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The energetics of electron and proton transfer
to CO2 in aqueous solution

Xiao-Hui Yang,a Angel Cuesta *b and Jun Cheng *a

The electrocatalytic reduction of CO2 is considered an effective method to reduce CO2 emissions and

achieve electrical/chemical energy conversion. It is crucial to determine the reaction mechanism so that

the key reaction intermediates can be targeted and the overpotential lowered. The process involves the

interaction with the electrode surface and with species, including the solvent, at the electrode-

electrolyte interface, and it is therefore not easy to separate catalytic contributions of the electrode from

those of the electrolyte. We have used density functional theory-based molecular dynamics to calculate

the Gibbs free energy of the proton and electron transfer reactions corresponding to each step in the

electroreduction of CO2 to HCOOH in aqueous media. The results show thermodynamic pathways

consistent with the mechanism proposed by Hori. Since electrodes are not included in this work,

differences between the calculated results and the experimental observations can help determine the

catalytic contribution of the electrode surface.

1. Introduction

CO2 is a linear and centrosymmetric molecule with two iden-
tical CQO bonds. The thermodynamic cell potentials for the
decomposition of CO2 to CO and O2 (eqn (1)) and for its
reaction with H2O to produce HCOOH and O2 (eqn (2)) are
1.33 and 1.43 V, respectively:

2CO2 - 2CO + O2 (ECell = 1.33 V) (1)

2CO2 + 2H2O - 2HCOOH + O2 (ECell = 1.43 V) (2)

This implies that the equilibrium potential for the reduction of
CO2 to either CO or HCOOH is only 0.1 and 0.2 V more negative,
respectively, than that required for hydrogen evolution
(ECell = 1.23 V).1 However, the onset potential of CO2 electro-
reduction in aqueous solution2 often requires very negative
(41 V) overpotentials, and it depends on the electrode mate-
rial. The first electron transfer step:

CO2(aq) + e� - CO2
�(aq) (3)

is currently believed to be the bottleneck in reducing CO2 to
other chemicals, because the equilibrium potential of this
reaction is very negative. ca. �1.9 V vs. SHE3 (although pH
independent and therefore closer to hydrogen evolution in
neutral or alkaline media as compared to acidic). An adequate

electrode material can help stabilize the key intermediate
CO2

� and reduce the apparent energy barrier for the overall
reaction.

The mechanism of the reduction of CO2 to HCOOH is still
controversial after more than 40 years of study.4–15 Hori and co-
workers1,2 suggested that CO2

� adsorbs on the electrode sur-
face through its carbon atom, and that whether CO or HCOOH
is the final product of the 2-electron reduction depends on the
corresponding adsorption energy. Fig. 1 is an illustration of
these two reaction pathways. On the contrary, according to
Koper and co-workers16 HCOOH is the product when CO2

� is
adsorbed through its two oxygen atoms, whereas CO would be
produced if adsorption occurs through the carbon atom of
CO2

�. A related transformation mechanism of monodentate
HCOO* (i.e., one oxygen atom bonds to the surface) to biden-
tate HCOO* (i.e., two oxygen atoms bond to the surface) was
also proposed recently.8 Interestingly, this is reminiscent of the
mechanism by which, as recently demonstrated,17–19 formic
acid is dehydrated to adsorbed CO on Pt electrodes. However,
despite considerable efforts using the most advanced experi-
mental techniques, the challenging nature of characterizing
interfaces at the atomic level makes a comprehensive under-
standing of reaction pathways based exclusively on experi-
mental results a nearly impossible task.

