
soil, water quality, climate, sunshine, and rainfall lead to vari-
ations in its quality. For example, the glycyrrhizic acid content of
Radix Glycyrrhizae in Shihezi City (Xinjiang Uygur Autonomous
Region, China) is 0.2%, while that in Tongliao City (Inner
Mongolia Autonomous Region, China) is 5.82%. The difference
in glycyrrhizic acid in Radix Glycyrrhizae between these two
geographical origins is nearly 30 times.4,5 At present, the global
demand for Radix Glycyrrhizae is gradually increasing. Although
the planting area of Radix Glycyrrhizae is extensive, its
geographical origins on the market are complex, and the quality
of medicinal materials is varied. Therefore, the identication of
Radix Glycyrrhizae from different geographical origins is
essential for its quality evaluation.

Traditional methods for identifying the geographical origins
of Radix Glycyrrhizae include the experience-based and chem-
ical analysis-based methods. Experience-based methods are
based on the experience of planters and consumers. For
example, experienced experts can distinguish the origin of
Radix Glycyrrhizae by its shape, color, and taste. These
experience-based methods require greater experience by
experts, and their accuracy cannot be controlled. The chemical
analysis methods, such as high-performance liquid chroma-
tography (HPLC),9,10 thin layer chromatography (TLC),11 and
other methods are practical tools to identify the geographical
origin of Radix Glycyrrhizae. Although these methods can
successfully identify the geographical origins of Glycyrrhiza
This journal is © The Royal Society of Chemistry 2020
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Glycyrrhizae, they are limited to destructive sampling, complex
processing, and high technical requirements, which lead to
a low identication efficiency. These methods are unable to
achieve large-scale identication and detection.

Computer vision has attracted wide attention in non-
destructive testing. As a non-chemical and non-destructive
technique, computer vision has advantages in identifying
samples with signicant differences in external characteristics.
However, although computer vision offers suitable recognition
of changes in morphology and texture, it is unable to give
information regarding internal composition. In contrast, near-
infrared (NIR) spectroscopy has unique advantages in obtain-
ing spectral information related to internal components. It has
been widely used in the detection of different varieties and
origins of agricultural products.12,13 However, spectroscopy can
only obtain spectral information from a certain point in
samples. Accordingly, hyperspectral imaging (HSI) combines
the advantages of computer vision and spectroscopy tech-
niques. It has become an effective analytical technique, and the
spatial and spectral information of the detected object can be
obtained simultaneously by HSI. Therefore, HSI can get both
external characteristic information and internal molecular
information of samples, providing the possibility for the
comprehensive analysis of samples. In recent years, the quality
assessment and variety classication of HSI in the elds of
agriculture14–16 and food17–22 have attracted increasing attention.
It is possible to rapidly and accurately identify the geographical
origins of Radix Glycyrrhizae through HSI.

Effective analysis of massive data acquired by hyperspectral
imaging is a great challenge, thus hindering its application.
Therefore, it is essential to select appropriate and efficient data
analysis and processing methods to make full use of HSI. At
present, machine learning is considered to be the best choice
for complex data processing and analysis. As a new research
direction of machine learning, deep learning has a better effect
on image and spectral processing.23,24 Deep learning has strong
self-learning, feature extraction, and large-scale data processing
capabilities. It realizes fast and efficient data analysis by con-
structing a network composed of a large number of neurons.
Due to its unique self-learning ability and excellent perfor-
mance, deep learning has been widely welcomed by researchers
and applied for the processing of spectroscopy.25–28 However,
deep learning is also controversial. It has been used as a black
box. Its performance is outstanding, and its interpretability is
very important. One possible way is to sequentially calculate
and visualize the feature maps of the network layer, but the
deep feature maps are difficult to understand.29 Another way is
to use the gradient backpropagation in the deep learning
process, and nally get the gradient value of the same size as the
input data. According to the gradient value, the regions of
interest in the deep learning process can be explained well.30,31

Therefore, when deep learning methods are used, interpretable
visualization methods should also be used.

To the best of our knowledge, no studies have been reported
on the application of HSI in the identication of the
geographical origins of Radix Glycyrrhizae. Therefore, this study
aimed to propose a method to quickly and accurately identify
This journal is © The Royal Society of Chemistry 2020
the geographical origins of Radix Glycyrrhizae by collecting
hyperspectral images and using deep learning for its classi-
cation and discovering important wavelengths. The specic
objectives achieved herein are as follows:

(1) Visible/near-infrared (Vis/NIR) and NIR hyperspectral
imaging systems were explored for the feasibility of identifying
the geographical origins of Radix Glycyrrhizae.

