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analysis of dissociation of periodic
dislocation dipoles in isotropic crystals

X. W. Zhou

In the past, experimentally observed dislocations were often interpreted using an isolated dislocation

assumption because the effect of background dislocation density was difficult to evaluate. Contrarily,

dislocations caused by atomistic simulations under periodic boundary conditions can be better

interpreted because linear elastic theory has been developed to address the effect of periodic dislocation

array in the literature. However, this elastic theory has been developed only for perfect dislocations, but

not for dissociated dislocations. The periodic boundary conditions may significantly change the

dissociation energy of dislocations and stacking fault width, which in turn, change the deformation

phenomena observed in simulations. To enable materials scientists to understand the dislocation

behavior under the periodic boundary conditions, we use isotropic elastic theory to analyze the

thermodynamics of dissociated periodic dislocations with an arbitrary dislocation character angle.

Analytical expressions for force, stacking fault width, and energies are presented in the study. Results

obtained from the periodic dislocation array were compared with those obtained from isolated

dislocations to shed light on the interpretation of experimentally observed and simulated dislocations.
1. Introduction

Dislocations observed in microscopic experiments are oen
interpreted using linear elastic theory without considering
dislocation–dislocation interactions. Analogously, atomistic
simulations oen require periodic boundary conditions where
any individual dislocation could be imaged into an innite
dislocation array. The linear elastic theory of dislocation array
can be used to address the effect of periodic boundary condi-
tions. One successful example is the calculation of dislocation
core energies by tting the linear elastic expression into atom-
istic simulation data based on an isotropic assumption.1–6

These studies suggested that the effect of periodic boundary
conditions is signicant and cannot be ignored. Unfortunately,
this former linear elastic theory has been developed only for
perfect dislocations. A similar theory for dissociated disloca-
tions is not available, but is critical for researchers to explain
the dissociation energy, stacking fault width, and the conse-
quent deformation phenomena observed in simulations.

Concerning an innite dislocation array, the total elastic
energy involved is an innite sum. Some previous studies per-
formed this summation numerically, where a conditional diver-
gence problem was reported and was dealt with using
sophisticated algorithms.2–4 Under the isotropic condition, we
derived a semi-analytical expression for the total elastic energy of
the undissociated dislocation dipole array with fast
dia National Laboratories, Livermore,

ia.gov

35071
convergence.5,6 The purpose of this study is to extend our
previous work5,6 to include dissociated dislocations in isotropic
materials. Semi-analytical expressions will be given for force,
stacking fault width, and energy for dissociated dislocations and
results will be discussed with reference to isolated dislocations.
2. Forces between partials
(A) Analytical expression for force

The simplest dislocations that can be simulated under the
periodic boundary conditions are dislocation dipoles. Geome-
tries of our three-dimensional periodic dislocation dipoles are
illustrated in Fig. 1, where the orange frames highlight the unit
cell at the origin i, j ¼ 0, 0 whose dimensions in x and y direc-
tions are respectively Lx and Ly. Under the periodic boundary
conditions, such a unit cell can be viewed as being innitely
repeated in space i, j ¼ �N, ., +N. Each cell contains one
dislocation dipole whose separation distance is d. In Fig. 1(a),
dislocations are undissociated and the two dislocations of the
dipole in each cell are marked as ai,j and a0

i,j respectively. In
Fig. 1(b), the dislocation ai,j is dissociated into two partials ai,j
and bi,j, and the dislocation a0

i,j is dissociated into two partials
a0i,j and b0i,j. To clearly distinguish the two arrays of partials, one
is coloured black and the other one is coloured blue.