Computational simulations are a suitable alternative, and
have proven to be able to successfully predict catalytic effects
and reaction pathways.20–24 However, electrochemical reactions
are complex, not least because they occur at the interface
between a solid and a liquid, and, therefore, simulations
require approximations. The common approach is to build a
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surface model and then add a solvation environment around
the electrode, as illustrated in Fig. 2, steps 1 and 2. In Fig. 2 we
have divided the process leading to the simulation of a com-
plete electrochemical system into four stages, namely, (i) simu-
lating the reaction in the gas phase, (ii) adding the electrode
surface, (iii) adding the liquid phase and (iv) assembling of
these elements together to simulate the electrochemical reac-
tion. Simulating the reaction in the gas phase is obviously the
simplest stage, but it differs enormously from the conditions
under which electrochemical reactions proceed. Step 1 in Fig. 2
corresponds to adding a surface to stage-1 simulations to
compute reactions at the solid gas interface, which allows to
elucidate the surface catalytic effect. Step 2 involves addition-
ally including the liquid phase, whereby solvation effects on the
reactants, products and intermediates, as well as the effect of
the interaction of solvent and, eventually, the supporting
electrolyte, with the electrode surface can be included and
analyzed. Alternatively, steps 3 and 4 allow to first isolate the
effect of solvation and then estimate the surface effect in the
electrocatalytic reaction. In computation, the surface effect in
step 1 and the solvation effect in step 3 can be obtained more
accurately than in steps 4 and 2, respectively. Because the
conditions in steps 2 and 4 are introduced on the basis of the
previous stages, the step 1–step 2 sequence is good at predict-
ing reactions in which the surface effect is the main contribu-
tion to catalysis, whereas the step 3–step 4 sequence allows
more accurate insight into the catalytic contribution of the
solvent.

Arguably, if our final goal is to screen electrode materials, it
is better to use the step 3–step 4 sequence as the simulation
protocol, because the result in step 3 is constant, and can be
used as a reference state, which is consistent with the idea of a
control experiment. Otherwise, when changing the electrode
material both the free energy of step 1 and the solvation effect
in step 2 will vary. Furthermore, the reference state when using
the step 1–step 2 simulation protocol is the gas phase, much
more distant from electrochemical conditions than the liquid
phase. By comparison, if our goal is to screen the electrolyte,
the simulation protocol composed of steps 1 and 2 would be
preferred. The work by Kim and co-workers22 is a good example
of the use of the step 1–step 2 sequence to screen the electrolyte
medium. They calculated the free energies of adsorbed inter-
mediates *CO2, *COOH and *CO in both aqueous solution and
1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4)/
water mixtures. Thus, the electrode surface is constant and so
is the free energy of the surface effect in step 1. They found that
in EMIM-BF4/water mixtures, the overpotential for the
reduction of CO2 to CO can be decreased by 0.31 V compared
with aqueous solutions.

Since the mechanism of the reduction of CO2 to HCOOH in
aqueous medium is still controversial, we plan to study this
reaction using the simulation protocol composed of steps 3 and
4. The first step is to obtain all reaction pathways in the liquid
phase. Insight into the reaction pathway can be obtained from
studying the energies associated to all the possible electron and
proton transfer processes (i.e., their equilibrium potentials and
pKa values, respectively) that can follow the formation of the
CO2

� radical. The experimental determination of the equili-
brium potential and pKa values of electron and proton transfer
events, respectively, that can occur after the formation of CO2

�

is extremely challenging, when not outright impossible, com-
putation being therefore the most convenient approach.25–28

Computation methods based on continuum models, such as
the polarizable continuum model (PCM)29 and the self-
consistent continuum model (SCCS)27 to reproduce the liquid
environment have successfully been employed to calculate
equilibrium potentials and acidity constants in aqueous
solutions.30,31 Alternatively, the solvent environment can be
described by explicit solvent molecules, which can reproduce
the hydrogen-bond network in solutions. This hydrogen-bond
network plays an important role in stabilizing intermediates

Fig. 1 Reaction mechanism of the electroreduction of CO2 in the bulk of an aqueous medium and at the metal/water interface. Proposed by Hori.1

Fig. 2 Schematic illustration of simulation protocols that can be
employed in the study of electrochemical reactions.
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such as the CO2
� radical, and adequately reproducing it is

therefore crucial for the accurate computation of equilibrium
potentials and acidity constants.22 It is common for this
purpose to use density functional theory-based molecular
dynamics (DFT-MD) under periodic boundary conditions
(PBC) to reproduce accurate solvation structures.25,32–35 DFT-
MD treats both the solute and solvent molecules at the same
level of electronic structure theory, where energies and forces
are calculated from first principles. The PBC replicates the unit
cell periodically, such that sufficient solvent molecules are
included to reproduce the solution environment in the simula-
tion model. Accurate solvation free energies can be calculated
with DFT-MD by using various free energy calculation schemes,
such as thermodynamic integration (TI), which can calculate
the free energy difference between the initial state and the final
state (details are explained in the Methods section). TI can also
be applied to compute ionization and deprotonation energies,
however, the values obtained are different from the adiabatic
ionization energies (AIP) and adiabatic deprotonation energies
(ADP), because of the uncertainty of the electrostatic potential
reference for the charged system in the standard Ewald sum-
mation under PBC. Cheng and Sprik25,35–38 developed a com-
putational SHE method that can align the reference
electrostatic potential to the SHE. The method was successfully
applied to calculate equilibrium potentials and acidity con-
stants using DFT-MD, including the CO2/CO2

