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patches of chemical space†

Jonas Verhellen a and Jeriek Van den Abeele b

In the past few years, there has been considerable activity in both academic and industrial research to

develop innovative machine learning approaches to locate novel, high-performing molecules in

chemical space. Here we describe a new and fundamentally different type of approach that

provides a holistic overview of how high-performing molecules are distributed throughout

a search space. Based on an open-source, graph-based implementation [J. H. Jensen, Chem. Sci.,

2019, 10, 3567–3572] of a traditional genetic algorithm for molecular optimisation, and influenced

by state-of-the-art concepts from soft robot design [J. B. Mouret and J. Clune, Proceedings of the

Artificial Life Conference, 2012, pp. 593–594], we provide an algorithm that (i) produces a large

diversity of high-performing, yet qualitatively different molecules, (ii) illuminates the distribution of

optimal solutions, and (iii) improves search efficiency compared to both machine learning and

traditional genetic algorithm approaches.
1 Introduction

Recent years have seen a surge1–10 of machine learning (ML)
papers focused on generating de novo molecules optimised for
performance with regard to a chosen objective function, e.g.
melting point11 or binding affinity to a target protein.12 These
ML models aim to generate chemical compounds which exhibit
desired behaviour, without reverting to explicit chemical rules,
patterns or transformations. Instead, ML models learn from
experimental data, and attempt to extrapolate the relevant
aspects of the underlying chemistry. In terms of performance,
however, ML models for molecular optimisation are rivalled by
more traditional and oen simpler, rule-based approaches13,14

such as genetic algorithms (GA).
In this paper, we introduce a novel rule-based algorithm

which we call graph-based elite patch illumination (GB-EPI).
This algorithm enforces diversity among a set of high-
performing molecules and leverages15–18 them to obtain effi-
cient optimisation. In addition, GB-EPI provides the user with
a map relating the performance of generated molecules to
chosen physicochemical properties. The algorithmic method-
ology of GB-EPI is discussed in the next section, followed by
results of standard benchmarks and an in-depth comparative
efficiency analysis between a graph-based genetic algorithm
(GB-GA) and GB-EPI.
iversity of Oslo, N-0316 Oslo, Norway.

N-0316 Oslo, Norway
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2 Algorithmic methodology

The goal of a classical optimisation algorithm is to obtain the
highest performing solution in a search space. If the exact
mathematical form of the evaluation function is inaccessible,
as is typically the case in molecular optimisation, heuristic
search methods19 become a necessity. Many of these heuristic
methods are inspired by biological phenomena. Genetic
algorithms20,21 are based on the theory of evolution and aim
to optimise with regard to an evaluation function, incre-
mentally improving on existing solutions. Specically, novel
solutions are generated by randomly changing or stochasti-
cally combining solutions from the existing population. In
the genetic algorithm community, these two operations are
respectively known as mutations and crossovers. Solutions
found by genetic algorithms are called phenotypes and each
solution is described by an underlying genome. The perfor-
mance of a solution with respect to the chosen evaluation
function is known as the tness of a phenotype.

Genetic algorithms can be highly effective in straightfor-
ward optimisation problems, but are known to struggle22,23

when trying to cross low-performing valleys or to break out of
local optima, and both of these occurrences can lead to
evolutionary stagnation. We have based GB-EPI on an existing
genetic algorithm for molecular optimisation, but evade
evolutionary stagnation by enforcing molecular diversity.
Moreover, GB-EPI speeds up the optimisation process by
decoupling mutations from crossovers, and introduces the
concept of positional analogue scanning to genetic algo-
rithms. These and other technical aspects‡ of GB-EPI are
discussed in the upcoming paragraphs.
Chem. Sci., 2020, 11, 11485–11491 | 11485
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Fig. 1 Pseudocode description of the MAP-Elites algorithm adapted
to the setting of molecular optimisation.
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2.1 Graph-based genetic algorithm

The current leading rule-based model for molecular optimisa-
tion is the graph-based genetic algorithm14 (GB-GA). In GB-GA,
genomes of molecules are encoded by their molecular graphs.
Novel molecules are generated by mutating or combining the
graphs of molecules in the existing population. The initial
population of candidate molecules is typically obtained from
freely accessible molecular data-sets like ZINC24 or ChEMBL.25

Every generation, as a form of selection pressure, only the most
t molecules (with respect to the evaluation function) present in
the population are retained.

