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rediction of NMR parameters for
3-dimensional chemical structures using machine
learning with near quantum chemical accuracy†

Will Gerrard, a Lars A. Bratholm, a Martin J. Packer,b Adrian J. Mulholland, a

David R. Glowacki *a and Craig P. Butts *a

The IMPRESSION (Intelligent Machine PREdiction of Shift and Scalar information Of Nuclei) machine

learning system provides an efficient and accurate method for the prediction of NMR parameters from

3-dimensional molecular structures. Here we demonstrate that machine learning predictions of NMR

parameters, trained on quantum chemical computed values, can be as accurate as, but computationally

much more efficient (tens of milliseconds per molecular structure) than, quantum chemical calculations

(hours/days per molecular structure) starting from the same 3-dimensional structure. Training the

machine learning system on quantum chemical predictions, rather than experimental data, circumvents

the need for the existence of large, structurally diverse, error-free experimental databases and makes

IMPRESSION applicable to solving 3-dimensional problems such as molecular conformation and

stereoisomerism.
1 Introduction

NMR spectroscopy remains the pre-eminent analytical tech-
nique for elucidating molecular structure in solution, with the
prediction and interpretation of 1H and 13C chemical shis and
scalar coupling constants playing a key role. The prediction of
these parameters, especially in studies of 3-dimensional
molecular structure, are increasingly moving towards quanti-
tative comparison between computed values for proposed
chemical structures and experiment. In such comparisons, the
use of fast and accurate NMR prediction methods is crucial.

Fast empirical predictions of chemical shis for 2-dimen-
sional chemical structures have been used for decades, with the
additivity rules exemplied by Pretsch1 and HOSE-code2 vari-
ants forming the basis of many analyses. However their appli-
cability is limited by being based on 2-dimensional structures
and cannot readily deal with 3-dimensional conformational or
stereochemical analysis. Some modications to treating 3-
dimensional structures have been made by e.g. at-but-
stereochemically-aware HOSE codes3 or single conformer
models of experimental systems4–6 but the improvements in 3-
dimensional accuracy are limited as conformation and exi-
bility must necessarily be accounted for completely to achieve
maximum accuracy. Multiple-bond 1H–1H coupling constants
ig.butts@bristol.ac.uk; glowacki@bristol.

mbridge CB4 0QA, UK

tion (ESI) available. See DOI:
are more directly linked to 3-dimensional structure, however
generically applicable Karplus-style empirical relationships,
such as the widely used equation reported by Haasnoot et al.,7

suffer from lower accuracy when confronted with complex
chemical functionality while equations designed for specic
sub-structures, e.g. carbohydrates,8 are not applicable to the
whole of chemical space. Finally, many NMR parameters, for
example 1-bond 1H–13C scalar coupling constants, 1JCH, which
are sensitive to both chemical connectivity and 3-dimensional
structure are rarely used in isotropic studies precisely because
there are no general fast predictive methods for 1JCH.

For all of these reasons, the accurate prediction of NMR
parameters in modern 3-dimensional structure determinations
relies increasingly on the use of quantum chemical calcula-
tions, typically based on Density Functional Theory (DFT).9–12