(2) The effectiveness of statistically-based machine learning
methods and deep learning methods in distinguishing the
geographical origins of Radix Glycyrrhizae was compared.

(3) To discover the important wavelengths of Vis/NIR spectra
and NIR spectra contributing more to the classication, the
feasibility of applying interpretable visualization methods to
convolutional neural network (CNN) models was discussed.
2. Materials and methods
2.1 Sample preparation

Radix Glycyrrhizae samples were obtained from four different
geographical origins, including Gansu Province (Gansu), China
(92�130–108�460 E, 32�310–42�570 N); Inner Mongolia Autono-
mous Region (Inner Mongolia), China (97�120–126�040 E,
37�240–53�230 N); Ningxia Hui Autonomous Region (Ningxia),
China (104�170–109�390 E, 35�140–39�140 N); and Xinjiang Uygur
Autonomous Region (Xinjiang), China (73�400–96�180 E, 34�250–
48�100 N). The samples from each geographical origin were air-
dried for sale and trade and collected in May 2020 for the
experiment. The samples were cleaned, prepared, and dried
with no signicant differences in their shape and appearance.

A total of 2600 samples were collected, and the number of
Radix Glycyrrhizae samples from each geographical origin was
the same. To establish the classication models, the samples
were randomly divided into the calibration, validation, and
prediction sets. The ratio of the number of samples in the
calibration, validation, and prediction sets was 3 : 1 : 1. In each
set, the number of samples of Radix Glycyrrhizae from the four
geographical origins was almost equal, with slight differences
due to the codes in Python.
2.2 Hyperspectral image acquisition and correction

In this study, two hyperspectral imaging systems (Vis/NIR and
NIR hyperspectral imaging systems) were used to photograph
cross-sections of the Radix Glycyrrhizae samples from four
geographical origins. Both the Vis/NIR and NIR hyperspectral
imaging systems were composed of four modules, including an
imaging module, illumination module, li module, and so-
ware module. The imaging module consisted of the Surface
Optics Corporation (SOC) 710 series cameras (Surface Optics
Corporation, San Diego, California, USA). The cameras had
internal scanning mechanisms so that they could scan in any
direction or directly vertically downward without the need for
an additional scanning table. The Vis/NIR hyperspectral
imaging system (SOC 710VP) had a spectral wavelength range of
376–1044 nm, spectral resolution of 5 nm, and number of
wavebands of 128. The NIR hyperspectral imaging system (SOC
710SWIR) had a spectral wavelength range of 915–1699 nm,
RSC Adv., 2020, 10, 41936–41945 | 41937
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spectral resolution of 2.7 nm, and number of wavebands of 288.
Halogen lamps were used as the lighting module, the power of
a single halogen lamp was 50 W, and a total of 4 halogen lamps
was employed. The liing platform module placed the shooting
object, and the imaging module could fully capture the
shooting object by liing. The soware module was used to
control HSI acquisition.

The size of the image collected by the Vis/NIR hyperspectral
imaging system was 128 wavebands � 520 pixels � 696 pixels,
and the size of the image collected by the NIR hyperspectral
imaging system was 288 wavebands � 512 pixels � 640 pixels.
The data storage method of HSI was waveband number � pixel
width � pixel length. During the shooting process, the sample
was fully captured by the imaging module by controlling the
liing platform. The distance between the imaging module of
the hyperspectral imaging systems and the samples was 89 cm.
The exposure time of SOC 710VP was 25 ms, and the exposure
time of SOC 710SWIR was 34 ms. The internal scanning speed
of the SOC series cameras automatically matched their exposure
time. In this study, the gray (combined with 50% black and 50%
white) board provided by SOC was photographed and the gray
reference image was obtained. 50 samples of Radix Glycyrrhizae
from the same geographical origin were placed on a blackboard
and then photographed. Aer HSI acquisition, the original
hyperspectral images were corrected to reectance images
according to eqn (1).

Ic ¼ Ir

2Ig
(1)

where Ic is the reectance image, Ir is the original image, and Ig
is the gray (combined with 50% black and 50% white) reference
image.
Fig. 1 Spectra extraction process of visible/near-infrared (Vis/NIR)
hyperspectral image, where the hyperspectral images were divided
into sub-images with a single Radix Glycyrrhizae in each sub-image.
The process for the near-infrared (NIR) hyperspectral image is similar.
2.3 Spectral data extraction