The stacking fault width l shown in Fig. 1(b) is a technolog-
ically important property. To understand l, the x component of
the force between the black and blue partial dislocations needs
to be understood. In a per dislocation unit, this force can be
calculated as the total x-component force between a chosen
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Geometries for periodic dislocation dipole arrays: (a) perfect dislocations and (b) dissociated dislocations.
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blue dislocation (say, b0,0) and all the black dislocations in the
array. If the character angle and Burgers magnitude of the
undissociated dislocation are b and b, the character angles of
the two partials are b + p/6 and b � p/6 respectively, and both

partials have the same Burgers magnitude of b=
ffiffiffi
3

p
. When

a blue dislocation is separated from the black dislocation by x
and y in the horizontal and vertical directions, the black dislo-
cation will apply an x-component force to the blue dislocation:7
This journal is © The Royal Society of Chemistry 2020
fxðx; yÞ ¼ Gb2ð1� 2 cos 2bÞ
24pð1� nÞ

xðx2 � y2Þ
ðx2 þ y2Þ2

þ Gb2ð1þ 2 cos 2bÞ
24p

x

x2 þ y2
(1)

where G is the shear modulus and n is Poisson's ratio. Now, we
consider the interaction between the blue dislocation and any
vertical column of black dislocations shown in Fig. 1(b). As will
RSC Adv., 2020, 10, 35062–35071 | 35063

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ra07227c


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
Se

pt
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 7

/4
/2

02
5 

6:
14

:1
0 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
be clear below, the column-by-column derivation of the inter-
action can eliminate the conditional divergence problem.
Assume that the blue dislocation is horizontally separated from
the black dislocation column by x1, the dislocation column will
apply a total x-component force fx,col(x1) to the blue dislocation.
fx,col(x1) can be written as

fx;colðx1Þ ¼ Gb2ð1� 2 cos 2bÞ
24pð1� nÞ c1e þ Gb2ð1þ 2 cos 2bÞ

24p
c1s (2)

where functions c1e(x1) and c1s(x1) are expressed as

c1eðx1Þ ¼ 1

x1

� x1

�
x1

2 � d2
�

ðx1
2 þ d2Þ2

þ
XN
i¼1

�
2x1

h
x1

2 � �iLy

�2i
h
x1

2 þ �iLy

�2i2

�
x1

h
x1

2 � �iLy � d
�2i

h
x1

2 þ �iLy � d
�2i2 �

x1

h
x1

2 � �iLy þ d
�2i

h
x1

2 þ �iLy þ d
�2i2
�

(3)

c1sðx1Þ ¼ 1

x1

� x1

x1
2 þ d2

þ
XN
i¼1

 
2x1

x1
2 þ �iLy

�2 � x1

x1
2 þ �iLy � d

�2
� x1

x1
2 þ �iLy þ d

�2
!

(4)

Eqn (3) and (4) essentially sum up the interaction between the
blue dislocation and the dislocations in the column in the sequence
of their separation distances in y: 0, d, Ly, Ly, Ly � d, Ly + d, 2Ly, 2Ly,
2Ly� d, 2Ly + d,., this sequence is followed to ensure convergence.
For instance, it will have a conditional divergence problem ifXN
i¼1

"
2x1

x12 þ ðiLyÞ2
� x1

x12 þ ðiLy � dÞ2 �
x1

x12 þ ðiLy þ dÞ2
#
is written

as
XN
i¼1

2x1
x12 þ ðiLyÞ2

�
XN
i¼1

x1
x12 þ ðiLy � dÞ2 �

XN
i¼1

x1
x12 þ ðiLy þ dÞ2.

The innite summations in eqn (3) and (4) have closed-form solu-
tions written as follows:
c1eðx1Þ ¼ p2x1

Ly
2

	
csch



px1

Ly

��2
�

4 exp
�2px1

Ly

�	
�2 exp



2px1

Ly

�
þ cos



2dp

Ly

�
þ exp



4px1

Ly

�
cos



2dp

Ly

��
h
1þ exp

�4px1

Ly

�
� 2 exp



2px1

Ly

�
cos



2dp

Ly

��2
8>>><
>>>:

9>>>=
>>>;

