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ic alterations in breast cancer in
response to molecular inhibitors with Raman
spectroscopy and validated with mass
spectrometry†

Xiaona Wen,‡a Yu-Chuan Ou,‡a Galina Bogatcheva,b Giju Thomas,c

Anita Mahadevan-Jansen,c Bhuminder Singh, b Eugene C. Lind

and Rizia Bardhan *ef

Rapid and accurate response to targeted therapies is critical to differentiate tumors that are resistant to

treatment early in the regimen. In this work, we demonstrate a rapid, noninvasive, and label-free

approach to evaluate treatment response to molecular inhibitors in breast cancer (BC) cells with Raman

spectroscopy (RS). Metabolic reprogramming in BC was probed with RS and multivariate analysis was

applied to classify the cells into responsive or nonresponsive groups as a function of drug dosage, drug

type, and cell type. Metabolites identified with RS were then validated with mass spectrometry (MS). We

treated triple-negative BC cells with Trametinib, an inhibitor of the extracellular-signal-regulated kinase

(ERK) pathway. Changes measured with both RS and MS corresponding to membrane phospholipids,

amino acids, lipids and fatty acids indicated that these BC cells were responsive to treatment.

Comparatively, minimal metabolic changes were observed post-treatment with Alpelisib, an inhibitor of

the mammalian target of rapamycin (mTOR) pathway, indicating treatment resistance. These findings

were corroborated with cell viability assay and immunoblotting. We also showed estrogen receptor-

positive MCF-7 cells were nonresponsive to Trametinib with minimal metabolic and viability changes.

Our findings support that oncometabolites identified with RS will ultimately enable rapid drug screening

in patients ensuring patients receive the most effective treatment at the earliest time point.
Introduction

Dysregulation of the mitogen-activated protein kinases (MAPK)
pathway plays a critical role in the proliferation and progression
of breast cancer (BC). This dysfunction is achieved by activating
the extracellular-signal-regulated kinase (ERK) (or Ras/Raf/
MEK/ERK) signaling cascade,1 which has been associated with
disease progression, metastasis, and treatment resistance in
BC.2,3 Small molecule inhibitors (SMIs) that downregulate
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components of the ERK pathway have shown improved clinical
outcomes in BC patients, and several clinical trials have shown
successful outcomes (NCT03971409, NCT03395899).4 Current
clinical measures rely on immunohistochemistry (IHC) analysis
to guide initial treatments. But IHC is mostly qualitative, suffers
from inter-patient variability, and oen lacks accuracy when
presented with heterogeneous tumors.5,6 Clinical decisions
based on change in tumor size in response to therapy are
inherently slow and low-throughput as a decrease in tumor
burden can take several weeks. Therefore, an unmet clinical
need exists for rapid, accurate, and cost-effective diagnostic
tools that can guide the best treatment choices at the earliest
time point and reduce mortality due to ineffective cancer
therapies.

Metabolic reprogramming is an emerging hallmark of
cancer.7 Cancer cells reprogram their metabolism to maintain
viability and proliferate to metastatic disease.8,9 Such metabolic
rewiring goes beyond the well-known Warburg effect (glycolytic
activity),10 and includes a cumulative change in phospholipids,
amino acids, lipids and fatty acids.11,12 Emerging evidences now
support that SMIs show an immediate inhibition of this altered
metabolism in cancer cells before a reduction in tumor size is
Chem. Sci., 2020, 11, 9863–9874 | 9863
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observed, presenting a more sensitive endpoint to treatment
response.13,14 Metabolic response in clinical practice is tradi-
tionally measured with uorodeoxyglucose-positron emission
tomography (FDG-PET), which is both cost-prohibitive and has
poor sensitivities to drug response.15 Further, FDG-PET is
limited in evaluating treatment response of patients under-
going therapy with mitogen-activated protein kinase (MEK)
inhibitors targeting the ERK pathway. This limitation of FDG-
PET is primarily due to its ability to only visualize changes in
glycolytic activity, whereas inhibition of MEK has minimal
impact on glycolytic effect.16,17 It is also noteworthy that 18F-FDG
uptake is oen enhanced by endothelial proteins such as
vascular endothelial growth factor, which is overexpressed in
BC, resulting in false diagnosis.18

In this work, we address the limitations of current clinical
measures by demonstrating the utility of Raman spectroscopy
(RS) combined with multivariate statistical analysis for tracking
alterations in multiple metabolites in response to SMIs of the
ERK pathway in BC cells. RS is an established optical spec-
troscopy that measures inelastic scattering of photons induced
by the vibrational bonds in samples.19–22 RS is a low-cost, rapid,
label-free, and stain-free technique and has been utilized in
Scheme 1 Schematic representation of metabolic changes probed in br
downregulating the ERK pathway. RS data combined with multivariate an
to treatment distinguishing responders from nonresponders.