� equilibrium
potential and the pKa of HCOOH. Equilibrium potentials were
aligned to the SHE with a mean error of about 0.5 V, and the
uncertainty of the acidity constants is 1–2 pKa units.35 The large
error in the calculation of redox potentials is due to the
delocalization error in DFT approximations using the GGA
functional, and can be reduced to 0.2 V if the HSE06 functional
is employed.

The aim of this work is to find the reaction pathway for the
reduction of CO2 to HCOOH in the absence of any electrode
catalytic effect. The conversion of CO2 to HCOOH involves two
proton-coupled electron transfer (PCET) events. The possible
reaction pathways studied in this work are presented in Fig. 3,
which closely follows the mechanism proposed by Hori1 and
illustrated in Fig. 1. We use Cheng et al.’s computational SHE

method combining DFT-MD and TI to calculate the equili-
brium potentials and acidity constants of each electron and
proton transfer, respectively, in Fig. 3. Based on Hess’s law, a
self-consistency test is also introduced by comparing the dif-
ference between the sum of deprotonation and oxidation free
energies with the calculated dehydrogenation free energies.

2. Methods
2.1 Thermodynamic integration

The TI method is one of several computational schemes for the
calculation of free energy differences between two states. In this
method, two states are connected by a linear combination
through a coupling parameter, Z (Z A [0,1]). Thus, a thermo-
dynamic path (Z from 0 to 1) between two states is constructed,
where the two ends of the path (Z = 0 and 1) correspond to the
initial and final states, respectively. A fictitious hybrid energy
state can be defined as EZ = (1 � Z)E0 + ZE1, with E0 and E1 the
energy of the initial and final states, respectively. The derivative
of EZ with respect to the coupling parameter corresponds to the
energy difference between the final and initial states at a fixed

configuration
@EZ

@Z
¼ E1 � E0 ¼ DE

� �
. DE is the vertical energy

gap and can be obtained from the electronic structure calcula-
tion as a total energy difference. DE is then averaged over
molecular dynamics (MD) runs for a sequence of values of Z.
Integration of the thermal average hDEiZ along the thermody-
namic path (Z from 0 to 1) converts vertical into adiabatic free
energies:

DA ¼
ð1
0

dZ DEh iZ (4)

In practice, this DE is averaged over the MD trajectory corres-
ponding to an Z value. The numerical integration in eqn (4) is
achieved by sampling a sequence of numerical integration
points Z. Simpson’s rule gives a good approximation for three
integration points (Z = 0,0.5,1) calculations:

DA ¼ 1

6
DEh i0þ DEh i1

� �
þ 2

3
DEh i0:5 (5)

If the hDEi0.5 significantly deviates from the midpoint between
hDEi0 and hDEi1, more integration points are required and the
general trapezium rule for the N point integration is
employed:32–34,39

DA ¼ 1

2

XN�1
i¼0
ðZiþ1 � ZiÞ hDEiZiþ1 þ hDEiZi

� �
(6)

2.2 Free energy calculations

We use a generic redox couple X�/X in an aqueous solution to
introduce the computation of electron-transfer free energies.
Using the TI method, the free energy of oxidation (reduction)
from X� to X can be obtained by reversibly removing (inserting)
an electron from the DFT-MD simulation under PBC. However,
directly inserting an electron in a PBC system charges the