Optimal DFT methods can be accurate to within 1–2%, e.g. 1JCH
predicted with <4 Hz accuracy to experiment13–15 (on values that
range from roughly 100–250 Hz) and <0.2/<2 ppm16,17 (on ranges
of �10/�200 ppm) for 1H and 13C chemical shis respectively.
The substantial downside of DFT is the signicant computation
time required when using methods that can provide sufficient
accuracy in NMR predictions. Accurate DFT-based predictions
of chemical shi and scalar couplings typically take hours to
days of CPU time for a single rigid molecule of even relatively
low (�500) molecular mass. The largest proportion of this CPU
time is occupied by the NMR computations, especially when
computing scalar coupling constants. Naturally, in cases where
multiple conformers or isomers must be considered (and thus
predictions for multiple structures are required) this becomes
days to months of computation for a single study.
This journal is © The Royal Society of Chemistry 2020
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Machine learning methods offer a solution to the time-
demands of DFT NMR predictions, achieving them in seconds
rather than hours or days. Such machines, trained on experi-
mental data, for 1H and 13C chemical shis based on 2-
dimensional structures are well-established.18–21 These systems
are trained on hundreds of thousands of validated experimental
chemical shis arising from tens of thousands of chemical
structures. Training such machines for prediction of scalar
couplings is more challenging because accurate and validated
experimental databases do not exist on this scale (e.g. 1JCH
values) and they can be critically dependent on 3-dimensional
structure (e.g. 3JHH/CH values). On the other hand, a machine
could be trained using large datasets of DFT-computed NMR
parameters, such as chemical shis and scalar couplings,
derived from 3-dimensional structures. Such large DFT-derived
datasets can be generated systematically with minimal effort
and are not limited to offering accuracy only for structures that
are similar to previously experimentally determined molecules.
With a large enough training database, such a machine would
be expected to approach the accuracy of DFT calculation of
NMR parameters for 3-dimensional structure analysis, but with
several orders of magnitude reduction in time for the NMR
predictions. This approach was recently reported for solid-state
chemical shi predictions by Paruzzo et al. (SHIFTML,22) where
the computational demand of DFT calculations on extended
lattices are high and comparable to those needed for multi-
conformer calculations on solution-state systems.

In this paper we describe the development of our rst
generation of solution-state NMR prediction machines –

IMPRESSION (Intelligent Machine PREdiction of Shi and
Scalar information Of Nuclei), trained on DFT-predicted values
rather than relying on scarce or error-prone experimental data.
We have chosen to demonstrate the versatility of machine
learning of NMR parameters using both 1H and 13C chemical
shis and 1JCH couplings. We include scalar couplings in
addition to chemical shi, as the former are less amenable to
machine learning based on experimental data, and 1JCH
precisely because it has been demonstrated to be valuable for
elucidating both 2-dimensional connectivity and 3-dimensional
structure5,23 but requires DFT to predict/interpret for most
cases. Providing a fast and accurate predictive tool for 1JCH will
be especially valuable and could encourage wider acceptance of
this and other accessible NMR parameters in structure deter-
minations. We demonstrate that IMPRESSION can predict all
these NMR parameters for organic molecules, including 3-
dimensional discrimination, with up to DFT accuracy but
several orders of magnitude faster and can be applied to
experimental data with comparable outcomes to DFT.

2 Results and discussion
2.1 Dataset production and framework

In order to train and test IMPRESSION, we developed a dataset
of NMR parameters (d1H, d13C, 1JCH), computed using DFT in
the Gaussian09 soware package.24 While more demanding
computational methods could be considered,25 their computa-
tional cost would be extortionate with minimal improvement in
This journal is © The Royal Society of Chemistry 2020
outcomes for the training and testing datasets described.
Instead we found that using mPW1PW91/6-311g(d,p) for opti-
misation and ub97xd/6-311g(d,p)26–30 for computing the NMR
parameters was computationally efficient and sufficiently
accurate for comparison to experimental values across a range
of NMR parameters. In the geometry optimisations a tight
optimisation criteria and ultrane integral grids were used to
minimise molecular orientation affecting geometries and
energies (see ref. 31 and references therein for a discussion of
this). The NMR parameters were calculated using gauge inde-
pendent atomic orbitals with uncontracted basis sets to
improve descriptions of the core orbitals30 and calculation of all
components of the scalar couplings (Fermi contact, spin dipole,
diamagnetic spin orbit, paramagnetic spin orbit). The calcu-
lated magnetic shielding tensors were converted into chemical
shis using the linear scaling method and reference
compounds reported by Tantillo et al.10,32 A training set of 882
structures (17 222 1JCH; 18 383 d1H; 17 081 d13C values/
environments) were selected by an adaptive sampling (active
learning) procedure33–35 from a superset of 75 382 chemical
structures comprising only C, H, N, O and F atoms in the
Cambridge Structural Database36 (accessed 7/9/2018). The
adaptive sampling procedure trains an initial IMPRESSION
machine from 100 chemical structures and then uses this
machine to predict the parameters for all remaining structures
in the superset to measure their variance in a 5-fold cross vali-
dation (i.e. how much a given parameter changes when pre-
dicted from 5 separate machines each trained on a different
80% subset of the current training set). The 100 structures in
the superset which show the highest variance are then added to
the training dataset and the cycle is iterated (see ESI for further
details†). Adaptive sampling therefore adds the 100 structures
at each training iteration which IMPRESSION is the most
uncertain about. In doing so, each added structure provides the
maximum benet to the machine and substantially reduces the
overall computational cost required to reach a given accuracy.
The test set, against which the quality of the IMPRESSION
predictions is independently tested, was comprised of a further
410 chemical structures (7788 1JCH; 7832 d1H; 7522 d13C envi-
ronments) harvested from the CSD-500 dataset recently re-
ported by Paruzzo et al.22