9864 | Chem. Sci., 2020, 11, 9863–9874
breast cancer for diagnosis and surgical guidance.23–25 RS is also
nondestructive allowing sample archival and retesting for
accurate measure of therapeutic response.26–29 Here, we lever-
aged the advantages of Raman spectral mapping in its ability to
rst measure dynamic changes at the single-cell level with high
sensitivity; second spatiotemporally resolve multiplexed meta-
bolic changes; and third enable quantitative analysis. We
treated triple-negative BC cell line MDA-MB-231 with Trameti-
nib, a potent and specic MEK1/2 allosteric inhibitor,30 that
downregulates MEK signaling in the ERK pathway. MDA-MB-
231 has basal-like properties and is known to have BRAF and
KRAS mutations, which represent two major oncogenic drivers
in the ERK pathway (Scheme 1). Treatment response to Trate-
minib was assessed with RS and resulting data were analyzed
with principal component analysis (PCA). PCA allowed us to
reduce the data dimensions of the multiple peaks in RS to
a smaller number of principal components or loadings that
carry all of the relevant spectral information necessary for
classication.31,32 We also treated MDA-MB-231 cells with
phosphatidylinositol-3-kinase (PI3K) inhibitor (Alpelisib) and
showed that these cells were resistant to this treatment. Finally,
we studied an estrogen receptor (ER) positive BC cell line, MCF-
east cancer cells with RS after treatment with small molecule inhibitors
alysis and confirmed with mass spectrometry provide an early response

This journal is © The Royal Society of Chemistry 2020
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7, which was resistant to Trametinib. Spectral trends from RS
were then veried with mass spectrometry (MS), a gold standard
in metabolomics. Note that MS by itself is not conducive to early
and rapid drug screening since it is both time- and labor-
intensive, and expensive. But RS trends validated with MS
presents a complementary platform19,33 for rapid, high-
throughput, and single-cell level drug screening (with RS)
combined with ensemble analysis of large volume of cells (with
MS) to simultaneously conrm the changes in multiple
metabolites post-treatment (Scheme 1). By correlating the
metabolic changes observed with RS and MS, we demonstrate
that our approach can distinguish responders from nonre-
sponders as a function of drug dosage, drug type targeting
different signaling pathways, and cell type examining different
BC lines. Our study goes beyond the traditional assays of cell
viability and immunoblotting measurements, and highlights
early and improved drug response selectivity with tremendous
translational potential.

Results and discussion

We recorded spatial Raman maps and measured the corre-
sponding spectra of MDA-MB-231 cells in response to treatment
with MEK inhibitor (MEKi), Trametinib. We measured �20–25
individual cells per treatment group (Fig. S1†) with a near-
infrared 785 nm laser and 100� objective. Cells were seeded
on poly-L-lysine coated calcium uoride (CaF2) disks to mini-
mize substrate-induced background, and xed by 4% formal-
dehyde aer 72 h of treatment. High resolution maps of a few
cells were acquired in a single rectangular requisition at 2 mmby
2 mm resulting in 50–500 pixels per cell dictated by the size of
the cell. Acquired spectra were then smoothed,34–37 background
subtracted following literature methods38,39 and nally
normalized for further analysis (details provided in the Exper-
imental section). The representative original Raman spectra
acquired from each cell and step-by-step spectral processing
were shown in Fig. S2.† The mean normalized Raman spectra of
the MDA-MB-231 cells treated with Trametinib at its working
concentration (50 nM)40,41 showed signicant changes in
multiple peaks relative to untreated cells (Fig. 1a). To under-
stand how the Raman footprint changed post-treatment, the
difference spectrum was obtained by subtracting the mean
normalized Raman spectrum of treated cells from the untreated
cells (Fig. 1b). Here, positive differences indicate Raman peak
intensities decreased aer treatment, and negative differences
indicate an increase in Raman peak intensities post-treatment.
The key Raman peaks identied are shown with arrows, and the
corresponding metabolites/proteins are listed in Table 1. These
peak assignments were determined based on literature
ndings.42

We then quantied the changes in selective Raman peaks
(Fig. 1c and S3†), and correlated the observed trends to meta-
bolic response to SMIs of the ERK pathway in breast cancer. A
decrease in the Raman peak at 719 cm�1 was observed post-
treatment corresponding to phosphocholine and phosphati-
dylcholine (PC). Cancer cells are known to upregulate PC which
is the most abundant phospholipid in cell membrane. Aberrant
This journal is © The Royal Society of Chemistry 2020
PC metabolism may result from enhanced choline kinase
expression or activity.43 Due to the relevance of PC in tumor
progression, it is considered as a predictive biomarker for
monitoring tumor response.44,45 Emerging evidences suggest
a strong correlation between choline metabolism and the ERK
signaling cascade, where MEK inhibition decreases PC and its
precursors,46,47 and this trend is well supported by our RS
results. The difference spectrum also showed a decrease in the
Raman footprint of DNA (782, 1094 and 1575 cm�1), indicating
that the cytotoxic effect of Trametinib induced apoptosis and
decrease in DNA replication.48 A decrease in cell viability with
treatment response also reduced the ability of cells to synthe-
size proteins, which corresponded well with a decrease in
Raman peaks of amide III (1239 cm�1), and phenylalanine (1000
and 1582 cm�1) that is an essential amino acid necessary for
protein synthesis. A decrease in Raman footprint of lipids/fatty
acids (1310 cm�1) was also observed, which is not surprising as
cancer cells are known to rewire their metabolic circuit by
dysregulating levels of lipids. Alterations in lipids oen
converge on the activation of the ERK pathway.49 Lipids and
fatty acids metabolism is also mediated by crosstalk between
receptor tyrosine kinases (RTKs) and downstream signaling via
ERK.50 RTKs are overexpressed in most tumor types and activate
cancer cells proliferation and survival. The epidermal growth
factor receptor (EGFR) RTK is overexpressed in MDA-MB-231
cells,51 and EGFR aberrations are known to stimulate the ERK
pathway.52 These correlations indicate that MEK inhibition with
Trametinib is likely to reduce some lipids/fatty acids as
observed with RS (and also validated with MS).