Considering the obvious electrical signal noise during the
photographing process, the image was preprocessed by the
Savitzky–Golay (SG) smoothing lter (the kernel size was 5 � 5
� 5, the polynomial order was 3, and the lter calculated the
ltered value at the central node of the kernel) to reduce
random noise. The image of one wavelength in HSI was used as
a mask, and the coordinates of a single Radix Glycyrrhizae were
identied based on the mask. The sub-HSIs containing only
a single Radix Glycyrrhizae were extracted one by one according
to the coordinates. In the sub-HSIs containing only a single
Radix Glycyrrhizae, the Radix Glycyrrhizae region was regarded
as the region of interest (ROI), and the average spectrum of the
ROI was calculated. The wavelength image at 856 nm of the
reectance image acquired by the Vis/NIR imaging system and
the image at 1109 nm wavelength of the reectance image
acquired by the NIR imaging system were used as the mask. The
coordinates of the mask containing a single Radix Glycyrrhizae
were calculated. According to the coordinates, the sub-HSIs
containing a single Radix Glycyrrhizae were extracted from the
hyperspectral image. The Radix Glycyrrhizae in the sub-HSIs was
regarded as the ROI, and its average spectrumwas extracted and
calculated. The spectra of the area outside ROI were not
41938 | RSC Adv., 2020, 10, 41936–41945
extracted and calculated. The spectra extraction process is
shown in Fig. 1.
2.4 Data analysis methods

2.4.1 Principal component analysis. Principal component
analysis (PCA) is a linear transformation of the original vari-
ables. PCA nds orthogonal variables called principal compo-
nents (PCs) to explain data variance.32–34 Generally, the rst few
PCs explaining most of the total variance are usually used to
visualize the distribution of samples. Herein, an overview of the
overall data was obtained through PCA. PCs were displayed in
the newly dened space and they were grouped into clusters
according to the variance of their corresponding spectra.

2.4.2 Logistic regression. Logistic regression (LR) is
a generalized linear regression analysis model. The LR model
converts the continuous values of linear regression into discrete
values. The discrete values are usually dened as an integer
starting from 0 and increase by 1 continuously. In the eld of
machine learning and statistics, the LR model is one of the
simplest models for classication.35,36 Although the LR model is
simple in form and easy to model, it can obtain good perfor-
mances. For the LR model, penalty, regularization parameter C,
and solver are tuned to optimize the model. In this study, the
optimization range of the solver and C was in (‘newton-cg’,
‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’) and (10�5 to 105). The penalty
was set to L2.

2.4.3 Support vector machine. Support vector machine
(SVM) is widely used in academia and industry. It can be used
for quantitative and qualitative analysis.37,38 It uses the
maximum classication interval to design the optimal classi-
cation hyperplane, and uses the optimal classication hyper-
plane to separate samples of different categories. The reason for
choosing the maximum classication interval instead of the
minimum classication interval is that the maximum classi-
cation interval can obtain the maximum stability performance
and the condence of discrimination, and thus the general-
ization ability is stronger. Kernel functions are extremely
important for SVM. Common kernels are ‘linear’, ‘poly’, ‘rbf’,
This journal is © The Royal Society of Chemistry 2020
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Fig. 2 Proposed convolutional neural network (CNN) architecture for
geographical origin identification of Radix Glycyrrhizae. Conv1D
denotes one-dimensional convolution layer, ReLU (rectified linear
unit) is the activation function, dense denotes the fully connected
neural network layer, and dropout represents the function of random
inactivation. The first parameter of Conv1D, which is defined as
‘channels’, is the number of kernels or filters. The parameter of dense,
which is defined as ‘units’, is the number of neurons. The parameter of
dropout, which is defined as ‘probability’, is the probability that the
neuron does not participate in the calculation.
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and ‘sigmoid’. The SVM using the ‘linear’ kernel function is
essentially a linear classier, which is similar to LR. In this
study, to compare with LR, the kernel optimization range was in
(‘poly’, ‘rbf’, ‘sigmoid’). When using SVMs with kernel functions
of ‘poly’, ‘rbf’, and ‘sigmoid’, C and gamma were important
parameters in these SVMs. Other parameters can only be used
for specic SVM. For example, the degree parameter can only be
used for ‘poly’ SVM. The range of the regularization parameter C
and the kernel coefficient gamma was calculated to optimize
the value. The search range of C and gamma was assigned from
10�5 to 105. The penalty was set to L2, as in the LR model.

2.4.4 Convolutional neural network. Because of its two
characteristics of sparse connectivity and weight sharing, the
convolutional neural network (CNN) has less calculation than
multilayer perceptron (MLP), and its performance is equivalent
or even better.39 It is used by some scholars in the eld of spec-
troscopy.40,41 In the eld of spectroscopy, the one-dimensional (1D)
CNN model is used to learn and predict spectra, and has achieved
good performances. 1D CNN is a non-linearmodel; however, given
a spectrum (SPEC) of category c, it can be expanded by calculating
the rst-order Taylor approximation to approximate the score
value Sc (SPEC) with a linear function. The 1D CNN model calcu-
lates the scoring process as eqn (2).