Fig. 3 Possible reaction pathways for the electroreduction of CO2 to
formic acid in aqueous solution. Red arrows correspond to the transfer of
one electron, green arrows correspond to the transfer of a proton, and
blue arrows correspond to the transfer of a hydrogen atom (i.e., to the
simultaneous transfer of an electron and a proton).
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system and, due to the standard Ewald summation under PBC,
renders the reference for the electrostatic potential uncertain.
Please note that there is a field in the system due to the
background charge,40 and this field can cause strong interac-
tions with water molecules, because water molecules have a
large dipole moment. The interaction can affect solvation
structures during the simulation. However, the structural
change caused by the field has little effect on the potential
energy.32–34 The electrostatic potential of the charged system
has a potential shift V0,X�/X compared to the neutral system.32

Therefore, the oxidation free energy DA obtained from eqn (4)
does not correspond to the adiabatic ionization free energy
(AIP), by a difference equal to qX�/X�V0,X�/X. The AIP can there-
fore be obtained from eqn (7), where qX�/X = �1 is the total
charge difference between the initial and final states.

AIP ¼ DGo;abs
X�=X ¼ DAX�=X � qX�=X � V0;X�=X (7)

Please note that we are ignoring the difference between the
Helmholtz and Gibbs free energies (DA and DG, respectively),
which is negligible for condensed phases under ambient
pressure.35

The computation of proton-transfer free energies is slightly
more complicated. In this case, TI requires to reversibly insert
or remove a proton in the system. The insertion of electrons in
the simulation can be automatically localized in the lowest
state thanks to the SCF convergence. However, protons cannot
be automatically located in the simulation. Therefore, when
conducting simulations for deprotonation reactions, the proton
is not simply removed from the system in each MD step, but
replaced by a classical dummy at the same location. The
dummy has neither coulombic nor van der Waals interactions
with other molecules, which implies that it can be anywhere
within the system during the simulation. This can lead to
unphysical configurations of the solute in the solvent, includ-
ing overlap with other molecules, deeming computation
impossible. A conventional approach to avoid this problem is
to apply a harmonic restraining potential on the dummy.33 For
example, to compute the solvation energy of a proton, the
dummy is bonded with a water molecule in a hydronium-like
structure.34

In summary, to calculate the free energy of moving a proton
from HX molecule in the solution to the gas phase, we need
four steps.35 First, TI is used to calculate the deprotonation
energy, DAHX/X�. Here, the proton on the HX molecule is
replaced with a dummy, and the new molecule is denoted as
dX�. Then, we estimate the zero-point energy of the ground
state H–X vibration (DEH(X)), and add the free energy of the
proton in the gas phase, i.e., the translational energy (kBT
ln(coL3), with L the thermal de Broglie wavelength of the
proton, kB the Boltzmann constant, and T the temperature in
Kelvin) of the monoatomic gas in equilibrium with a standard
concentration in the solution (co = 1 M). Finally, as in eqn (7),
the energy correction qHX/X��V0,HX/X� needs to be included due
to the uncertain reference of electrostatic potential in the
charged system (the dX� molecule). Therefore, the free energy

of transferring a proton from HX to the gas phase can be
written as:

DGo;abs
HX=X� ¼ DAHX=X� � DEHðXÞ þ kBT ln coL3

� �
� qHX=X� � V0;HX=X� (8)

2.3 Computational SHE

The energy correction term q�V0 in eqn (7) and (8) is unknown.
This term is a collective effect due to all molecules in the unit
cell and therefore attains different values in different simula-
tions but, for the same system, and as long as the same PBC is
used, V0 is constant.41 If the hydronium ion (H3O+) is consid-
ered as the structure of solvated proton in the aqueous
solution, the free energy to remove the proton from aqueous
solution is:

DGo;abs
H3O

þ=H2O
¼ DAH3Oþ=H2O � DEH OH2ð Þ þ kBT ln coL3

� �
� qH3O

þ=H2O � V0;H3O
þ=H2O: (9)

However, the solvated proton has many conformations and can
transfer between water molecules. Using hydronium as the
conformation of the solvated proton makes the solvated proton
lose the translational energy. Here we closely follow Costanzo
et al.’s34 theory of the actual work function of the proton,
described by the process in eqn (10),

H2O(l) + H+(aq) - H3O+(aq) - H2O(l) + H+(g)
(10)

is given by eqn (11):

WHþ ¼ �kBT ln coL3
� �

þ DGo;abs
H3Oþ=H2O

(11)

Replacing DGo;abs
H3O

þ=H2O
in eqn (11) by eqn (9), the term of proton

translational energy, �kBT ln(coL3), is cancelled, yielding:

WH+ = DAH3O+/H2O � DEH(OH2) � qH3O+/H2O�V0,H3O+/H2O

(12)

Here, qH3O+/H2O = 1 is the total charge difference between the
H3O+ unit cell and H2O unit cell, and V0,H3O+/H2O has the
same value as V0,HX/X� and V0,X�/X if the same system is
employed.