This paper, and hence our algorithm, builds on the concep-
tual developments made in GB-GA by continuing to work with
molecular graphs as genomes. We maintain the graph-based
aspect of the crossover and mutation operators, but apply
crossovers and mutations in parallel instead of sequentially. Our
motivation for decoupling these two operators lies in the fact that
crossovers customarily only support efficient exploration of
chemical space in the early generations of a genetic algorithm.
Later on, the nearly-converged solutions are typically only
improved by the comparatively smaller effects of mutations.
Fig. 2 Illumination of a patch of elite solutions for the rediscovery of
generations. For this visualisation, the feature space of GB-EPI was spanne
starting population consisted of 100 random compounds from a standa
The surface was obtained by interpolating, refining and triangulating th
respect to troglitazone.

11486 | Chem. Sci., 2020, 11, 11485–11491
2.2 Multi-dimensional archive of phenotypic elites

The multi-dimensional archive of phenotypic elites algorithm16

(MAP-Elites) is a simple, efficacious and surprisingly powerful
tool developed in the context of so robot design, and serves as
the core architecture of our GB-EPI algorithm. MAP-Elites
mimics diversity in biological evolution and explores the
search space by introducing the concept of niches26–28 to genetic
algorithms. In MAP-Elites, candidate solutions are generated by
a genetic algorithm but are assigned to different niches
depending on their characterising features. Each generation,
the best performing solution in each of the individual niches –
with respect to a global evaluation function – is retained.

Dividing the search space into feature-based niches and
explicitly enforcing population diversity stands in stark contrast
with classical genetic algorithms which typically only retain the
top high-scoring solutions regardless of their diversity, or lack
thereof. The enforced variation between niches makes cross-
overs more diverse, and by mutating existing solutions, potent
scaffolds can spread into other niches. Most importantly,
because at every generation MAP-Elites contains solutions
spread out over feature space, diverse solutions in far-away
niches can be used a resource to escape stagnation. In Fig. 1
we provide pseudocode of the MAP-Elites algorithm for de novo
molecule design as applied in GB-EPI.

In practical terms, users of GB-EPI can choose their own
features of interest, and dene relevant ranges of variation to
construct a feature space. If, for instance, a user wants to nd
medicinally relevant molecules in chemical space, they could
construct a feature space based on physicochemical properties
like lipophilicity and molecular mass, and practical concerns
like synthetic accessibility. The chosen ranges in which to
explore these features can be used to specify a desired subset of
chemical space in which to generate new molecules.

The tness score obtained by the molecule occupying a niche
at the end of a GB-EPI run represents the capability of the cor-
responding part of feature space to contain high-performance
molecules. In this way, GB-EPI illuminates the relationship
between the chosen features of interest and how varying them
affects performance, either positively or, equally relevant,
troglitazone after (a) 1 generation, (b) 200 generations, and (c) 400
d bymolecular mass and lipophilicity, and divided into 200 niches. The
rdised subset of the ChEMBL database, further described in Section 3.
e results. Darker shading indicates higher Tanimoto similarities with

This journal is © The Royal Society of Chemistry 2020
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negatively. As can be seen in Fig. 2, the molecules at the end of
a GB-EPI run form a patchwork of locally elite solutions (with
respect to the chosen evaluation function) in a part of chemical
space.

2.3 Centroidal Voronoi tesselations

In a regular grid partition, the number of niches grows expo-
nentially with the dimensionality of feature space. To effectively
partition high-dimensional feature spaces into niches, we can
rely on a technique from computational geometry called the
centroidal Voronoi tessellation29–31 (CVT). The CVT can be used
to create a pre-dened number of niches, irrespective of the
dimensionality of the feature space. Because the number of
niches is xed, the use of a CVT partition in MAP-Elites main-
tains selection pressure for performance, even in higher-
dimensional feature spaces.32

A CVT is constructed by forming the lattice reciprocal to the
cluster centroids of a uniform distribution over feature space.
Each of the lattice cells outlines the space contained in a single
niche. Computationally, the centroidal Voronoi tessellation can
be constructed by Lloyd's clustering algorithm.33 Efficient look-
up of the nearest centroid to a given point in feature space is
necessary to determine the niche to which a new solution
belongs. Fortunately, this is made possible through fast multi-
dimensional tree algorithms.34