Sc(SPEC) z wT
c SPEC + b (2)

where the predicted label c is the index of the maximum value
in Sc(SPEC), and the index is a natural number starting from
0 with the interval of 1. wc and bc are the weight vector and bias
of the model, respectively.

In this study, layer (channel) normalization was used for the
1D CNN model. Normalization could speed up model conver-
gence. For the spectra, the size of the feature map output during
the training process was N � C � W, where N represents the
number of spectra participating in the training, C represents the
number of channels, and W represents the number of wavebands
of the spectra. Under the initial conditions, the spectra could be
regarded as a feature map, and the number of channels was 1.

The CNN architecture is shown in Fig. 2. It consists of four
main parts. The rst part includes four 1D convolutional layers
(Conv1D, green box), and each layer is followed by a ReLU
(rectied linear unit) activation layer (light blue box) and
a normalization (channel) layer (light brown box). The second
part is the atten layer. The third part includes a fully connected
network consisting of three dense layers (dark red boxes) and
three dropout layers (light red boxes). The last part consists of
a dense layer and a somax layer (dark blue box). The numbers
of kernels in the convolutional layers were 256, 128, 64, and 32
respectively, the kernel size was 3, the stride was 1, and the
dilate was 1 without padding. In the dense layer, the number of
neurons was dened as 128, 64, 32, and 4 in sequence. The
dropout layer was set to a probability of 0.2.

The training process of CNN was implemented using the
stochastic gradient descent (SGD) algorithm to minimize
the somax cross-entropy loss, and the learning rate was
set to 0.01. The Xavier method was used to initialize the
This journal is © The Royal Society of Chemistry 2020
parameters. The batch size was set to 100, and the epoch size
was dened as 300.

2.4.5 Recurrent neural network. Recurrent neural network
(RNN) is oen used to process sequence data, such as the
sequence of text and sound. It introduces state variables to store
past information, and uses state variables with the current
input to determine the current output.42,43 Gradient decay or
gradient explosion is more likely to occur in RNN. To cope with
the gradient explosion, the model will clip the gradient, where
all the elements of the model parameter gradient are spliced
into vector g, and the clipping threshold is set to q. The clipping
gradient calculation method is shown as eqn (3).

g ¼ min

�
q

kgk ; 1

�
g (3)

where kgk represents the L2 norm of g.
In this study, the instance (width) normalization was used

for the RNN model. For the spectral data, the size of the feature
map output during the training process was similar to that of
CNN. The RNN model was employed to explore the correlation
between wavelengths and see if it could improve the classi-
cation results.

The RNN architecture is shown in Fig. 3. It consists of three
main parts. The rst part consists of three RNN_layers (green
box), and each layer is followed by an ReLU activation layer
(light blue box) and an instance (width) normalization layer
(light brown box). The second part is a fully connected network
consisting of a dense layer (dark red box). The last part consists
of the somax layer (dark blue box). The number of the
RNN_layer was 1, and the numbers of features in the hidden
state were 256, 128, 64, and 32, respectively. In the dense layer,
the number of neurons was dened as 4. The training process of
RNN adopted the same strategy as CNN.

2.4.6 Visualization method for discovering important
wavelengths. The saliency map is a type of CNN visualization
method, which can reect the inuence of each data element on
the classication result.26 In this study, the saliency map was
RSC Adv., 2020, 10, 41936–41945 | 41939
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Fig. 3 Proposed recurrent neural network (RNN) architecture for
geographical origin identification of Radix Glycyrrhizae. RNN_Layer
denotes the recurrent neural network layer, ReLU (rectified linear unit)
is the activation function, and dense denotes the fully connected
neural network layer. The first parameter of RNN_Layer, which is
defined as ‘num_hidden’, is the number of hidden kernels or filters. The
parameter of dense, which is defined as ‘units’, is the number of
neurons.

Fig. 4 (a) Vis/NIR average spectra (376–1044 nm) and standard
deviation for each wavelength of Radix Glycyrrhizae fromGansu, Inner
Mongolia, Ningxia, and Xinjiang. (b) NIR average spectra (915–1699
nm) and standard deviation for each wavelength of Radix Glycyrrhizae
from Gansu, Inner Mongolia, Ningxia, and Xinjiang. After the HSI
containing only a single Radix Glycyrrhizae was extracted, the corre-
sponding average spectrum was calculated.
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used to describe the weight of a specic class of 1D CNN in
a given spectrum. The weight reects the importance of each
wavelength in the spectrum.