Our quantitative analysis also showed that several Raman
peaks increased aer treatment (Fig. 1c and S3†), including
tyrosine (830 and 1163 cm�1), sphingomyelin (875 cm�1), and
a subset of lipids (1057 cm�1). Tyrosine residues play a critical
role in RTKs such as EGFR. EGFR overexpression results in
phosphorylation of the protein tyrosine residues, which then
activates downstream signaling via ERK.53 Therefore, we expect
that MEK inhibition with Trametinib would result in dephos-
phorylation of tyrosine kinase. This dephosphorylation would
manifest as an increase of tyrosine in Raman signal as the
phosphorylated form of tyrosine decreased post-treatment as
observed in our results. Sphingomyelin, a sphingosine-based
phospholipid that exists in cell membranes, presents an anti-
cancer role through ceramide release leading to apoptosis, and
is known to augment the cytotoxicity of SMIs by activating
sphingomyelinase enzyme activity.54,55 Therefore, an increase in
Raman intensity of sphingomyelin post-treatment is expected
given its potent biological role in cancer cell metabolism.
Finally, a subset of lipids (1057 cm�1) increased post-treatment
(conrmed with MS as discussed later), demonstrating that
lipid metabolism in cancer is a highly complex phenomenon.

To identify major patterns in Raman spectra that distinguish
the untreated cells from the treatment group (50 nM MEKi), we
applied PCA to the data sets. The rst and second principal
component, PC1 and PC2, presented in a two-dimensional PC
scatter plot (Fig. 1d) showed clear clustering between the groups
with a variance level of 43.3% for PC1 and 28.4% for PC2. Each
dot in the plot represents one cell/spectrum with dimension
Chem. Sci., 2020, 11, 9863–9874 | 9865
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Fig. 1 MDA-MB-231 cells treated with Trametinib and probed with RS. (a) Mean normalized Raman spectra of untreated cells (black) and cells
treated with Trametinib at its working concentration 50 nM (red). Spectra were normalized to 1440 cm�1 biological peak. The inset shows
a magnified view of the smaller wavenumber region. (b) Difference spectrum obtained from (a) by subtracting the mean normalized Raman
spectrum of cells treated with Trametinib (50 nM) from the untreated cells to highlight changes in Raman footprint. Relevant peaks that either
increase or decrease with treatment are shown with an arrow. (c) Selective Raman peaks that decreased with treatment including phosphati-
dylcholine (719 cm�1), DNA (782 cm�1), phenylalanine (1000 cm�1), amide III (1239 cm�1) and lipids & fatty acids (1310 cm�1). Selective Raman
peaks that increased after treatment including tyrosine (830 cm�1), sphingomyelin (875 cm�1), and lipids (1057 cm�1). Here, * indicates p < 0.05,
*** indicates p < 0.001, and **** indicates p < 0.0001 determined by Student's t-test. (d) Principal component analysis showing clustering of
untreated cells relative to those treated with Trametinib represented in a scatter plot. (e) Corresponding PC loading showing both PC1 and PC2.
Relevant peaks in PC2 that distinguish the treated from untreated group are shown with arrows.
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reduction. In the corresponding PC loading (Fig. 1e) spectral
features in PC1 were likely due to the intrinsic variabilities
between the cellular groups. Dominant peak positions in PC2
corresponded well to the peaks identied in the difference
9866 | Chem. Sci., 2020, 11, 9863–9874
spectrum (Fig. 1b) supporting the metabolic alterations we
discussed above.

Next, we probed the ability of RS in distinguishing
responders from nonresponders by examining cellular response
This journal is © The Royal Society of Chemistry 2020
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Table 1 Peak assignments for Raman spectral bands42

Peak (cm�1) Assignment

719 Phosphocholine and
phosphatidylcholine

782 DNA
787 Phosphatidylserine
830 Tyrosine
875 Sphingomyelin
935 Proteins and amino acids
1000 Phenylalanine
1057 Lipids
1094 DNA
1163 Tyrosine
1239 Amide III
1310 Lipids and fatty acids
1575 DNA
1582 Phenylalanine
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to treatment as a function of Trametinib concentration (1, 50
and 300 nM) (Fig. 2a). PCA scatter plot showed distinguishable
clustering between the responsive and nonresponsive groups
with a variance level of 45.4% and 19.6% for PC1 and PC2,
respectively (Fig. 2b). Here, the cells treated with Trametinib at,
and well above the working concentration (50 and 300 nM) were
grouped on the negative side of PC2, and categorized as
responders. The untreated cells and those treated with signi-
cantly low concentration of Trametinib (1 nM) were clustered
together on the positive side of PC2, and categorized as
nonresponders. The features in both PC1 and PC2 (Fig. S4†) had
good concordance to the trends observed in Fig. 1e, and were
also supported by ratiometric analysis of individual Raman
peaks (Fig. S5†) as a function of Trametinib concentration.
Ratiometric analysis of the different metabolites is well aligned
with our discussion above on metabolic changes in response to
treatment with MEKi.