2.4 Positional analogue scanning and memoisation

Changes in molecular interactions and physicochemical prop-
erties resulting from small molecular structure modications
are used in in vitro medicinal chemistry to optimise lead
compounds.35 To minimise the number of experimental design
cycles in lead optimisation, medicinal chemists apply small
structure modications in systematic batches, in a procedure
known as positional analogue scanning.36 During this proce-
dure, series of molecular analogues of a lead compound are
generated by the systematic exchange of heteroatoms or func-
tional groups, and rapidly evaluated.

Similar to the small structure modications used in the lab,
GB-GA uses molecular mutations to work towards compounds
with desired properties. Inspired by the success of positional
analogue scanning, we repurpose the mutation operator in GB-
EPI to systematically return not just a single mutated molecule,
but all of its positional analogues. This approach accelerates
convergence by allowing a potent design to spread out to several
niches in a single generation. To speed up convergence even
further, we extend the mutation operator to allow for the
addition and removal of user-specied functional groups.

Memoisation37 is a computational technique that ensures that
a program does not unnecessarily repeat calculations, by keeping
an on-the-y record of obtained results. To balance memory and
efficiency, the set of remembered results is typically limited to
a xed size and controlled by a rst-in-rst-out replacement algo-
rithm. In this paper, memoisation was applied to tness calcula-
tion, as this oen carries the prohibitive computational cost, but
memoisation can be readily extended to the other calculations in
the algorithm.We note that memoisation can be used to reduce or
This journal is © The Royal Society of Chemistry 2020
even fully resolve the computational overhead introduced by
positional analogue scanning.
2.5 Filters and parallelism

To rule out unwanted and potentially toxic molecules, we use
functional group knowledge from the ChEMBL database25 and
a combination of ADME property calculations.38–40 We remove
undesirable compounds before they enter the evaluation step of
the algorithm. Removing these compounds at an early stage
makes the algorithm more efficient, increases the predictive
value of the nal outcome, and signicantly decreases overall
processing time.

To reduce clock time, we implemented a concurrent version
of GB-EPI. The program distributes function evaluations,
mutations and crossovers over a CPU/GPU architecture and
receives performance scores, new molecules and behavioural
descriptors from the individual nodes. Concurrency has no
effect on the overall results obtained by the algorithm. All of the
experiments in this paper can be reproduced either with or
without concurrency.
3 Results and benchmarks

To standardise the assessment of models for de novo molecular
design, the bioinformatics company BenevolentAI released
a benchmarking suite named GuacaMol.13 The suite is open source
and is meant to provide researchers with a variety of molecular
optimisation tasks, related to the basic needs of computational and
medicinal chemists. In this paper, we use GuacaMol as a starting
point to quantify the performance of GB-EPI. We present and
compare the results on the selected benchmarks for a deep-learning
algorithm (SMILES LSTM), a rule-based algorithm (GB-GA), and the
illumination algorithm GB-EPI presented in this paper.

SMILES LSTM41 is a deep learning model for de novo mole-
cule generation, based on natural language processing and
reinforcement learning. SMILES LSTM uses a simple text
representation of molecules known as Simplied Molecular-
Input Line-Entry System42 (SMILES) strings and trains a recur-
rent neural network (RNN) as a statistical language model for
these textual descriptors of molecular structures. To obtain
numerical stability in training through back-propagation, the
RNN is enhanced with long shortterm memory43 (LSTM) cells,
making it capable of learning dependencies from larger
collections of information.

Aer the SMILES LSTM model is sufficiently trained to
produce chemically feasible SMILES strings, reinforcement
learning44 is applied to bias the generation of new chemical
structures towards molecules with the desired chemical prop-
erties. Reinforcement learning is powerful, yet brittle; initiali-
sation of the underlying LSTM network and the
hyperparameters of the reinforcement learning algorithm must
be done carefully. If successful, however, SMILES LSTM is able
to cover and explore a large portion of chemical space.45