Given a spectrum SPEC0 of category c in the prediction set,
aer being classied by the 1D CNN model, the score value Sc
would be obtained. If the predicted category was consistent with
the true category, the effective weights of all wavebands could be
calculated. The calculation process was carried out according to
eqn (4).

w ¼ abs

�
vSc

vSPEC

����SPEC0

�
(4)

where w is the absolute value of the derivative of score Sc con-
cerning spectrum SPEC0, and the weight is valid only when the
predicted category is consistent with the true category.

In this study, each wavelength in the spectra sorted from small
to large was sequentially numbered with a natural number starting
from 1, and the number was the number of wavebands.

The index B* of the wavebands with the maximum weight
value was counted in all the correctly classied samples, as
shown in eqn (5).

B* ¼ argmax
B˛ð1;2;.jÞ

NðSPECi ; BÞ for all SPECi ˛SPEC (5)

Among them, eqn (5) counts the index of the maximum value
in all j wavebands of each sample, where SPECi is the i-th
sample correctly classied in the prediction set of SPEC, and
N(SPECi,B) is the waveband weight of the i-th sample correctly
classied in the prediction set.

In this study, the spectral ranges were discrete, depending
on the spectral resolution of the cameras. In the effective
spectral ranges of the cameras (the spectra at the head and tail
of the noise were removed), the waveband index value at the
beginning of the effective spectra was numbered 1. The effective
spectral wavelength increased in sequence according to the
spectral resolution of the cameras, and the corresponding
waveband index number increased in sequence by 1. The index
value of the waveband with the maximum weight value of each
correctly classied sample was recorded as B*, and the
frequency of each index value in B* was counted. The frequency
41940 | RSC Adv., 2020, 10, 41936–41945
of the waveband index values reected the importance of the
waveband, and the important wavelengths corresponding to the
index values of the waveband were discovered.

2.5 Soware and model evaluation

In this study, the Python scripting language (version 3.7.6, 64
bit) was used for the numerical calculations. LR and SVM were
implemented on the machine learning library soware scikit-
learn (version 0.23.1), which was used to divide the data set,
and the random state was set to 1. The 1D CNN and RNN
models were built on the deep learning MXNet (version 1.5.0)
framework (Amazon, Seattle, Washington State, USA). All
machine learning algorithms used the calibration set for
learning and the validation set accuracy for optimizing the
algorithm parameters. The corresponding optimal models were
saved and evaluated to classify the prediction set. The classi-
cation accuracy was used to evaluate the model performances,
which was calculated as the ratio of the number of correctly
classied samples to the total number of samples.

3. Results and discussion
3.1 Spectral proles

Fig. 4(a) shows the Vis/NIR average spectra (376–1044 nm) and
standard deviation for each wavelength of Radix Glycyrrhizae
from Gansu, Inner Mongolia, Ningxia, and Xinjiang. Fig. 4(b)
This journal is © The Royal Society of Chemistry 2020
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Fig. 5 3D PCA score plot of three varieties based on the first three
principal components (PCs). (a) Total variance of the data explained by
the first three PCs is 99.1% (PC1, PC2 and PC3 are 90.5%, 6.7% and
1.9%, respectively). (b) Total variance of the data explained by the first
three PCs is 98.6% (PC1, PC2 and PC3 are 85.3%, 11.5% and 1.8%,
respectively).
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shows the corresponding NIR average spectra (915–1699 nm)
and the standard deviation. In the Vis/NIR and NIR average
spectra of Radix Glycyrrhizae of each category, the spectral
curves were similar, and there were differences in the entire
wavelengths. The standard deviations of the spectral values at
each wavelength did not overlap signicantly. The classication
model could be further employed to identify samples from
different geographical origins according to the differences
existing in their spectra.

The hyperspectral images collected by the two hyperspectral
imaging systems had obvious noise at the beginning of the
wavelengths, and there was a small amount of noise at the end
of the spectra. In this study, the Vis/NIR spectra in the spectral
range of 421–1044 nm and the NIR spectra in the spectral range
of 951–1680 nm were used to build the models to identify the
geographical origins of Radix Glycyrrhizae.