IMPRESSION uses a Kernel Ridge Regression37 (KRR)
framework to learn the 1JCH scalar couplings and 13C and 1H
chemical shis of molecular structures. KRR was successfully
used by Paruzzo et al. to develop SHIFTML.22 Neural networks
have also been used to predict chemical shis in small mole-
cules from experimental data,6,38,39 however we found no clear
advantages in using feed forward neural networks in this work
as the accuracy was comparable to KRR for the datasets used,
with the kernel methods being much faster to train with the
given training set size. In order to encode the similarity between
chemical environments of each molecular structure we tested
three approaches previously described – Coulomb matrices,40

aSLATM,41 and FCHL42 all available from the QML python
package.43 We refer the reader to Section S1.1 in the ESI† and
the respective papers describing each representation for more
details. All of these kernel similarity measures compare atomic
Chem. Sci., 2020, 11, 508–515 | 509
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Fig. 1 log–log plot of training set size vs. the mean absolute error between ML predictions and DFT of the test set for d1H (left), d13C (centre) and
1JCH couplings (right). Results are shown for the Coulomb matrix, aSLATM and FCHL kernel similarity measures.
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environments, so in the case of 1JCH, we used the product of the
separately calculated kernel similarities for the 1H and 13C
nuclei as this performed better than either atomic environment
alone. The KRR procedure is further described in the ESI
(Section S1.1†).

Both aSLATM and FCHL were found to outperform Coulomb
matrices (Fig. 1), which is expected as Coulomb matrices only
include 2-body interactions, while aSLATM and FCHL both
include three-body interactions as well. As FCHL provided the
best performance for all three parameters and was substantially
more computationally efficient than aSLATM, it was used in the
nal development of the full IMPRESSION machine.
2.2 Performance relative to DFT

During training, the machine performance for prediction of all
NMR parameters (d1H, d13C, 1JCH) improved steadily with
increasing training set size, as illustrated in the learning curves
(Fig. 1). This indicates that the accuracy of the machine can be
further improved by adding additional training data, however
the absolute gains become marginal beyond the dataset size
used here with a ten-fold increase in training set size
Fig. 2 IMPRESSION machine learning predictions compared to DFT com
(right) without variance filtering.

510 | Chem. Sci., 2020, 11, 508–515
approximately halving the average error between IMPRESSION
and DFT. Aer training on the full set of 882 chemical struc-
tures, IMPRESSION predictions achieved mean absolute errors
(MAE) of 0.23 ppm/2.45 ppm/0.87 Hz for d1H/d13C/1JCH/predic-
tions and root mean squared error (RMSE) of 0.35 ppm/3.88
ppm/1.39 Hz against the independent test set (Fig. 2).