(5)
c1sðx1Þ ¼ 2p

Ly

coth
�px1

Ly

�	
sin



dp

Ly

��2

cosh
�2px1

Ly

�
� cos



2dp

Ly

� (6)
35064 | RSC Adv., 2020, 10, 35062–35071
where csch(), coth(), and cosh() are the hyperbolic cosecant,
cotangent, and cosine functions respectively. Obtaining the
closed-form solution for eqn (3) and (4) eliminates the condi-
tional divergence problem. The force fx,array(x) applied by the
entire black dislocation array to the blue dislocation can be
expressed as a function of partial separation distance x. fx,array(x)
can be obtained similarly as follows:

fx;arrayðxÞ ¼ Gb2ð1� 2 cos 2bÞ
24pð1� nÞ c2e þ Gb2ð1þ 2 cos 2bÞ

24p
c2s (7)

where functions c2e and c2s are expressed as follows:

c2eðxÞ ¼ c1eðxÞ þ
XN
i¼1

½c1eðj � Lx þ xÞ � c1eðj � Lx � xÞ� (8)

c2sðxÞ ¼ c1sðxÞ þ
XN
i¼1

½c1sðj � Lx þ xÞ � c1sðj � Lx � xÞ� (9)

Eqn (8) and (9) essentially sum up the interaction between
the blue dislocation and the black dislocation columns in the
sequence of column location x1 ¼ x, Lx + x, Lx � x, 2Lx + x, 2Lx �
x, .. We cannot nd closed-form solutions for eqn (8) and (9).
This is not important because eqn (8) and (9) converge rapidly.
We can illustrate this by examining the convergence curves of
c2e and c2s as a function of number of summation terms N. We
note that eqn (8) and (9) involve four parameters Lx, Ly, d, and x,
so Fig. 2(a)–(d) show the convergence curves at four represen-
tative sets of parameters (Lx, Ly, d, and x). Here, we x Ly ¼ 2d
because this gives a maximum dislocation dipole energy,5,6 and
x Ly ¼ 420 Å because from eqn (5)–(9), the convergence
depends primarily on Lx/Ly (note x1 ¼ j � Lx + x, j ¼ 1, 2, .), so
that we only need to explore the Lx effect at a given Ly. Physically,
a large Lx means that the next column is farther away, and
a small Ly means that opposite elastic elds of dislocation
dipoles along the y direction cancel more quickly.

Fig. 2 conrms that eqn (8) and (9) converge extremely fast
especially for large Lx values. For instance, at Lx ¼ 2100 Å
(Fig. 2(d)), convergence is achieved without any summation
terms. Convergence is relatively slower at smaller Lx, but even at
Lx ¼ 20 Å which is below the dimension used in most atomistic
simulations, the convergence is still well achieved with about 25
summation terms. Interestingly, unlike the isolated dislocation
where c2e(x) ¼ c2s(x) ¼ 1/x, c2e(x) and c2s(x) under the periodic
boundary conditions are in some cases not equal. They can also
differ signicantly from the isolated dislocation case, meaning
that the effect of the periodic boundary conditions on disloca-
tion dissociation cannot be ignored. For the cases we tested,
This journal is © The Royal Society of Chemistry 2020
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Fig. 2 Factors c2e and c2s as a function of summation numberN at four different sets of geometric parameters: (a) Lx¼ 20 Å, Ly¼ 2d¼ 420 Å, x¼
7 Å, (b) Lx ¼ 210 Å, Ly ¼ 2d ¼ 420 Å, x ¼ 20 Å, (c) Lx ¼ 210 Å, Ly ¼ 2d ¼ 420 Å, x ¼ 105 Å, and (d) Lx ¼ 2100 Å, Ly ¼ 2d ¼ 420 Å, x ¼ 20 Å.
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only when periodic length Lx and Ly are both large and the
partial separation distance x is small (Fig. 2(d)), will c2e(x) and
c2s(x) both approach the value for isolated dislocation.

In the following calculations, we will use summation
number N ¼ 100, which will ensure convergence according to
Fig. 2.
(B) Comparison of force with isolated dislocation