According to Fig. 4(a) and (b), it can be seen that the spectra
of the Radix Glycyrrhizae samples from different geographical
origins are gathered together and separated in large spectral
ranges. PCA was used to explore the differences in the Radix
Glycyrrhizae from the different geographical origins. In the 3D
PCA score plot of the Vis/NIR average spectra, the rst three PCs
explained 90.5%, 6.7% and 1.9% of the total variance of the data
set, respectively. In the 3D PCA score plot of the NIR average
spectra, the rst three PCs explained 85.3%, 11.5% and 1.8% of
the total variance of the data set, respectively. The results
showed that most of the spectral information related to the
samples was involved. The 3D PCA score plots (X-axis: PC1, Y-
axis: PC2, and Z-axis: PC3) are shown in Fig. 5(a) and (b). Radix
Glycyrrhizae of each geographical origin is displayed in
a different color to achieve better visualization. In the 3D PCA
score plots of the Vis/NIR average spectra and NIR average
spectra, it can be observed that the samples of each geograph-
ical origin are grouped, but there is overlap between the
samples of different geographical origins, and several samples
are far away from the cluster center. In general, PCA can provide
an overview of the sample distribution, but it cannot provide
clear enough discrimination. Therefore, other classication
methods should be considered.

To further investigate the differences in the spectra, analysis
of variance (ANOVA) was used to explore the differences among
the Radix Glycyrrhizae from different geographical origins.
Fig. 6(a) shows the F-critical value and p-value of each wave-
length of Vis/NIR. Fig. 6(b) shows the F-critical value and p-value
of each wavelength of NIR.

For both the Vis/NIR and NIR spectra, the p-value of all the
wavelengths was less than 0.05. This shows that the spectral
values of all wavelengths of Radix Glycyrrhizae from different
geographical origins were signicantly different. The minimum
F-critical value and the maximum F-critical value did not exceed
one order of magnitude, and each wavelength had the potential
to be used to distinguish the geographical origins of Radix
Glycyrrhizae. The F-critical value from the Vis/NIR spectral range
of 440–540 nm, and the F-critical value from the NIR spectral
range of 950–1040 nm were signicantly higher than that in the
other spectral regions.
This journal is © The Royal Society of Chemistry 2020
3.2 Classication models using full spectra

The deep learning methods CNN and RNN were used to build
classication models, and the LR and SVM models were used
for comparison. To build the LR, SVM, CNN, and RNN models,
the spectra without noise wavelengths were used. To build the
classication models, the category values of the samples from
Gansu, Inner Mongolia, Ningxia, and Xinjiang were marked as
0, 1, 2, and 3, respectively.

For the two different spectral ranges, the classication
results of the four different models are shown in Table 1. All the
discriminant models were optimized by the Bayesian optimi-
zation algorithm. The number of iterations of the optimization
algorithm was 200.

For the Vis/NIR spectra, all the models had good perfor-
mances, with the classication accuracy of the calibration,
validation and prediction sets all exceeding 85%. The LR, CNN,
and RNN models showed close results, and the SVM model
showed relatively lower results. For the LR model, the L2 para-
digm was used as the loss function, and the model parameters
RSC Adv., 2020, 10, 41936–41945 | 41941
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Fig. 6 (a) F-Critical (F-crit) value and p-value distribution of each
wavelength of Vis/NIR. (b) F-crit value and p-value distribution of each
wavelength of NIR. The ordinate on the left represents the p-value axis,
and that on the right represents the F-crit value axis.
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(C, solver) were set to (1.957, ‘liblinear’), and its classication
accuracy in the calibration, validation, and prediction sets
exceeded 90%. For the SVM model, the nal model parameters
(kernel, gamma, C) were optimized to (‘poly’, 17.313, 1.864). The
classication accuracy of the calibration set was 100.00%, while
the classication accuracy of the validation set and prediction
set was found to be lower. For the CNNmodel, the classication
accuracy of the calibration, validation, and prediction sets was
all over 94%. For the RNN model, the classication accuracy of
the calibration, validation, and prediction sets was all over 91%.

For the NIR spectra, the classication accuracy of the cali-
bration, validation, and prediction sets in all models exceeded
87%. The LR, CNN and RNN models showed close results, and
the SVM model showed relatively lower results. For the LR
model, the model parameters (C, solver) were set to (1.856,
‘liblinear’), and its classication accuracy in the calibration,
validation, and prediction sets exceeded 98%. For the SVM
model, the model parameters (kernel, gamma, C) were opti-
mized to (‘poly’, 0.052, 1.700), and the classication accuracy in
each data set exceeded 93%. For the CNN and RNN models, the
classication accuracy of the calibration, validation, and
prediction sets was all over 97%. Thus, the combination of Vis/
NIR and NIR hyperspectral imaging and deep learning methods
can be used to identify the geographical origins of Radix
Glycyrrhizae.