In addition to the ERK pathway, the mammalian target of
rapamycin (mTOR) pathway consisting of the PI3K/AKT/mTOR
cascade is also upregulated in BC.56 Whereas multiple SMIs,
Fig. 2 RS distinguishing responders from nonresponders as a function o
MDA-MB-231 cells and those treated with various concentrations (1,
1440 cm�1 biological peak. (b) PC scatter plot showing clustering of cel
nonresponders.

This journal is © The Royal Society of Chemistry 2020
such as PI3K inhibitor (Alpelisib), have shown favorable
outcomes in clinical trials (NCT02155088, NCT02998476,
NCT01241500, etc.), BCs that are estrogen receptor (ER),
progesterone receptor (PR) and/or human epidermal growth
factor receptor 2 (HER2) negative are poorly responsive to these
treatments. MDA-MB-231 cells have ER, PR, and HER2 triple-
negative status and are known to be resistant to Alpelisib and
other SMIs of the mTOR pathway.57,58 We performed RS and
investigated the cellular response of MDA-MB-231 cells upon
treatment with different concentrations of Alpelisib (0.5, 1 and
10 mM), where the working concentration of Alpelisib is �1 mM.
Besides a slight decrease in amino acids (935 and 1000 cm�1)
upon treatment with Alpelisib, overall minimal changes were
observed in Raman peaks corresponding to DNA, phospho-
lipids, lipids and fatty acids (Fig. S6a†) identied earlier. The PC
scatter plot of PC1 vs. PC2 (Fig. 3a) clearly showed that across all
concentrations of PI3Ki, there was no clustering demonstrating
that MDA-MB-231 cells were resistant to Alpelisib even beyond
its working concentration. The corresponding PC loading is
shown in Fig. S6b.†

Next, we examined the ability of RS in distinguishing
responders from nonresponders as a function of drug type.
Here, cells were treated with 1 mM of PI3Ki or 50 nM of MEKi
and compared to untreated cells. The mean normalized Raman
spectra of the MDA-MB-231 cells treated with MEKi (50 nM)
showed signicant changes in multiple peaks compared to
untreated cells or those treated with PI3Ki (1 mM) (Fig. S7a†).
The spectral differences between untreated cells and those
treated with PI3Ki (1 mM) were minimal. The PC scatter plot
further conrmed the results and clearly differentiated cells
that responded and those that were resistant to treatment
(Fig. 3b). The untreated cells and those treated with PI3Ki
(1 mM) were clustered together and dened as nonresponders,
whereas the cells treated with MEKi (50 nM) were grouped and
dened as responders. Additionally, PC1 and PC2 accounted for
39.1% and 24.7% of the total variance, respectively. The corre-
sponding PC loading (Fig. S7b†) shared similar features as the
PC loading shown in Fig. 1e. These results suggested that the
f Trametinib dosage. (a) Mean normalized Raman spectra of untreated
50 and 300 nM) of MEKi (Trametinib). Spectra were normalized to
ls based on Trametinib concentrations differentiating responders from

Chem. Sci., 2020, 11, 9863–9874 | 9867
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Fig. 3 RS distinguishing responders from nonresponders as a function of drug type. (a) PCA scatter plot comparing MDA-MB-231 cells in
response to different concentrations (0.5, 1 and 10 mM) of PI3Ki (Alpelisib) showing no distinct clustering among groups. (b) PCA scatter plot
comparing untreated cells (black) to those treated with 1 mMof PI3Ki (Alpelisib, blue) and 50 nM of MEKi (Trametinib, red). Clear clustering of cells
was observed for those responsive to treatment relative to nonresponders. (c) MTT viability assay of cells treated for 72 h with MEKi (Trametinib)
or PI3Ki (Alpelisib) at 0–10 mM concentrations (n ¼ 4 per concentration). Cell viability was measured at 540 nm. All data were presented as mean
� standard deviation. (d) Immunoblotting analysis of cells in response to treatment with MEKi (Trametinib) or PI3Ki (Alpelisib) at increasing
concentrations showed reduced ERK1/2 phosphorylation for cells that responded to treatment.
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metabolites summarized in Table 1 also played a critical role in
differentiating BC cells response to PI3Ki (Alpelisib). Trends
observed in RS were further veried with cell viability (MTT)
assay (Fig. 3c). MDA-MB-231 cells were treated for up to 72 h and
the percentage of viable cells was measured. MTT assay sup-
ported our ndings with RS, and showed that cells were not
responsive to PI3Ki (Alpelisib) where 90% of the cells were
viable at the working concentration of the drug (1 mM) and 75%
were viable at 10� higher concentration. The cells were highly
responsive to MEKi (Trametinib) in a dose-dependent manner
with �30% cells viable at the highest concentration of drug
evaluated in our study (1 mM MEKi). We also performed
immunoblotting assay (Fig. 3d) to further conrm the trends
observed in RS and MTT assay, and determine if the observed
trends among responders (MEKi treated) resulted from inhibi-
tion of the ERK pathway. Activation of the ERK pathway
produces an abundance of phosphorylated ERK (p-ERK) which
then stimulates downstream signaling. Therefore, inhibition of
the ERK pathway with Trametinib reduced p-ERK, but minimal
changes were observed in p-ERK for PI3K inhibition in BC cells.
Immunoblotting results supported RS results discussed in
Fig. 1c where upon treatment an increase in tyrosine was
observed resulting from a decrease in phosphorylated tyrosine
kinase. Western blot also showed neither inhibitors changed
9868 | Chem. Sci., 2020, 11, 9863–9874
the levels of phosphorylated AKT, which is the downstream
effector of PI3K in the mTOR cascade. We also examined the
impact of combinatorial treatment of Trametinib (50 nM) +
Alpelisib (1 mM) in MDA-MB-231 cells (Fig. S8†). PCA showed
cells treated with combination therapy clustered with those
treated with Trametinib alone. Additional details are provided
in SI.