Eqn (7) indicates that the force between partials is determined by
functions c2e(x) and c2s(x). Hence, comparison of force between
periodic partials and isolated pairs of partials can be achieved by
comparing c2e(x) and c2s(x), which, for isolated partials, satisfy
c2e(x) ¼ c2s(x) ¼ 1/x. Fig. 3 compares results from periodic and
isolated partials on factors c2e(x) and c2s(x) as a function of partial
separation distance x at different dipole lengths d, and x and y
dimensions Lx and Ly: (a) d¼ 15 and 150 Å, Lx¼ 200 Å, Ly¼ 300 Å;
(b) d¼ 1 and 10 Å, Lx¼ 200 Å, Ly¼ 20 Å; (c) d¼ 15 and 150 Å, Lx¼
20 Å, Ly¼ 300 Å; and (d) d¼ 1 and 10 Å, Lx¼ 20 Å, Ly¼ 20 Å. Fig. 3
indicates that when the plot range x spans the entire periodic
length Lx, c2e(x) and c2s(x) are antisymmetric at x¼ Lx/2 where force
This journal is © The Royal Society of Chemistry 2020
would drop to zero (c2e¼ c2s¼ 0). This is a validation of the results
because from Fig. 1(b), any partial dislocation, say, b0,0, would be
subject to equal forces from neighbouring partials, say a0,0 and
a1,0, in opposite directions when x ¼ Lx/2. As a result, zero force
would be achieved at the antisymmetric middle point x ¼ Lx/2.
Because c2e(x) and c2s(x) always drop to zero at x ¼ Lx/2 while the
function 1/x does not have this feature, Fig. 3 conrms that the
force between periodic partials is signicantly different from that
between isolated partials when x approaches Lx/2. However, when
x � Lx/2, the force between periodic partials can be quite close to
that between isolated partials if the dipole length d is large
enough. The exception is when d is small, where c2e(x) and c2s(x)
are signicantly lower than 1/x. This is because the dislocation
dipole increasingly annihilates when d reduces. Like Fig. 2, Fig. 3
also shows that c2e(x) and c2s(x) can be different in some cases.
(C) Stacking fault width

Stacking fault width l results from the balance between dislo-
cation force fx,array and stacking fault energy force g, and it can
therefore be solved from
RSC Adv., 2020, 10, 35062–35071 | 35065
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Fig. 3 Factors c2e and c2s as a function of partial separation distance x at different dipole lengths d, and x and y dimensions Lx and Ly: (a) d ¼ 15
and 150 Å, Lx ¼ 200 Å, Ly ¼ 300 Å; (b) d¼ 1 and 10 Å, Lx ¼ 200 Å, Ly ¼ 20 Å; (c) d¼ 15 and 150 Å, Lx ¼ 20 Å, Ly ¼ 300 Å; and (d) d¼ 1 and 10 Å, Lx ¼
20 Å, Ly ¼ 20 Å.
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fx,array(l) ¼ g (10)

For isolated dislocation, stacking fault width is

l ¼ Gb2ð1� 2 cos 2bÞ
24pgð1� nÞ þ Gb2ð1þ 2 cos 2bÞ

24pg
(11)

We now compare stacking fault width of periodic and iso-
lated partials using parameters derived from an aluminum
interatomic potential:5,8 G ¼ 0.1830 eV Å�3, n ¼ 0.3874, b ¼
2.864 Å, and g ¼ 0.0083 eV Å�2. Fig. 4(a) and (b) show, respec-
tively, stacking fault width l of edge and screw dislocations as
a function of Lx at different combinations of Ly and d, where the
l value from isolated dislocation is marked by the dashed line.

Fig. 4 indicates that stacking fault width l is narrower for
screw dislocation than for edge dislocation, and l is sensitive to
cell dimensions. When Lx, Ly, and d are all large, l approaches
the value for isolated dislocation as expected. When Lx is small,
35066 | RSC Adv., 2020, 10, 35062–35071
l is small as it is limited by Lx/2. The sensitivity to Lx reduces
when Lx increases, but the saturated l still depends on Ly, d, and
the dislocation type. Normally, it can be thought that the peri-
odic boundary conditions would constrain dislocations. It is
therefore surprising that for the edge dislocation, l is larger
than the value from isolated dislocation at relatively small
values of Ly ¼ 40 Å and d ¼ 20 Å. This phenomenon is not
observed for the screw dislocation results in Fig. 4(b). The
complex relationships between l and computational geometry
present a warning to our past interpretations of dislocation
dissociation under the periodic boundary conditions.
(D) Molecular dynamics validation of stacking fault width