As shown in Table 1, the classication results of each model
showed close results in the two spectral ranges, and the results
were all acceptable. Thus, the results illustrate the feasibility of
41942 | RSC Adv., 2020, 10, 41936–41945
using the hyperspectral imaging in the two spectral ranges for
the geographical origin identication of Radix Glycyrrhizae. The
classication performances of the deep learning methods (CNN
and RNN) were equivalent to or better than the LR and SVMs,
indicating the effectiveness of deep learning methods for the
geographical origin identication of Radix Glycyrrhizae. The
overall results indicated that the combination of Vis/NIR and
NIR hyperspectral imaging and deep learning methods can be
used to identify the geographical origins of Radix Glycyrrhizae.
3.3 Visualization for discovering important wavelengths

For the classication of the geographical origins of Radix Gly-
cyrrhizae, it is important to know which wavelengths contribute
more to the classication results. In this study, aer the LR
model learned the calibration set, it had a xed weight w and
deviation b, and the model parameters reected the overall
evaluation of the modeling set. It was difficult to nd the
important wavelengths that contribute more to distinguish
different types of spectra. Even if the gradient was solved
backward for the classication results, the gradients of all the
spectra were constant. SVM looked for a classication hyper-
plane to separate different types of data, and the basis of the
separation was the support vectors. The support vectors were
the typical spectra of each category in the calibration set.
Regardless of the weight w and gradient, it was difficult to nd
the important wavelengths of the spectra. The gradient clipping
algorithm was used in RNN. It was difficult to nd the impor-
tant wavelengths of the spectra based on the weight and
gradient. The weight sharing of CNN did not affect the gradient
calculation. Also, the saliency map was a reliable way to inter-
pret the model. It could be used to nd the important wave-
lengths of the CNN model.

For the Vis/NIR spectra and NIR spectra, the gradient was
calculated according to eqn (4), and the important wavelengths
were found according to eqn (5). The frequency of the wave-
length with the largest gradient of all samples in the prediction
set correctly predicted by the CNN model was calculated. The
frequency reected the inuence of wavelength on the identi-
cation results in the modeling process. High-frequency wave-
lengths were more likely to affect the identication results.
Thus, these wavelengths were considered important. The
important wavelengths of the Vis/NIR and NIR spectra of each
geographical origin could be observed intuitively, as shown in
Fig. 7. The ordinates in Fig. 7(a) and (b) represent the frequency
of the wavelength with the largest gradient of all the correctly
classied samples in the prediction set by the CNN model.

As seen in Fig. 7(a), the important wavelengths for dis-
tinguishing Radix Glycyrrhizae from different geographical
origins are mainly concentrated in the range of 440–540 nm and
950–1040 nm. The wavelengths between 540 and 950 nm had
little effect on the classication results. It can be seen from
Fig. 7(b) that the wavelengths that have the greatest impact on
the classication results are mainly concentrated in the range of
951–1000 nm, 1430–1560 nm, 1320–1380 nm, and around 1100
and 1275 nm. The remaining wavelengths had roughly the same
and lower inuence on the classication result. These results
This journal is © The Royal Society of Chemistry 2020
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Table 1 The classification the accuracy of the logistic regression (LR), support vector machine (SVM), convolutional neural network (CNN), and
recurrent neural network (RNN) models

Module Method Category value

Calibration Validation Prediction

0 1 2 3
Accuracy
(%) 0 1 2 3

Accuracy
(%) 0 1 2 3

Accuracy
(%)

VPa LR 0b 387 1 2 1 127 1 129 1
1 1 314 8 60 115 3 19 1 113 1 15
2 1 4 381 2 3 129 129 1
3 47 3 348 1 10 3 108 7 4 119
Total 91.67 92.12 94.23

SVM 0 391 124 4 1 126 1 2 1
1 383 2 109 3 23 1 106 2 21
2 388 1 11 112 8 7 3 119 1
3 398 0 19 5 98 4 20 3 103
Total 100.00 85.19 87.31

CNN 0 391 128 1 130
1 383 119 3 15 112 18
2 388 132 1 128 1
3 398 7 1 114 7 123
Total 100.00 94.81 94.81

RNN 0 391 124 2 2 1 128 1 1
1 383 118 2 17 119 1 10
2 388 3 129 1 129
3 25 373 16 106 28 3 99
Total 98.40 91.73 91.35

SWIR LR 0 386 5 123 1 5 128 1 1
1 383 137 127 3
2 1 387 132 130
3 5 1 392 3 119 1 1 128
Total 99.23 98.27 98.65

SVM 0 390 1 117 1 3 8 127 1 1 1
1 382 1 2 130 5 1 121 8
2 6 2 380 1 131 1 129
3 12 1 385 14 2 106 7 5 118
Total 98.53 93.08 95.19

CNN 0 391 128 1 129 1
1 383 137 3 123 4
2 388 1 131 130
3 398 1 121 7 123
Total 100.00 99.42 97.12