To further validate the metabolic changes observed in RS in
response to molecular inhibitors, we performed LC-MS/MS on
cell extracts (Fig. 4). Mass spectrometry (MS) is a gold standard
in metabolomics sampling a large volume of cells and identi-
fying specic metabolites with both high selectivity and sensi-
tivity. MDA-MB-231 cells were treated with MEK (Trametinib, 50
nM) or P13K (Alpelisib, 1 mM) inhibitor at their working
concentration. Aer 72 h of treatment, cells were resuspended
in PBS, dried, weighted and then analyzed with MS. The
metabolites assessed with MS were represented via a heat map
where numbers shown are the ratio of integrated area of treated
cells to those of untreated control cells. The ratio <1 indicates
metabolites decreased with treatment, and ratio >1 indicates
metabolites increased post-treatment. Representative metabo-
lites were grouped into three main categories: amino acids
(AAs), membrane phospholipids, and lipids and fatty acids. In
response to treatment with Trametinib, the observed decrease
This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Mass spectroscopic analysis of MDA-MB-231 cells treated with Trametinib (MEKi) or Alpelisib (PI3Ki) at their working concentrations
(MEKi: 50 nM; PI3Ki: 1 mM). The numbers were a ratio of treated cells to untreated cell control where closer to 1 indicated minimal changes in
metabolites. All differential features (samples vs. controls) had a p value of <0.05.
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in AAs was consistent with ndings in the literature as cancer
cells are known to have upregulated de novo synthesis of AAs
and an increase in corresponding membrane transporters and
metabolic enzymes.59,60 AAs are the building blocks of proteins
and intricately participate in protein synthesis. Therefore,
a decrease in AAs in BC cells aer treatment was likely
contributed by an inhibition of these catabolic enzymes.
Further, decrease in cell viability post-treatment with Trameti-
nib also reduced AAs and subsequent protein synthesis, a trend
that was supported by RS (Fig. 1c, S3 and S5†). Additionally,
a decrease in phosphatidylcholine and other choline precursors
also supported the trends observed in RS and was consistent
with literature ndings noted earlier that demonstrate
a decrease in choline metabolism with MEK inhibition.
However, not all membrane phospholipids decreased with MEK
inhibition in BC cells. MS measurement supported RS trends of
increase in sphingomyelin aer treatment with Trametinib,
explained in the Fig. 1c discussion. We also observed a striking
decrease in lipids and fatty acids metabolism with MEK inhi-
bition supported by our RS ndings as well (Fig. 1c and S5†).
Note however, MS showed a subset of lipids increased post-
treatment which was also observed in RS where the lipid peak
at 1057 cm�1 (Fig. 1c) increased in intensity. These ndings
suggested that a future lipidomics study will be necessary to
unravel the crosstalk between lipids/fatty acids metabolism and
pro-oncogenic downstream signaling pathways. For cells
This journal is © The Royal Society of Chemistry 2020
treated with Alpelisib, a decrease in amino acids was observed
inMS which likely resulted from a decrease in protein synthesis,
also observable as a decrease in the RS footprint at 935 and
1000 cm�1 (Fig. S6a†). But overall, treatment with Alpelisib
resulted in minimal changes in both membrane phospholipids,
and lipids and fatty acids in MS. These results collectively show
that MS validates the ndings from RS, and these two tech-
niques are complementary in providing rapid drug screening
and corresponding metabolic rewiring at the cellular level.