In this paper, we run both SMILES LSTM and GB-GA in their
standard GuacaMol baseline implementations.13 In particular, for
each rediscovery target, the GB-GA algorithmwas runwith amating
Chem. Sci., 2020, 11, 11485–11491 | 11487
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pool of 200 molecules for a total of 1000 generations, unless there
was no improvement for 5 consecutive generations. The SMILES
LSTM baseline is a pre-trained recurrent neural network model,
further optimised for each specic benchmark over 20 epochs by
means of a hill-climbing algorithm. Each epoch the model gener-
ates 8192 molecules, of which the best 1024 are used to steer the
reinforcement learning algorithm for further tuning.
Table 1 Results for the maximum median molecule

Benchmark GB-EPI
SMILES
LSTM GB-GA

Standard
Camphor vs. menthol 0.419 0.415 0.419
Tadalal vs. sildenal 0.453 0.422 0.453

Randomised
Camphor vs. menthol 0.419 0.400 0.345
Tadalal vs. sildenal 0.370 0.368 0.313

Fig. 3 Letter-value plots49 of the final molecule distributions obtained
by GB-EPI, SMILES LSTM, and GB-GA for the GuacaMol rediscovery
benchmarks in terms of Tanimoto similarity to the target. The length of
the innermost box represents the interquartile range, whereas the
protruding boxes represent subsequent interquantiles (i.e. interoctiles,
intersedecimiles, .). The horizontal line marks the median, while
outliers (conventionally assumed to be the outer 0.7% of the pop-
ulation) are shown as individual diamonds beyond the largest inter-
quantile displayed.
3.1 Rediscovery of small molecule drugs

Rediscovery benchmarks, which require the explicit rediscovery
of a target molecule on top of scoring for similarity, are
a common potency test for de novomolecule generating models.
By requiring explicit rediscovery, these benchmarks are more
robust against exploitation46 of metric deciencies by generative
models than – for instance – similarity metrics with a thresh-
olded linear score modier.13 The similarity between a gener-
ated molecule and the target compound is determined by the
Tanimoto similarity of their extended-connectivity nger-
prints47 (ECFPs).

ECFPs are circular topological ngerprints, meaning that
they encode molecular structures in terms of concentric atomic
neighbourhoods. These ngerprints were originally48 designed
for similarity searching in high-throughput screening, but have
also found applications in chemical clustering and compound
library analysis. The main advantage of ECFPs, compared to
more involved similarity measures, is that they can be rapidly
calculated and inherently represent the presence or absence of
molecular substructures.

In GuacaMol, three marketed and FDA-approved drugs are
proposed as targets for rediscovery: celecoxib (an anti-
inammatory), troglitazone (an antidiabetic), and thiothixene (an
antipsychotic). Together, these three ligands cover a wide range of
physicochemical properties and pharmacological applications. To
increase the effectiveness of the benchmarks, molecules highly
similar to the targets (bit-vector Tanimoto similarity above 0.323)
were removed by GuacaMol from the database of initial molecules.
That initial database is derived from ChEMBL, which exclusively
consists of molecules that have both been synthesised in a lab and
tested against biological targets.

To set up GB-EPI for the rediscovery benchmarks, we chose
the feature space to be spanned by molecular mass, 140 u to 520
u, and lipophilicity, log P¼�0.4 to log P¼ 5.6. The ranges were
chosen to roughly correspond to properties of orally active
drugs, and the space was feature subdivided into 150 niches.
More complex, higher-dimensional feature spaces are possible
and oen advisable, but here we limit the algorithm to its
simplest form. The number of generations for GB-EPI was
limited to a maximum of 400.

GB-EPI is successful in rediscovering these three drug-like
molecules, just as SMILES LSTM and GB-GA. Whereas the
power to differentiate between models through these GuacaMol
rediscovery tasks can hence be debated, these simple tasks do
give insight in the properties of the algorithms. The letter-value
plots49 in Fig. 3 show that the three distributions obtained by
the algorithms at the end of each of the GuacaMol rediscovery
benchmarks are highly distinct from each other. Whereas the
11488 | Chem. Sci., 2020, 11, 11485–11491
GB-GA population provides a concentrated group of high-
scoring molecules, SMILES LSTM generates a broad distribu-
tion of molecules with a few high-scoring outliers.