Notably however, a very small number of predictions for the
test set were much less reliable. For example, 186 (�2.3%) of the
d1H values had errors >1 ppm between IMPRESSION and DFT,
with a maximum error (MaxE) of 11.22 ppm. Similar outcomes
were observed for the other parameters with 187 d13C values
(�2.5%) with errors >10 ppm (MaxE ¼ 63.33 ppm) and 14
(�0.2%) of the 7788 predicted 1JCH values having errors of
>10 Hz (MaxE ¼ 24.63 Hz). Diagrams of the structures con-
taining the ve most signicant outliers for each NMR param-
eter are shown in Fig. S19–S21 in the ESI.† Examination of the
chemical environments of the most signicant outliers show
that they arise from unusual functional groups such as those
containing sp-hybridised atoms, or unusual 3-dimensional
environments such as atoms near pi-systems of aromatic rings.
These outliers suggest that, as desired, the machine learning
puted NMR parameters for d1H (left), d13C (centre) and 1JCH couplings

This journal is © The Royal Society of Chemistry 2020
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Fig. 3 (Top) Correlation between pre-prediction variance and prediction error between DFT and IMPRESSION for d1H (left), d13C (centre) and
1JCH couplings (right) on the test set. The prediction errors were binned by variance and an average error (MAE) was produced for each bin.
(Bottom) Error metrics for different variance ranges.
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system is indeed very sensitive to the 3-dimensional relation-
ships of the atoms in the structure. However this same sensi-
tivity also makes IMPRESSION less accurate for chemical
environments which are not very similar to environments
across the 882 molecular structures used to train IMPRESSION.

Crucially, we are able to a priori identify poorly described
environments using the same variance-based approach used to
generate the training set. By assessing the variance in the
prediction of a given NMR parameter across a 5-fold cross-
validation, we can quantify our condence in each individual
prediction since environments which are poorly described by
the chemical structures in the training set will have high vari-
ance in this cross-validation. There is indeed a clear correlation
of variance against prediction error for the independent test set
(Fig. 3). The tables in Fig. 3 suggest that the bulk of the envi-
ronments are predicted very accurately, and that the high vari-
ance environments are the dominant source of the large
outliers.

In principle, removing IMPRESSION-predicted values which
show high variances in cross-validation should provide a “pre-
prediction variance lter” that will substantially improve the
quality of, and thus the condence in, IMPRESSION predic-
tions. Selecting an appropriate variance cut-off for each NMR
parameter is then simply a balance between desired prediction
quality and the number of predictions which will be excluded by
that cut-off. Reports of DFT accuracy with respect to experiment
for 1H and 13C chemical shi predictions vary signicantly, but
typically in the range of 0.2–0.4 ppm/2–4 ppm, with the best
reported accuracies down to <0.2/<2 ppm (ref. 16 and 17) in
optimal cases. Similarly, Buevich et al. recently highlighted that
current best-in-class DFT methods predict 1JCH experimental
values with accuracies of 2–4 Hz, when presenting an optimised
workow for calculating 1JCH values which achieved an RMSE of
1.61 Hz.
This journal is © The Royal Society of Chemistry 2020
We therefore identied variance cut-offs for IMPRESSION
predictions that provide a good compromise between accuracy
and excluded values for the test set, which were found to be 1 Hz
for 1JCH, 0.1 ppm for d1H and 5 ppm for d13C. Applying these pre-
variance lter values improves the ts between IMPRESSION
and DFT to levels that are comparable with literature reports for
MAE/RMSE of DFT vs. experiment (MaxE is rarely reported for
large experimental validations, but the reader can nd
comparators from our experimental validations described
below in Section 2.3). For d1H the 0.1 ppm lter excludes 5
environments (<0.1%) and improves the t to MAE ¼ 0.23 ppm,
RMSE ¼ 0.32 ppm; MaxE ¼ 2.16 ppm. For d13C a 5 ppm lter
provided a good t (MAE ¼ 2.17 ppm; RMSE ¼ 3.25 ppm; MaxE
¼ 37.87 ppm) while excluding 538 (�7.2%) of the environments.
For 1JCH a 1 Hz lter improved the t to MAE¼ 0.81 Hz, RMSE¼
1.17 Hz; MaxE ¼ 13.37 Hz while discarding only 207 (<3%) of
the environments.