Thus far, our approach has focused on distinguishing
responders from nonresponders within the same cell line as
a function of dosage and drug type. Next, we evaluated if RS can
determine treatment response in an ER-positive cell line, which
represents a large subset of BC. We chose MCF-7 as a model of
ER-positive cell line61 with no known KRAS mutations, and
resistance to selective MEK inhibitors. MCF-7 cells were treated
with Trametinib at various concentrations (1 nM, 50 nM and 1
mM), and cellular response was assessed with RS. Representative
original Raman spectra of MCF-7 cells, and Raman spectra aer
smoothing and background subtraction were shown in Fig. S9.†
Minimal changes were observed in most of the Raman peaks as
a function of drug concentration (Fig. 5a) and PCA scatter plot
corroborated that MCF-7 cells were resistant to Trametinib with
no clear clustering of cells for any of the concentrations
(Fig. 5b). These ndings were further conrmed with cell
viability assay (Fig. 5c) which showed MCF-7 cells were not
Chem. Sci., 2020, 11, 9863–9874 | 9869
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Fig. 5 MCF-7 cells treated with Trametinib and interrogated with RS. (a) Mean normalized Raman spectra of untreated cells (black) relative to
those treated with MEKi (Trametinib) at 1 nM (blue), 50 nM (red) and 1 mM (cyan). Spectra were normalized to 1440 cm�1 biological peak. Minimal
changes in Raman footprint were observed. (b) PCA scatter plot comparing untreated cells with those treated with Trametinib showing no
distinct clustering among groups. (c) MTT viability assay of cells treated for 72 h with Trametinib at various concentrations (n ¼ 4 for each
concentration). Cell viability was measured at 540 nm. All data were presented as mean � standard deviation.
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responsive to MEK inhibition with Trametinib where 80% of the
cells remained viable even at a signicant high concentration of
1 mM. A comparison of the PC loading for MCF-7 cells treated
with Trametinib (Fig. S10†) with those of MDA-MB-231 cells
(Fig. 1e, S4, S7b and S8c†) showed signicant differences in
treatment response between the two BC cells supporting the cell
viability results of treatment resistance. A few features in PC
loading of MCF-7 (Fig. S10,† indicated by arrows) arose from
DNA (782 cm�1), amino acids (856 cm�1), proteins (935 and
1123 cm�1), and lipids/fatty acids (1330 cm�1) were likely due to
decrease in cell viability at the highest concentration of Tra-
metinib as observed in RS (Fig. 5a) and viability assay (Fig. 5c).
Conclusions

In summary, this work addresses a critical need in early and
accurate drug screening which goes beyond the traditional
approaches (e.g., viability assay and immunoblotting) in dis-
tinguishing responders from nonresponders. Here, we per-
formed RS to probe metabolic reprogramming in breast cancer
cells, and evaluated treatment response to potent and clinically
approved SMIs by examining alterations in metabolites. Our
ndings demonstrate that RS combined with multivariate
analysis presents a powerful platform with tremendous clinical
signicance differentiating BC cells that are responsive to SMIs
as a function of dosage, drug type, and cell type. Findings with
RS were veried with MS, a workhorse in metabolomics, by
examining various oncometabolites. Primarily we showed that
triple-negative MDA-MB-231 BC cells were responsive to Tra-
metinib, an inhibitor of the ERK pathway, and nonresponsive to
Alpelisib, an inhibitor of the mTOR pathway, supported by
a collective change in DNA, membrane phospholipids, amino
acids, lipids and fatty acids. We also demonstrated that ER-
positive MCF-7 BC cells were resistant to Trametinib with
minimal changes in metabolites and no classication among
treatment groups as seen in PCA. Our results suggest that these
oncometabolites represent an important hallmark of cancer
that can be targeted to both treat cancer and understand
resistance mechanisms.62 Whereas this work demonstrated our
9870 | Chem. Sci., 2020, 11, 9863–9874
capability in 2D cultures, our future work will focus on the
utility of organotypic cultures to understand metabolic rewiring
in a system that recapitulates the human tumor microenvi-
ronment. As our understanding expands in how cancer cells
become addicted to specic metabolic pathways,63 we anticipate
that RS validated with MS and combined with sophisticated
machine learning algorithms64,65 will enable us to identify novel
anticancer drugs that target these metabolic vulnerabilities.
Ultimately, we expect this platform will have signicant impact
on cancer patients identifying those resistant to drug combi-
nations even before therapy begins and guiding clinical deci-
sions to an optimal treatment plan.
Experimental
Cell culture

MDA-MB-231 cells were purchased from the American Type
Culture Collection (ATCC, HTB-26). The cells were cultured in
Dulbecco's modied Eagle's medium (DMEM, Gibco) supple-
mented with 10% fetal bovine serum (FBS, Thomas Scientic).
MCF-7 cells (ATCC, HTB-22) were cultured in Eagle's minimum
essential medium (EMEM, ATCC) supplemented with 10% FBS
(ATCC), 1% penicillin/streptomycin (Gibco), and 0.01 mg mL�1

human recombinant insulin (invitrogen). The cells were main-
tained at 37 �C and 5% CO2. Aerwards, MDA-MB-231 or MCF-7
cells were seeded on 6 well plates at approximately 60% con-
uency. Once the cells have attached to the plates, different
concentrations of MEKi (Trametinib, Selleck Chemical), PI3Ki
(Alpelisib, Selleck Chemical), or a combination of two in
complete media were added. Aer 72 h of incubation, old media
were removed and the cells were trypsinized. Detached cells
were centrifuged at 125 � g for 7 min to remove dead cells and
then re-seeded on poly-L-lysine (Sigma) coated calcium uoride
windows (CaF2, Crystran). Once the cells reattached on the CaF2
disks, media were removed. Next, the cells on CaF2 disks were
washed three times with phosphate buffer saline (PBS), xed by
4% formaldehyde (methanol-free) at room temperature for
10 min, washed with PBS three times again, and dried at room
temperature prior to Raman mapping.
This journal is © The Royal Society of Chemistry 2020
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In vitro Raman mapping and analysis