RNN 0 391 124 2 3 130
1 381 2 1 135 1 3 124 3
2 388 132 130
3 398 5 117 130
Total 99.87 97.69 98.85

a VP means the spectra were extracted and calculated from the hyperspectral image collected by the SOC 710VP imaging module. SWIR means the
spectra were extracted and calculated from the hyperspectral image collected by the SOC 710SWIR imaging module. b 0, 1, 2, and 3 are the assigned
category values of the samples from Gansu, Inner Mongolia, Ningxia, and Xinjiang, respectively.
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were matched with the results of ANOVA (Fig. 6). In the range of
the Vis spectra, 440–540 nm, involving the blue, cyan, and green
Vis spectral range, had a greater impact on the classication
results. This may be related to the subtle color differences of
Radix Glycyrrhizae from different geographical origins. In the
range of the NIR spectra, the wavelengths between 950 nm and
1040 nm represent the second overtone of the O–H stretching
vibrations.44 The wavelengths of 1100 nm and 1275 nm can be
assigned to the second overtone associated with the C–H
stretching vibrations.45,46 The wavelengths in the range of 1320–
1380 nm can be attributed to the third overtone and the
This journal is © The Royal Society of Chemistry 2020
combination of C–H stretching vibrations.47 The wavelengths in
the range of 1430–1560 nm are due to the rst overtone of the
O–H stretching vibrations. These may be related to the
compounds contained in Radix Glycyrrhizae, such as glycyr-
rhizin, glycyrrhetinic acid and liquiritigenin.

To evaluate the effectiveness of the identied important
wavelengths, they were used to build the CNN model. For the
spectra in the selected Vis/NIR wavelengths, the classication
accuracy of the calibration, validation, and prediction sets was
94.04%, 90.38%, and 90.77%, respectively. For the spectra in
the selected NIR wavelengths, the classication accuracy of the
RSC Adv., 2020, 10, 41936–41945 | 41943
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Fig. 7 Frequency of the wavelength with the largest gradient of all the
correctly classified samples in the prediction set by the CNNmodel. (a)
Frequency map of the prediction set of the visible/near-infrared (Vis/
NIR) spectra and (b) frequency map of the prediction set of the near-
infrared (NIR) spectra.
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calibration, validation, and prediction sets was 99.94%, 96.15%,
and 96.15%, respectively. Among them, the number of wave-
bands of the Vis/NIR spectra was reduced to about 32% of the
total wavebands, and the classication accuracy of the valida-
tion and prediction sets was roughly reduced by 4.43% and
4.04%, respectively. The number of wavebands of the NIR
spectra was reduced to about 35% of the total wavebands, and
the classication accuracy of validation and prediction sets was
reduced by about 3.27% and 0.97%, respectively. This shows
that the visualization method applied to CNN can discover
important wavelengths and provide new directions for feature
selection.
4. Conclusions

In this study, a Vis/NIR hyperspectral imaging system (376–1044
nm) and NIR hyperspectral imaging system (915–1699 nm) were
successfully used to identify the geographical origins of Radix
Glycyrrhizae from Gansu, Inner Mongolia, Ningxia, and Xin-
jiang. The LR, SVM, CNN, and RNN models were established
using the Vis/NIR and NIR spectra. For the models using the
Vis/NIR spectra, the classication accuracy of the worst-
performing classier in different datasets exceeded 85%. The
CNN model performed best, with the classication accuracy of
over 94%, followed by the LR and RNN models. For the models
using NIR spectra, the LR, CNN, and RNN models obtained
a classication accuracy of over 93% in the calibration, valida-
tion, and prediction sets. The LR, CNN, and RNN models had
41944 | RSC Adv., 2020, 10, 41936–41945
similar abilities to identify the geographical origins in the two
different spectral ranges. The classication performances of the
SVMmodel were the worst. The results showed that Vis/NIR and
NIR hyperspectral imaging combined with deep learning could
be used to distinguish different geographical origins of Radix
Glycyrrhizae. Besides, the interpretable saliency map was used
to visualize the CNN model, and the important wavelengths
contributing more to the classication found by the visualiza-
tion were matched with that identied in ANOVA of the original
spectra. The important wavelengths were selected and remod-
eled by CNN. Based on reducing the number of spectral wave-
bands by at least 35%, the classication accuracy of the
validation and prediction sets was only reduced by up to 4.43%,
and the classication accuracy of CNN exceeded 90%. Thus, the
overall results provide a new perspective for the geographical
origin identication of Radix Glycyrrhizae, as well as a method
to identify important wavelengths for its identication.
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