Selected atomistic simulations are performed to validate the
stacking fault width calculations. The methods developed
previously5 are used to introduce dislocation dipoles in atom-
istic systems. Using the same aluminum interatomic potential
as that used previously,5,8 and applying a zero-pressure NPT
This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Stacking fault width l of (a) edge and (b) screw dislocations as a function of x dimension Lx at different y dimensions and dipole lengths, Ly
and d.
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ensemble (i.e., number of atoms, pressure, and temperature are
kept constant) with the periodic boundary conditions, molec-
ular dynamics (MD) simulations are performed for 4 ns at 300 K.
The structures are further relaxed using energy minimization.
To ensure that dislocation does not randomly migrate during
the MD simulations, the centre of mass of small regions above
and below the dislocations is not allowed to shi. Four
consecutive (111) planes near an edge and a screw dislocation,
obtained from simulations at different Lx and Ly (d is taken at Ly/
2), are shown in Fig. 5(a) and (b), where different colours indi-
cate OVITO results of local structures (fcc for face-centred-cubic,
hcp for hexagonally closely packed, and bcc for body centred
cubic).9,10 Fig. 5(a) conrms that in the edge dislocation case,
the stacking fault width at Lx� 40 Å is narrower than that at Lx�
200 Å, and the magnitudes of both widths are quite close to
those shown in Fig. 4(a). Fig. 5(b) shows no hcp atoms that
typically occur within the stacking faults. This means that the
stacking fault width of the screw dislocation is narrower than
that of the edge dislocation, which is also consistent with Fig. 4.
Fig. 5 Dislocation configurations obtained from atomistic simulations fo
and (c) edge dislocation in tungsten.

This journal is © The Royal Society of Chemistry 2020
Aluminum has an fcc structure. Atomistic simulations are
also performed for bcc tungsten using the embedded-atom
method potential.11 Two consecutive (110) planes near an
edge dislocation obtained from simulations at Lx ¼ 66 Å and Ly
¼ 403 Å and two different values of d ¼ 22 and 112 Å are
included in Fig. 5(c). Following the previous approach,5 we
found that this potential gives lattice constant a ¼ 3.1686 Å and
shear modulus G ¼ 1.0016 eV Å�3 at a chosen Poisson's ratio of
n ¼ 0.3. Experiments indicated that tungsten has a stacking
fault energy of g ¼ 0.03 eV Å�2.12 Based on these parameters,
eqn (10) would give l ¼ �10–13 Å for the two cases shown in
Fig. 5(c), which seems to be in good agreement.
3. Dislocation energies
(A) Previous works on dislocation energy

According to the previous works,5,6 the per unit length energy G
for periodic dislocation arrays can be expressed as follows:
r (a) edge dislocation in aluminum, (b) screw dislocation in aluminum,

RSC Adv., 2020, 10, 35062–35071 | 35067
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Fig. 6 Dissociation energyDEdis as a function of number of summation termsN at fixed y dimension Ly¼ 420 Å, dipole length d¼ 210 Å, and four
different sets of x dimension Lx and partial spacing x of (a) Lx¼ 20 Å, x¼ 7 Å, (b) Lx¼ 210 Å, x¼ 40 Å, (c) Lx¼ 210 Å, x¼ 105 Å, and (d) Lx¼ 2100 Å, x
¼ 105 Å. Note that results from periodic and isolated dislocations may differ.
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G ¼ Ec þ Gb2 sin2
b

4pð1� nÞ ln
1

r0
þ Gb2 sin2

b

4pð1� nÞ ½cue0ðdÞ þ cueðdÞ�

þ Gb2 cos2 b

4p
ln

1

r0
þ Gb2 cos2 b

4p
½cus0ðdÞ þ cusðdÞ� þ DEdis

(12)

where Ec and r0 are the core energy and core radius respectively,
DEdis is the dissociation energy per unit length, and functions
cue0(d), cus0(d), cue(d), cus(d) are expressed as follows:

cue0ðdÞ ¼ ln

	�
Ly � d

�
d

Ly

�
� ln

	
Ga



Ly þ d

Ly

��
� ln

	
Ga



2� d

Ly

��
(13)

cus0ðdÞ ¼ ln

	�
Ly � d

�
d

Ly

�
� ln

	
Ga



Ly þ d

Ly

��
� ln

	
Ga



2� d

Ly

��
(14)
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cueðdÞ ¼
XN
i¼1

8<
:
4p� i � Lx � coth

�p� i � Lx

Ly

�
sin2



pd

Ly

�

Lycosh
�2p� i � Lx

Ly

�
� Ly � cos



2pd

Ly

�

þ ln

	
cos2



pd

Ly

�
þ coth2



p� i � Lx

Ly

�
sin2



pd

Ly

��9=
;
(15)

cusðdÞ ¼
XN
i¼1

ln

	
cos2



pd

Ly

�
þ coth2



p� i � Lx

Ly

�
sin2



pd

Ly

��

(16)