As highlighted by the learning curves, further improvement
to the machine predictions of DFT NMR results can be made by
increasing the size of the DFT-derived training dataset by
around an order of magnitude. However at this stage variance-
ltered IMPRESSION compares well enough with respect to DFT
that it was taken forward. It should also be noted at this point
that IMPRESSION only accelerates NMR prediction, it does not
accelerate the 3D structure generation by DFT (which can still
take hours/days). This overall time, i.e. 3D structure generation
+ NMR prediction, could be reduced further by using 3D
structures derived from molecular mechanics rather than DFT.
While not the key focus here, the use of molecular mechanics
structures as inputs to a re-trained IMPRESSION machine was
explored. While practical, this resulted in a �30–50% increase
in the average prediction errors for d1H and 1JCH presumably
arising from a mismatch between the detail of molecular
mechanics geometries and those used to calculate the DFT
Chem. Sci., 2020, 11, 508–515 | 511
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NMR parameters (see Section S2 in the ESI for details†). Inter-
estingly, d13C predictions were relatively insensitive to this
change, perhaps reecting better description of carbon envi-
ronments by molecular mechanics forceelds. This is an
exciting avenue to explore further, but to focus the discussion
here on the ability of IMPRESSION to reproduce DFT NMR
predictions, the subsequent experimental comparisons are
based on the IMPRESSION machine trained on the same DFT-
geometries used for the DFT NMR predictions.
2.3 Performance relative to experiment

Naturally, a key test of IMPRESSION is its ability to reproduce
DFT predictions of experimental values of relevant compounds.
To test this for 1JCH, a validation set of 608 experimental 1JCH
values were taken from structures collated by Venkata et al.23

which contain C, H, N, O and F elements only. Firstly, we
checked the ability of ourub97xd/6-311g(d,p) DFTmethod itself
to reproduce these experimental results. It should be noted in
the subsequent analysis that all DFT and IMPRESSION predic-
tions were based on the single conformers that Venkata et al.
reported for each compound. While not making the predictions
entirely experimentally relevant, it allows direct comparison
between DFT and IMPRESSION NMR predictions for this data.
Calculating the 608 couplings withub97xd/6-311g(d,p) took 156
CPU hours and initially gave a relatively poor t to experiment
(MAE ¼ 10.92 Hz) but with a systematic offset from the exper-
imental data by an average of�10.91 Hz. Adding this systematic
offset to the DFT-predicted values provided a good t between
DFT and experiment (MAE ¼ 2.16 Hz; RMSE ¼ 3.33 Hz; MaxE ¼
20.05 Hz) and this was used for all subsequent comparisons to
experiment based on this DFT method. As IMPRESSION is
trained on DFT data computed with this same ub97xd/6-
311g(d,p) method and both methods use only single
conformer predictions for each molecule, then these statistics
represent a practical limit for the accuracy that we might expect
from IMPRESSION on this experimental data.

IMPRESSION took only 60 CPU seconds to predict the full set
of 612 1JCH values but with some substantial outliers (MAE ¼
4.52 Hz; RMSE¼ 10.49 Hz; MaxE¼ 120.3 Hz). Applying the 1 Hz
Fig. 4 Distribution of errors for machine learning NMR predictions and D
dataset for d1H (left), d13C (centre) and 1JCH couplings (right). Variance
environments removed), d13C ¼ 5 ppm (24 of 457 environments remove

512 | Chem. Sci., 2020, 11, 508–515
variance lter gave: MAE ¼ 2.01 Hz, RMSE ¼ 2.69 Hz, MaxE ¼
10.01 Hz (removing 143 values) which was essentially identical
accuracy to that obtained from the DFT method for these same
ltered environments: MAE ¼ 1.83 Hz, RMSD ¼ 2.60 Hz, MaxE
¼ 14.63 Hz. An overlay of the error distributions for DFT and the
1 Hz variance-ltered IMPRESSION vs. the experimental values
(Fig. 4) demonstrates the comparability between machine
learning and DFT for 1JCH predictions. This represents quite
excellent performance of the machine for reproducing experi-
mental data in just a few seconds, with quality for the majority
of environments as good as the best MAEs (1.5–4 Hz) described
by Buevich et al. as typical for DFT methods, with <25% of the
values being tagged as unreliable by the variance lter. Of
course, if a slight loss in prediction quality is acceptable for
a given study, then more predicted values could be retained by
using a slightly looser variance-lter.