The actual reaction of deprotonation free energy of HX in
the aqueous solution is:34

H2O(l) + HX(aq) - X�(aq) + H2O(l) + H+(aq) (13)

However, DGo;abs
HX=X� as calculated with eqn (8) only includes the

free energy of transferring the proton from aqueous HX to
the gas phase. The full reaction can be achieved if we add the

reverse of eqn (10)–(13), i.e., if we subtract from DGo;abs
HX=X� the

work function of the proton:35

kBT ln 10pKa;HX ¼ DGo;abs
HX=X� �WHþ (14)

The equilibrium potential of the X�/X couple with respect to the
vacuum can be converted to the SHE scale by adding the

reaction free energy of Hþ aqð Þ þ e�ðvac:Þ ! 1

2
H2 gð Þ. The free
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energy of this reaction is the sum of the work function of the
solvated proton (eqn (10)) plus the reaction free energy of

Hþ gð Þ þ e�ðvac:Þ ! 1

2
H2 gð Þ. The former can be calculated by

using eqn (11), and the latter is the sum of the negative
ionization energy of hydrogen atom (�EIE) plus the negative

of half the dissociation energy of hydrogen �1
2
DdisG

o
H2

� �
.35

Therefore, the redox potential of X�/X couple with respect to
the SHE can be calculated as:

eUSHE
X�=X ¼ DGo;abs

X�=X þWHþ

� EIE þ
1

2
DdisG

o
H2
þ kBT ln RT � c

o

po

� �� �
(15)

where the standard state compression term, kBT ln(RT�co/po), is
added to the gas phase standard Gibbs free energies, i.e., EIE

and DdisG
o
H2

in eqn (15). This correction term converts the free

energy in standard pressure (1 bar) to the standard concen-
tration (1 mol L�1).39

For the sake of clarity, thermodynamic calculation terms are
not present explicitly in eqn (14) and (15). Their corresponding
calculation steps are summarised in Fig. 4 as thermodynamic
cycles. As can be seen in Fig. 4, the Vo terms in eqn (7)–(9) and
(12) can be omitted, and the difference between zero-point
energy of ground state H–X vibration (DEH(X)) and H–H2O

vibration (DEH(OH2)) is ignored.39 Thus, redox potentials and
acidity constants can be accurately obtained by using the
following equations:

eUSHE
X�=X ¼ DAX�=X þ DAH3O

þ=H2O � DEH OH2ð Þ

� EIE þ
1

2
DdisG

o
H2
þ kBT ln RT � c

o

po

� �� �
(16)

kBT ln 10 pKa,HX = DAHX/X� + kBT ln(coL3) � DAH3O+/H2O

(17)

To finalise this section, in the computation of a hydrogen atom
transfer reaction the hydrogen atom is reversibly replaced with
a dummy in the simulation model and placed in the gas phase.
The calculation of DAHX/X in this case is similar to the DAHX/X�

computation protocol, but without potential shift (V0), because
both the initial and final states are neutral (qHX/X = 0). Hence,
the Gibbs free energy of the hydrogen-atom transfer reaction
is:35

DGo
HX=X ¼ DAHX=X � DEH Xð Þ þ kBT ln co ^ 3

� �

� EIE þ
1

2
DdisG

o
H2
þ kBT ln RT � c

o

po

� �� � (18)

Fig. 4 Thermodynamic cycles used for the calculation of (a) the X/X� electron-transfer free energy with respect to SHE and (b) the HX/X� proton-
transfer free energy in aqueous media. Energy terms in red colour are cancelled during the calculation.
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2.4 Computational setup