Like eqn (8), (9), (15) and (16) also converge rapidly, so that
our choice of 100 summation terms is enough to ensure accu-
rate results.5 The past works1–5 have not addressed the dissoci-
ation energy DEdis, which is the focus of the following section.
This journal is © The Royal Society of Chemistry 2020
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Fig. 7 Dissociation energy DEdis as a function of partial spacing x for (a) Lx ¼ 20 Å, Ly ¼ 420 Å, d¼ 210 Å, (b) Lx¼ 210 Å, Ly¼ 420 Å, d¼ 210 Å, and
(c) Lx ¼ 210 Å, Ly ¼ 42 Å, d ¼ 21 Å. Total dissociation energy DEdis + gx as a function of x for (d) Ly ¼ 300 Å, d ¼ 150 Å, g ¼ 0.0083 eV Å�2 and two
different values Lx ¼ 25 Å and Lx ¼ 250 Å.
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(B) Analytical expression for DEdis

Direct integration of stress and strain elds of all partials is
challenging. Alternatively, dissociation energy DEdis can be
calculated based on the work done when the blue dislocations
in Fig. 1(b) are displaced from an initial location x ¼ 0 to a nal
location x ¼ l. To avoid singularity at x ¼ 0, we will derive the
work from an initial location x ¼ Lx/2 instead. This does not
change the relative energy, but changes only the reference state
from x ¼ 0 to x ¼ Lx/2.

In a per dislocation unit, we only consider the work done
between a chosen blue dislocation (say, b0,0) and all the black
dislocations in array. To displace any pair of blue and black
dislocations from an initial x-spacing x1 to a nal x-spacing x2
without changing the y-spacing y, the work done is
wðx1; x2; yÞ ¼

Ð x2
x1

fxðx; yÞ. Using eqn (1), we have the following:
This journal is © The Royal Society of Chemistry 2020
wðx1; x2; yÞ ¼ Gb2½1� 2 cos ð2bÞ�
48pð1� nÞ

�
ln

	
x2

2 þ y2

x1
2 þ y2

�
þ 2y2

x2
2 þ y2

� 2y2

x1
2 þ y2

�
þ Gb2½1þ 2 cos ð2bÞ�

48p
ln

	
x2

2 þ y2

x1
2 þ y2

�
(17)

We rst calculate the total work done by the black disloca-
tion row at y¼ 0 due to the displacement from x ¼ Lx/2 to x ¼ x.
This work can be written as follows:

wrowðx; y ¼ 0Þ ¼ Gb2½1� 2 cosð2bÞ�
48pð1� nÞ ce0ðxÞ

þ Gb2½1þ 2 cosð2bÞ�
48p

cs0ðxÞ (18)

where
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ce0ðxÞ ¼ cs0ðxÞ ¼ 2 ln
YN
i¼1

	 ði � 1ÞLx þ x

ði � 1ÞLx þ Lx=2
� �i � Lx þ x

�i � Lx þ Lx=2

�

¼ ln

	
sin2



px

Lx

��
(19)

Note that eqn (19) essentially sums up ln(x2
2/x1

2) in
a sequence of x1 ¼ (i � 1) � Lx + Lx/2, x2 ¼ (i � 1) � Lx + x, and
x1 ¼ �i � Lx + Lx/2, x2 ¼ �i � Lx + x (i ¼ 1, 2, .), and it has
a closed-form solution. Next, we calculate the total work done
by any vertical column of black dislocations (except the
dislocation at y ¼ 0). Assuming that the initial and nal x-
spacings between the blue dislocation and the black disloca-
tion column are x1 and x2 respectively, this work can be written
as follows:

wcolðx1; x2; ys0Þ ¼ Gb2½1� 2 cosð2bÞ�
48pð1� nÞ ½c3e;1ðx1; x2Þ þ c3e;2ðx1; x2Þ�

þ Gb2½1þ 2 cos ð2bÞ�
48p

c3sðx1; x2Þ
(20)