Similar accuracy could be obtained for IMPRESSION
predictions of 734 1H chemical shis for 36 structures reported
by Smith and Goodman44 in their DP4 dataset (again, single
conformers were used for both DFT and IMPRESSION predic-
tions). IMPRESSION predictions gave MAE ¼ 0.29 ppm, RMSD
¼ 0.38 ppm, MaxE ¼ 1.59 ppm with a variance lter of 0.1 ppm
but in this case no environments were removed with the vari-
ance lter and provided essentially the same outcomes as the
ub97xd/6-311g(d,p) DFT method on the same single conformer
structures (MAE ¼ 0.28 ppm, RMSE 0.37 ppm, MaxE 1.62 ppm,
see Fig. 4 for an overlay of errors). The IMPRESSION predictions
for d13C using the 5 ppm variance lter identied during
training and testing of the machine compared slightly less well
to the DP4 experimental dataset (MAE ¼ 3.44 ppm, RMSE ¼
4.30 ppm, MaxE ¼ 13.06 ppm, removing 24 environments) than
DFT (MAE ¼ 2.78 ppm, RMSE ¼ 3.48 ppm, MaxE ¼ 14.33 ppm).
A tighter 1 ppm variance lter for the d13C predictions was
examined, but gave only a slight improvement in prediction
quality MAE¼ 3.20 ppm, RMSE¼ 4.00 ppm, MaxE¼ 13.03 ppm
while removing 120 out of the 458 carbon environments.

At every stage in this study we found that the IMPRESSION
d13C predictions have a wider distribution of errors than the
other NMR parameters when compared to the quality of the
FT calculations when compared to the relevant experimental validation
filters applied to IMPRESSION predictions: d1H ¼ 0.1 ppm (0 of 734
d), 1JCH ¼ 1 Hz (143 of 608 environments removed).

This journal is © The Royal Society of Chemistry 2020
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DFT from which they are trained. This is unsurprising given
that the structural environments of 13C nuclei in molecules are
inherently more complex than 1H given the higher valency and
thus more complex bonding environments and geometries, so
in future development, larger training datasets focussed on
optimising d13C predictions will be benecial.
2.4 3-Dimensional structure discrimination

A demanding test of IMPRESSION is in its ability to predict and
discriminate experimental NMR data for stereoisomeric
compounds i.e. those that differ only in their 3-dimensional
structure, but not connectivity. Even though IMPRESSION has
not been explicitly trained to deal with multiple conformers/
isomers of any one compound, 3-dimensional variation is
implicit within the varied chemical structural space of the
adaptively sampled training set. Buevich et al. recently
demonstrated5 that DFT prediction of 1JCH values can success-
fully discriminate the naturally occurring structure 1 of the
polycyclic alkaloid strychnine (Fig. 5, centre) from 12 other
diastereomers (see ESI Section S5† for the structures) based on
comparison with the experimental 1JCH values of the natural
product. Pleasingly, the same test conducted with
IMPRESSION-predicted 1JCH values (blue bars in Fig. 5, le) also
correctly identies the natural product diastereomer 1a as
having the smallest error (MAE ¼ 1.87 Hz; RMSE ¼ 2.50 Hz;
MaxE ¼ 6.19 Hz). The error for the correct structure is �30%
lower than the diastereomer with the second lowest error 6
(MAE ¼ 2.48 Hz; RMSE ¼ 3.38 Hz; MaxE ¼ 8.42 Hz) and this is
very similar to the discrimination offered by ub97xd/6-
311g(d,p) (red bars in Fig. 5). Indeed IMPRESSION could also
distinguish between the 3-dimensional structures of 1a, the
lowest energy conformer of the natural product (97% pop-
ulation in solution), and 1b which is the second lowest energy
conformer (3% population in solution).45 So while the absolute
accuracy of IMPRESSION for predicting 1JCH values for strych-
nine (MAE ¼ 1.87 Hz) is slightly lower than that obtained from
Fig. 5 Errors from comparison of NMR experimental data of the natu
predictions for 13 diastereomers of strychnine, including two conformer
the next lowest energy 1b (<3% populated). The left hand plot shows MAE
error for all NMR parameters (d1H, d13C and 1JCH) combined. Variance fil

This journal is © The Royal Society of Chemistry 2020
the DFT method (MAE ¼ 1.31 Hz), its discriminating power
between structural isomers is nearly the same.