GB-EPI combines diversity with local selection pressure, and
the obtained population distributions reect this by having
median scores above those of SMILES LSTM, and a more
balanced spread than the distributions of GB-GA. While GB-GA
only retains the highest-scoring molecules in its population,
GB-EPI deliberately keeps lower-scoring molecules that are the
best in their niche. In fact, the GB-GA median lies near the
bottom of the narrow interquartile range because most of the
molecules proposed by GB-GA have high internal similarity22

and hence nearly identical scores.
3.2 Simultaneous similarity for conicting compounds

In a median molecules benchmark, the goal is to maximise
similarity to several small-drug molecules simultaneously. The
standard GuacaMol benchmark starts from the highest scoring
molecules in the ChEMBL subset described in Section 3.1.
This journal is © The Royal Society of Chemistry 2020
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Table 2 Efficiency of GB-EPI and GB-GA in the rediscovery of tro-
glitazone, in terms of the average number of required score evalua-
tions and CPU time in the case of a successful run, and the overall
success ratio over 100 independent, randomly seeded runs of both
algorithms

Algorithm Evaluations CPU time Success ratio

GB-EPI 14 258 3 min 5 s 100%
GB-GA 24 216 11 min 37 s 81%

Fig. 4 Distribution of proposed median molecules – coloured and highlighted by algorithm type – for the conflicting targets in the GuacaMol
benchmarks, after filtering out structurally problematic molecules from the 100 highest-scoring ones. For camphor vs. menthol, the ranges of
feature space for GB-EPI were chosen to be log P¼�0.4 to 5.6, and 100 u to 350 u For tadalafil vs. sildenafil, the ranges were log P¼�0.4 to 5.6,
and 350 u to 600 u GB-EPI's inherent strategy to explore broader swaths of chemical space in an optimisation problem is clear in both figures. In
contrast, the molecules proposed by GB-GA are focused around small regions of high-scoring median molecules.

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Se

pt
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 7

/1
6/

20
25

 9
:4

2:
20

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
These benchmarks are explicitly designed to be conicting and
can be regarded as challenging tasks. The GuacaMol bench-
marking suite provides two of these tasks: camphor vs.menthol
(two topical antitussives) and tadalal vs. sildenal (two drugs
used to treat erectile dysfunction and pulmonary hypertension).

To increase the real-world relevance of these benchmarks,
we lter out molecules that contain macrocycles, fail at Veber's
rule,40 or raise structural alerts from ChEMBL. The feature space
of GB-EPI was again chosen to be spanned by lipophilicity and
molecular mass. For both benchmarks, the feature space of GB-
EPI was divided into 200 niches and the algorithm ran for 600
iterations. Furthermore, the GB-GA algorithm was only halted
aer 50 consecutive iterations without progress.

As shown in Table 1 and Fig. 4, these median molecules
benchmarks are far more strenuous than the rediscovery
benchmarks and can differentiate between the different models
more accurately. Here, SMILES LSTM scores lower than the rule-
based algorithms GB-GA and GB-EPI. To ensure an accurate
comparison between the three generative models, two of which
are pure optimisation algorithms (SMILES LSTM, GB-GA) and
one of which (GB-EPI) balances quality and diversity, we only
recorded the single highest score obtained by each algorithm.

To make the benchmark more informative, we also recorded
the results for all algorithms on both benchmarks for
a completely random subset of the standardised dataset. In the
randomised subset benchmarks, GB-GA and GB-EPI begin with
100 arbitrary compounds, whereas the SMILES-LSTM model is
pre-trained on a larger set of molecules from the same collec-
tion but not hyper-tuned by top scoring molecules from the
dataset. Both SMILES LSTM and GB-GA have trouble crossing
the larger distance in chemical space to the median molecules
and score signicantly lower than GB-EPI.

3.3 Comparing efficiency of GB-EPI and GB-GA

To study the difference in efficiency of GB-EPI and GB-GA, we
make a statistical analysis of a representative rediscovery task
(troglitazone). In line with earlier work14,50 on the efficiency of
GB-GA, we calculate the average number of tness function
evaluations and CPU time needed for rediscovery, and the
rediscovery success rate of both algorithms. As we learned from
the median molecule task, starting from a randomised set of
This journal is © The Royal Society of Chemistry 2020
molecules elucidates the exploratory power of the algorithms
more.