By summing up eqn (17) in the similar y sequence as
described above, we can nd:

c3e;1ðx1; x2Þ ¼ c3sðx1; x2Þ

¼ ln



d2 þ x1

2

d2 þ x2
2

�
þ ln

YN
i¼1

"
x2

2 þ �i � Ly

�2
x1

2 þ �i � Ly

�2
� x1

2 þ �i � Ly � d
�2

x2
2 þ �i � Ly � d

�2 � x2
2 þ �i � Ly

�2
x1

2 þ �i � Ly

�2
� x1

2 þ �i � Ly þ d
�2

x2
2 þ �i � Ly þ d

�2
#

(21)

c3e;2ðx1; x2Þ ¼ 2d2

d2 þ x1
2
� 2d2

d2 þ x2
2
þ
XN
i¼1

"
� 4

�
i � Ly

�2
x1

2 þ �i � Ly

�2
þ 2

�
i � Ly � d

�2
x1

2 þ �i � Ly � d
�2 þ 2

�
i � Ly þ d

�2
x1

2 þ �i � Ly þ d
�2

þ 4
�
i � Ly

�2
x2

2 þ �i � Ly

�2 � 2
�
i � Ly � d

�2
x2

2 þ �i � Ly � d
�2

� 2
�
i � Ly þ d

�2
x2

2 þ �i � Ly þ d
�2
#

(22)

Eqn (21) and (22) have a closed-form solution:

c3e;1ðx1; x2Þ

¼ c3sðx1; x2Þ
35070 | RSC Adv., 2020, 10, 35062–35071
¼ ln



x1

2

2x2
2

�

þln

2
42 csch2



px1

Ly

�
sinh2



px2

Ly

� cos
�2pd
Ly

�
� cosh

�2px1

Ly

�

cos
�2pd
Ly

�
� cosh

�2px2

Ly

�
3
5

(23)

c3e;2ðx1; x2Þ ¼ 2px1

Ly

coth



px1

Ly

�

þ 4px2

Ly

coth
�px2

Ly

�
sin2



pd

Ly

�

cos
�2pd
Ly

�
� cosh

�2px2

Ly

�

þ 2px1

Ly

sinh
�2px1

Ly

�

cos
�2pd
Ly

�
� cosh

�2px1

Ly

� (24)

The total work done by the entire black dislocation arrays,
from initial partial separation distance Lx/2 to nal separation
distance x, can be expressed as follows:

wðxÞ ¼ wrowðx; y ¼ 0Þ þ
XN
i¼1

�
wcol½ði � 1Þ � Lx þ Lx=2; ði � 1Þ

� Lx þ x; ys0� þ wcol

	
�i � Lx þ Lx

2
;�i � Lx

þ x; ys0

��
(25)

Again, the summation in eqn (25) follows a similar sequence
described above. Considering that energy has an opposite sign
to work, and that the reference state of dissociation energy is
undissociated dislocation (i.e., x ¼ 0 rather than Lx/2), the
dissociation energy as a function of partial separation distance
x can then be simply expressed as follows:

DEdis(x) ¼ �[w(x) � w(r0)] (26)

Note that to avoid singularity, our reference state is taken as
x ¼ r0 rather than x ¼ 0, where r0 is the dislocation core radius.
Eqn (18)–(20) and (23)–(26) can be conveniently used to calcu-
late the dissociation energy.