Combining IMPRESSION predictions for 1JCH with 1H and
13C chemical shis also provides correct identication of the
naturally occurring structure, but IMPRESSION and DFT now
both see structure 2 as the next best candidate (Fig. 5, right).
This is due to the experimental d1H values having better
agreement with the predictions for diastereomer 2 than 1a for
DFT and also IMPRESSION. While this is obviously problematic
for structure elucidation purposes, it clearly arises because of
a deciency in the DFT prediction of 1H chemical shis, which
is then faithfully reproduced by IMPRESSION. For the indi-
vidual MAE values across all three parameters see ESI Section
S5.†

Similarly, we found that IMPRESSION predictions can be
used to correctly assign the diastereotopic protons in strych-
nine. IMPRESSION and DFT predictions of 1JCH for the dia-
stereotopic protons in strychnine were consistently in line with
each other (details can be found in Section S4 of the ESI†) and
for the three methylene groups where there is a signicant
difference ([2 Hz) in experimental 1JCH values both methods
correctly assign these protons (Fig. S16†).

Finally, we validated IMPRESSION chemical shi predic-
tions for natural product structures. We conducted DFT and
IMPRESSION predictions on structures from a recent report
which suggested structural reassignments for oxirane-
containing natural products on the basis of DU8+ DFT calcu-
lations.46 To avoid complications with incorrect DFT prediction
of conformer energies leading to poor population averaging of
NMR parameters from the constituent conformers, we limited
the validation to ‘rigid’ structures in the report that contained
only one dominant conformer aer conformational searching.
Pleasingly, while our results did not always agree with the DU8+
analysis, IMPRESSION was just as effective as our underlying
ub97xd/6-311g(d,p) DFT method in discriminating each orig-
inal and revised chemical structure (see Section S3 in the ESI for
ral product strychnine (centre) to IMPRESSION (blue) and DFT (red)
s for the natural product 1: the lowest energy 1a (>97% populated) and
for 1JCH while the right hand plot shows the geometric mean absolute

ters applied to predictions: d1H ¼ 0.1 ppm, d13C ¼ 5 ppm, 1JCH ¼ 1 Hz.
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more details†). Once again this conrms that IMPRESSION is
capable of making predictions that are of comparable quality to
it's underlying DFT method ub97xd/6-311g(d,p), and thus any
improvements in the DFT method used to train IMPRESSION
will be subsequently expressed in the quality of IMPRESSION
predictions.

3 Conclusions

In summary, this rst generation IMPRESSION machine,
trained on DFT-computed NMR parameters derived from a set
of 3-dimensional structures is capable of reproducing DFT-
predicted NMR parameters for a range of experimentally rele-
vant systems with high accuracy but in a fraction of the time.
Accurate and generalised prediction of NMR parameters for 3-
dimensional applications has not been addressed by previous
machine learning systems but the condence provided by the
variance-ltered IMPRESSION results makes this tool essen-
tially as robust for 3-dimensional applications to experimental
systems as DFT. At this stage, the two primary sources of error in
IMPRESSION predictions of experimental data are errors in the
underlying DFT method on which it is trained (of which there
can be several47–49) and the range of chemical space covered by
the current IMPRESSION training set. We are working to
improve both of these factors, as well as extending the predic-
tions to multiple-bond scalar couplings for future generations
of IMPRESSION, along with developing a more rigorous statis-
tical treatment of the predicted values taking into account the
pre-prediction variance.
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Oliva, C. Pérez, R. Crespo-Otero and R. Contreras, Magn.
Reson. Chem., 2013, 51, 775–787.