The cells on CaF2 disks were visualized using a Renishaw inVia
Raman microscope system. Brighteld images of the cells were
captured with a 100� objective. A rectangular area capturing
3–4 cells was selected for Raman mapping at 2 mm by 2 mm
resolution. Raman spectra for the entire map were obtained
with a 785 nm laser (10 mW) with 1200 lines per mm grating
with 10 s acquisition time. Aerwards, cosmic ray removal was
performed with nearest neighbor method using the Renishaw
WiRE 3.4 soware. A custom MATLAB (R2019a) code was used
to perform smoothing and background correction. The spectra
were rst smoothed by using the Savitzky and Golay lter with
h order and coefficient value of 47 (points). An automated
and modied polyt method was applied to remove uorescent
background by using a 11th order polynomial with a threshold
of 0.0001. To eliminate non-cell pixels from the rectangular
map, biological peak at 1440 cm�1 was selected to generate the
cellular masks. The pixels were considered cell, or “mask” when
the intensities were higher than the set threshold. A Gaussian
function was utilized to smooth the edges of the cell mask. The
brighteld optical images were used to ensure the accuracy of
the nal cell masks. Clusters of pixels in the Raman map were
then averaged, normalized using standard normal variate
method and dened as one cell for PCA analysis. PCA was
performed by using the MATLAB built-in “pca” function where
the analyzed data were mean centered by default. Therefore, the
variations of PC score shown in Fig. 1d, 2b, 3a, b, 5b and S8b†
represent the results of PCA. These variations were not
contributed by any biases from the raw data. Two principal
components were plotted to discriminate each treatment group.
Viability assay

MDA-MB-231 or MCF-7 cells were passaged and seeded on 96
well plates. Once the cells were attached to the plates overnight,
different concentrations of MEKi (Trametinib) or PI3Ki (Alpe-
lisib) in complete media were added to the wells. Aer 72 h of
treatment, old media in each well were removed and replaced
with 100 mL of fresh media mixed with 10 mL of 12 mM 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT,
Thermo Fisher Scientic). Aer 3 h of incubation, 85 mL of the
media solution in each well was removed and 50 mL of dimethyl
sulfoxide (DMSO) was added to solubilize and dissolve the for-
mazan. The plates were incubated at 37 �C for 10 min, and the
absorbance of each well was read at 540 nm using a Biotek
Synergy H1 plate reader.
Western blot

MDA-MB-231 or MCF-7 cells were passaged, counted, and
seeded on 6 well plates. The number of cells seeded on each well
was counted by a scepter to ensure that each sample contained
the same number of cells and proteins. Once the cells were
attached to the plates overnight, different concentrations of
MEKi (Trametinib) or PI3Ki (Alpelisib) in complete media were
added to the wells. Aer 6 h of treatment, lysis buffer was added
to the cells and incubated at 4 �C for 30 min. Lysates were then
This journal is © The Royal Society of Chemistry 2020
centrifuged at 18 000g at 4 �C for 15 min. Equal amounts of
proteins were mixed with Laemmli buffer and boiled for 5 min.
The samples were then loaded on 10% SDS-PAGE, and subse-
quently transferred onto nitrocellulose membranes through
electrophoresis overnight in a cold room. The membranes were
blocked before adding primary antibodies. Primary and
secondary antibodies were prepared in the blocking buffer. All
antibodies were purchased from Cell Signaling Technology.
Primary antibodies were against AKT (9272S), phosphor-AKT
(9271S), ERK 1/2 (9102S) and phosphor-ERK 1/2 (9101S).
Mass spectrometry

MDA-MB-231 cells were rst seeded on 6 well plates and then
treated with either MEKi (Trametinib) or PI3Ki (Alpelisib) for
72 h. Aer treatment, cells were washed with 1� PBS three times
and detached by trypsin (Gibco). Trypsin was removed by
centrifuge at 125 � g, and cells were resuspended in a small
volume of 1� PBS. A lyophilizer (Labconco) was then utilized to
remove any solvent. Dried cells were stored at �80 �C. The snap
frozen cell pellets were weighed and reconstituted in a specied
volume of methanol/water (3 : 1) to yield a cell density of
12.4 mg mL�1. Cells were then ash frozen on dry ice and
thawed at 5 �C three times to facilitate complete lysis. An aliquot
of cell lysate (700 L) was combined with chloroform (500 L) in
a clean glass vial, vortexed vigorously, and centrifuged at
3000 � g for 5 min to achieve efficient phase separation. The
aqueous (top) layer containing polar metabolites was trans-
ferred to a clean Eppendorf tube, evaporated to dryness under
a gentle stream of nitrogen gas, and reconstituted in 200 L of
acetonitrile/water (2 : 1) containing 250 M tyrosine (phenyl-3,5-
d2) internal standard. Forty-two amino acid analogues were
measured in the aqueous fraction by a targeted HILIC-MS/MS
method. The chloroform (bottom) layer containing nonpolar
metabolites was transferred to a clean glass vial, evaporated to
dryness under a gentle stream of nitrogen gas, and recon-
stituted in 170 L of methanol containing 3 M carbamazepine
and 30 L of a 10� solution of SPLASH LIPIDOMIX standard
(Avanti Polar Lipids). The chloroform fraction was analyzed by
reverse phase LC-high resolution MS for untargeted
metabolomics.