Since eqn (25) is not a closed form, we rst explore its
convergence. Based on the aluminum parameters cited above,
DEdis(x) is calculated as a function of the number of summation
terms N at xed Ly ¼ 2d ¼ 420 Å, and the results are shown in
Fig. 6(a)–(d) for four different sets of Lx and x. It can be seen that
while the convergence rate increases when Lx is increased and x
is decreased, the effect of x becomes more signicant. Given
that Ly ¼ 2d ¼ 420 Å, accurate results can be achieved without
any summation terms in Fig. 6(a) at the small partial spacing x
¼ 7 Å, despite that Lx ¼ 20 Å is also small. If Lx is not too large,
This journal is © The Royal Society of Chemistry 2020
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say 210 Å, and x is large, say 107 Å (the maximum x for a given Lx
is Lx/2), then accurate results may require �100 summation
terms, as shown in Fig. 6(c). Such a large partial spacing (or
under the equilibrium condition, the stacking fault width),
however, is unlikely to be encountered.

The effect of x is a new nding as we have not thoroughly
explored this in Fig. 2. Regardless, Fig. 6 conrms that our use
of N ¼ 100 is still extremely conservative for any practical
stacking fault width.
(C) Comparison of dissociation energy with isolated
dislocation

With the convenient methods and the aluminum parameters
discussed above, we calculate dissociation energy as a function
of partial spacing x using three different sets of geometric
parameters. The results of these calculations are shown in
Fig. 7(a) for Lx¼ 20 Å, Ly¼ 420 Å, d¼ 210 Å, Fig. 7(b) for Lx¼ 210
Å, Ly ¼ 420 Å, d ¼ 210 Å, and Fig. 7(c) for Lx ¼ 210 Å, Ly ¼ 42 Å,
d ¼ 21 Å. Additionally, we also calculate total dissociation
energy DEdis + gx as a function of x using xed Ly ¼ 300 Å, d ¼
150 Å, and two different Lx values of 25 Å and 200 Å, where g ¼
0.0083 eV Å�2 is the stacking fault energy. The results of this
calculation are shown in Fig. 7(d). The corresponding results
from isolated dislocations are included as black dash lines in
Fig. 7(a)–(c), and as a thick red line in Fig. 7(d).

Fig. 7 indicates the negative dissociation energy, conrming
that dissociation is energetically favorable. DEdis is symmetric
with minimum at x ¼ Lx/2, consistent with Fig. 3 that force
drops to zero and is antisymmetric at x ¼ Lx/2. Fig. 7 also
indicates that DEdis obtained from periodic and isolated dislo-
cations deviate signicantly at x near Lx/2 but can be quite close
for small x. Interestingly, DEdis for isolated dislocations can
have both negative deviation as shown in Fig. 7(a) and (b) and
positive deviation as shown in Fig. 7(c). The equilibrium
stacking fault width, identied as l � 7 Å at Lx ¼ 25 Å and l � 9
Å at Lx ¼ 200 Å by the minimum energy point in Fig. 7(d),
matches the corresponding results in Fig. 4. Interestingly, the
DEdis + gx curve obtained for the cell parameters Ly ¼ 300 Å, d¼
150 Å, and Lx ¼ 200 Å matches the corresponding curve from
isolated dislocations at least for x # 25 Å. For this particular
case, the stacking fault width from periodic boundary condi-
tions matches that for isolated dislocations, which is also
consistent with Fig. 4. This observation is useful to guide the
choice of computational cell that facilitates the calculation of
stacking fault energy from the measurement of stacking fault
width in simulations. However, it should be noted that in this
particular case, the energy minimum is not very sharp, meaning
that the stacking fault width observed in atomistic simulations
is likely to have a large uncertainty margin.
4. Conclusions

We have developed useful expressions to calculate the dissoci-
ation thermodynamics of periodic dislocation dipoles in
isotropic materials. The results indicated that periodic
boundary conditions have complex inuences on partial
This journal is © The Royal Society of Chemistry 2020
dislocation interaction forces, stacking fault widths, and
dissociation energies. Depending on the system dimensions
and dipole length, stacking fault width under the periodic
conditions can be both above and below the value obtained
from isolated dislocations. We anticipate that our expressions
will impact future atomistic studies of dislocation properties. As
one particular case, the best current method to calculate the
dislocation core energy is to t the total dislocation energy ob-
tained from atomistic simulations to continuum models using
the periodic boundary conditions. Such continuum models
have not accounted for dislocation dissociation effects. By
considering dislocation dissociation, our new development will
result in more accurate dislocation core energy calculations.
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