16 N. Grimblat, M. M. Zanardi and A. M. Sarotti, J. Org. Chem.,
2015, 80, 12526–12534.

17 V. A. Semenov and L. B. Krivdin, Magn. Reson. Chem., 2019,
DOI: 10.1002/mrc.4922.

18 NMR Prediction Soware from ACD/Labs, https://
www.acdlabs.com/products/adh/nmr/nmr_pred/.

19 NMR Prediction Soware from Mestrelab, https://
mestrelab.com/soware/mnova/nmr-predict/.

20 A. M. Castillo, A. Bernal, R. Dieden, L. Patiny and J. Wist, J.
Cheminf., 2016, 8, 26.

21 A. J. Brandolini, NMRPredict, Modgraph Consultants Ltd, CA
92129, 2006.

22 F. M. Paruzzo, A. Hofstetter, F. Musil, S. De, M. Ceriotti and
L. Emsley, Nat. Commun., 2018, 9, 4501.

23 C. Venkata, M. J. Forster, P. W. Howe and C. Steinbeck, PLoS
One, 2014, 9, e111576.

24 M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb,
J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. Petersson and others, Wallingford, CT, 2016, (For the
full reference see the ESI†).

25 A. M. Teale, O. B. Lutnæs, T. Helgaker, D. J. Tozer and
J. Gauss, J. Chem. Phys., 2013, 138, 024111.

26 C. Adamo and V. Barone, J. Chem. Phys., 1998, 108, 664–675.
27 A. McLean and G. Chandler, J. Chem. Phys., 1980, 72, 5639–

5648.
28 R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem.

Phys., 1980, 72, 650–654.
29 J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 2008, 128,

084106.
30 W. Deng, J. R. Cheeseman and M. J. Frisch, J. Chem. Theory

Comput., 2006, 2, 1028–1037.
This journal is © The Royal Society of Chemistry 2020

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9sc03854j


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
N

ov
em

be
r 

20
19

. D
ow

nl
oa

de
d 

on
 7

/1
9/

20
25

 1
0:

06
:4

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
31 P. B. Wilson, M. Grootveld and S. C. L. Kamerlin, Magn.
Reson. Chem., 2019, DOI: 10.1002/mrc.4940.

32 R. Laskowski, P. Blaha and F. Tran, CHESHIRE Chemical Shi
Repository, 2019, accessed October 2nd, 2019.

33 H. S. Seung, M. Opper and H. Sompolinsky, Proc. 5th Ann.
Work. Comp. Learn. Theory, New York, NY, USA, 1992, pp.
287–294.

34 M. Gastegger, J. Behler and P. Marquetand, Chem. Sci., 2017,
8, 6924–6935.

35 J. S. Smith, B. Nebgen, N. Lubbers, O. Isayev and
A. E. Roitberg, J. Chem. Phys., 2018, 148, 241733.

36 C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. Ward, Acta
Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2016, 72,
171–179.

37 C. Saunders, A. Gammerman and V. Vovk, Proceedings of the
15th International Conference on Machine Learning (ICML '98),
1998.

38 Y. Binev and J. Aires-de Sousa, J. Chem. Inf. Comput. Sci.,
2004, 44, 940–945.

39 Y. Binev, M. M. Marques and J. Aires-de Sousa, J. Chem. Inf.
Model., 2007, 47, 2089–2097.

40 M. Rupp, R. Ramakrishnan and O. A. Von Lilienfeld, J. Phys.
Chem. Lett., 2015, 6, 3309–3313.

41 B. Huang and O. A. von Lilienfeld, arXiv preprint
arXiv:1707.04146, 2017.

42 F. A. Faber, A. S. Christensen, B. Huang and O. A. von
Lilienfeld, J. Chem. Phys., 2018, 148, 241717.
This journal is © The Royal Society of Chemistry 2020
43 A. S. Christensen, L. A. Bratholm, S. Amabilino,
J. C. Kromann, F. A. Faber, B. Huang, A. Tkatchenko,
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