For analysis of amino acids, LC-MS/MS analysis was per-
formed using an Acquity UPLC system (Waters) interfaced with
a TSQ Quantum Ultra™ triple-stage quadrupole mass spec-
trometer (Thermo Fisher Scientic). Themass spectrometer was
equipped with an IonMax source housing and a heated elec-
trospray ionization (ESI) probe. Individual reference standards
of all analytes were infused into the mass spectrometer for the
optimization of ESI and selected reaction monitoring (SRM)
parameters. Detection was based on SRM using the following
optimized source parameters (positive ionization): spray voltage
at 5 kV; capillary temperature at 300 �C; vaporizer temperature
at 185 �C; tube lens of 52 V atm/z 184; N2 sheath gas pressure 50
(arbitrary units); and N2 auxiliary gas pressure 5 (arbitrary
units). Data acquisition and quantitative spectral analysis were
done using Thermo-Finnigan Xcalibur version 2.0.7 SP1 and
Thermo-Finnigan LCQuan version 2.5.6, respectively. A Zic-
Chem. Sci., 2020, 11, 9863–9874 | 9871
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cHILIC analytical column (3 mm, 2.1 � 150 mm, Merck
SeQuant) was used for all chromatographic separations. Mobile
phases were made up of 0.2% acetic acid and 15 mM ammo-
nium acetate in (A) H2O/CH3CN (9 : 1) and in (B) CH3CN/
CH3OH/H2O (90 : 5 : 5). Gradient conditions were as follows: 0–
2 min, B ¼ 85%; 2–5 min, B ¼ 85–30%; 5–9 min, B ¼ 30%; 9–
11min, B¼ 30–85%; and 11–20min, B¼ 85%. The ow rate was
maintained at 300 L min�1, and the total chromatographic run
time was 20 min. The sample injection volume was 10 L. The
autosampler injection valve and the sample injection needle
were ushed and washed sequentially with mobile phase A (1
mL) and mobile phase B (1 mL) between each injection.

For analysis of untargeted lipidomics, discovery metab-
olomics data were acquired using a Vanquish ultrahigh
performance liquid chromatography (UHPLC) system inter-
faced to a Q Exactive HF quadrupole/orbitrap mass spectrom-
eter (Thermo Fisher Scientic). Samples were injected a total of
four times. Two injections were made in positive ESI mode
followed by two injections in negative mode. Chromatographic
separation was performed with a reverse-phase Acquity BEH
C18 column (1.7 m, 2.1 � 150 mm, Waters) at a ow rate of 300
L min�1. Mobile phases were made up of 10 mM ammonium
acetate in (A) H2O/CH3CN (1 : 1) and in (B) CH3CN/iPrOH (1 : 1).
Gradient conditions were as follows: 0–1 min, B ¼ 20%; 1–
8 min, B ¼ 20–100%; 8–10 min, B ¼ 100%; 10–10.5 min, B ¼
100–20%; and 10.5–15 min, B ¼ 20%. The total chromato-
graphic run time was 20 min, and the sample injection volume
was 10 L. Mass spectra were acquired over a precursor ion scan
range ofm/z 100 to 1200 at a resolving power of 30 000 using the
following ESI source parameters: spray voltage at 5 kV (3 kV in
negative mode); capillary temperature 300 �C; S-lens RF level at
60 V; N2 sheath gas pressure 40 (arbitrary units); N2 auxiliary gas
pressure 10 (arbitrary units); and auxiliary gas temperature at
100 �C. MS/MS spectra were acquired for the top-ve most
abundant precursor ions with an MS/MS AGC target of 105,
a maximum MS/MS injection time of 100 ms, and a normalized
collision energy of 30 eV. Chromatographic alignment, peak
picking, and statistical comparisons were performed using
Compound Discoverer version 3.0 (Thermo Fisher Scientic).
All differential features (samples vs. controls) having a p value of
<0.05 and a fold change of >1.5 were processed for molecular
matches in the Chemspider, mzCloud, HMDB, and KEGG
databases based on precursor ion exact masses (�5 ppm) and
MS/MS fragmentation patterns. Metabolite matches were then
ltered to exclude biologically irrelevant drugs and environ-
mental contaminants. The nalized list of putative identica-
tions was mapped to relevant biological pathways using the
Metabolika soware module. Pooled QCs were injected to
assess the performance of the LC and MS instruments at the
beginning and at the end of each sequence. The results of mass
spectrometry were visualized using the heatmap generated by
Python.
Statistical analysis

All data were presented as mean � standard deviation. Differ-
ences between two groups were assessed using GraphPad Prism
9872 | Chem. Sci., 2020, 11, 9863–9874
8 with unpaired two-sided Student's t-tests for the calculation of
p values. Here, * indicates p < 0.05, ** indicates p < 0.01, ***
indicates p < 0.001 and **** indicates p < 0.0001.
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