Therefore, we start this rediscovery task with the 100 top-
scoring molecules from 10 000 molecules randomly chosen
from a 1.6 million ChEMBL subset, as constructed by Henault
et al.50 In this subset all molecules with a bit-vector Tanimoto
similarity to the target above 0.323 are removed.13 Table 2 shows
the results for 100 runs of GB-EPI and GB-GA (with settings
taken from Henault et al.50), both with a maximum of 1000
generations per run.

While chemical space consists of an estimated 1060 mole-
cules, it has been argued50 that the perfect, omnipotent search
algorithm would be able to nd small drug-like molecules (i.e.
excluding peptides, antibodies, .) in a few hundred trans-
formation operations (crossovers and mutations) and corre-
sponding tness evaluations. With this idealised benchmark in
mind, it can be observed from Table 2 and Fig. 5 that GB-EPI
makes a sizeable improvement (approx. 41%) to the average
number of function evaluations needed for rediscovery. Simi-
larly, we note that the average CPU time needed for rediscovery
decreased starkly (approx. 73%) in GB-EPI compared to GB-GA.

In addition, the success ratios affirm that GB-GA suffers from
stagnation issues, whereas GB-EPI can leverage molecular diver-
sity to escape local optima of the scoring metric. The success rate
of GB-GA for this rediscovery is 81%, meaning that at least 3 GB-
GA searches are needed for the rediscovery to succeedwith at least
99% certainty. Taking this into account would further increase
the number of score evaluations to about 70 000 before an ex-
pected successful rediscovery. Similarly the expected CPU time
before rediscovery by GB-GA will be of the order of 35 minutes.
Chem. Sci., 2020, 11, 11485–11491 | 11489
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Fig. 5 Distribution of the number of score function evaluations
necessary for the rediscovery of troglitazone and corresponding
cumulative success rate, for 100 independent runs of GB-GA (blue)
and GB-EPI (orange). Both distributions are shown on the same scale.
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4 Conclusion and outlook

This paper introduces the concept of illumination to de novo
molecule generating algorithms through an algorithm called
GB-EPI. Previous molecular optimisation algorithms, like
SMILES LSTM and GB-GA, aim to obtain the highest performing
solution in chemical space. In contrast, our novel algorithm
constructs a whole patch of high-performing solutions spread
out over niches covering a selected part of chemical space. By
exploring what is chemically possible, in addition to leveraging
diversity to efficiently discover what is purely optimal, GB-EPI
illuminates design trade-offs and encourages synergy between
design algorithms and human chemists.

For instance, researchers wishing to understand how the
binding affinity with a target protein changes with physico-
chemical properties of an inhibitor could use GB-EPI to scan
a feature space spanned by the lipophilicity, molar refractivity,
and mass of the candidate molecules. In contrast, an industrial
chemist could nd more use in a feature space spanned by
estimated production costs and synthetic accessibility. In both
cases, molecules that are predicted to have a desired combi-
nation of properties can easily be selected for further
examination.

Future extensions of GB-EPI could include adaptive meshing
of the centroidal Voronoi tessellations51 to increase the number
of niches in the most suitable regions of feature space, surro-
gate modelling techniques52,53 to reduce the number of neces-
sary tness function evaluations, or crossovers based on
intermolecular correlations.54 In addition, deep learning
models could be trained to predict which mutations are most
benecially applied to which molecules. Combined, these
extensions have the potential to signicantly speed up the
current GB-EPI algorithm.

Some attention should also be drawn to the exciting prospect
of steering GB-EPI by direct experimental feedback. Through
11490 | Chem. Sci., 2020, 11, 11485–11491
active learning55 – a small-data alternative to deep learning –

and graph-based retrosynthesis,56,57 molecules proposed by GB-
EPI could be selected for in vitro synthesis and analysis.§ The
experimental results could then be used to update the tness
model. The practical aspects of this iterative loop could perhaps
even be executed autonomously by a robotics platform, creating
a self-driving laboratory59 for molecular design.
Conflicts of interest

There are no conicts to declare.
Acknowledgements

The authors wish to acknowledge useful feedback on this
manuscript by P. Coppin. Jonas Verhellen was supported by the
UiO:Life Science convergence environment 4MENT.
Notes and references
‡ A lightweight, open-source version of the GB-EPI algorithm is available for
download at https://github.com/Jonas-Verhellen/argenomic.

§ A preliminary version of the GB-EPI algorithm was used to propose de novo
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