All simulations were conducted using the BOMD approach, and
the computational program employed was the open-source
CP2K/quickstep computational chemistry package.42 The den-
sity functional implementation is based on the hybrid Gaussian
plane wave scheme, which employs the Gaussian-type basis set
to describe orbitals and an auxiliary plane wave basis to

reexpand the electron density. The atomic basis set was a
triple-z basis with two sets of polarization functions (TZV2P)
standard basis set, and the plane wave density cut-off was set to
400 Ry. All quantum chemical calculations were performed
with the Perdew–Burk–Ernzerhof (PBE) functional43 for the
exchange correlation approximation, Goedecker–Teter–Hutter
(GTH) pseudopotentials for the 1s electrons of O and C

Fig. 5 Time accumulated averages of the vertical energies for all reactions in this work. (a) and (b) are deprotonation reactions. (c) and (d) are oxidation
reactions. (e) and (f) are dehydrogenation reactions. All reactions involving the COOH radical (a, c and e) have been placed on the left column, while those
on the right column involve the HCOO radical (b, d and f). (g) is the deprotonation reaction between formic acid and COOH�.
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elements44,45 and the van der Waals correction with Grimme
D3 method.46 The traditional matrix diagonalization method
was replaced by the orbital transformation method for the wave
function optimization.

The dimensions of the unit cell are 9.86 � 9.86 � 9.86 Å3,
containing 31 water molecules and 1 reactant molecule corres-
ponding to the ambient density. The Nose–Hoover thermostat
is employed for generating the NVT ensembles, and the tem-
perature of the system is 330 K. The time step is 0.5 fs for a
good total energy conservation. The first two picoseconds are
removed as the structures are not yet equilibrated, and the
simulation ends when the averaged vertical energy difference,
hDEiZ, is converged within 0.1 eV during the production period.

3. Results and discussion
3.1 Thermodynamic integrations

The Helmholtz free energies DA were obtained from eqn (4).
The number of numerical integration points employed for the
practical calculation depends on the position of the vertical
energy gap DE when Z = 0.5. Fig. 5 shows all results for the
averaged vertical energy gap hDEiZ.

In Fig. 5(a), (c) and (d), the time accumulation averages
hDEi0.5 are close to their median value (average of two end-
point values). Thus, in these reactions, Simpson’s three points
approximation (eqn (5)) can be employed to calculate the free
energy. The other reactions, Fig. 5(b) and (e)–(g), require more
numerical integration points. Thus, general trapezium rule
(eqn (6)) is employed. Most vertical energy gaps were converged
in 5 ps, and the fluctuation after equilibration is small (within
0.1 eV). However, some states took more than 5 ps to reach this
standard, such as trajectories in Fig. 5(d) and (f). These slow
convergences are mainly due to the large perturbation at the
end-point of proton or electron insertion.

Some free energy results were adopted from Cheng et al.’s
work35 to avoid repeating simulations and waste computational
cost, such as the deprotonation free energy of hydronium
(DAH3O+/H2O), the oxidation free energy of CO2

� (DACO2
�/CO2

),
and the deprotonation reaction of HCOOH/HCOO� (DAHCOOH/

HCOO�).

3.2 Equilibrium potential and pKa results

The computed thermodynamic integrals DA are used to calcu-
late oxidation (eqn (16)), deprotonation (eqn (17)), and dehy-
drogenation (eqn (18)) free energies. Some experimental values
such as EIE and DdisG

o
H2

can be found in textbooks,47 and other

results or correction terms like DEH(OH2) and kBT ln(coL3) were
adopted from Cheng et al.’s work.35 Values of all those terms
together with the borrowed DA results are listed in Table 1, and
free energy integrals DA for all half reactions and the corres-
ponding thermodynamic data are summarized in Table 2.

A scheme illustrating the possible pathways for the
reduction of CO2 to HCOOH is presented in Fig. 6. The scheme
includes the equilibrium potentials for the electron transfer
processes in the SHE scale and the pKa values for the proton

transfer reactions. The performance of our computational SHE
method can be evaluated by utilizing Hess’s law to determine
the free energies of the hydrogenation reactions from the
computed equilibrium potentials and pKa’s (values within
brackets in Fig. 6) and comparing the result with the free
energy of hydrogen transfer calculated using eqn (16) for self-
consistency. As seen in Fig. 6, the results for the pathway from
CO2

� to COOH� are indeed self-consistent, the difference
between the sum of the proton and electron transfer free

Table 1 List of experimental results and correction terms used from other
sources

Energy terms Values (eV) Ref.

DAH3O+/H2O 15.35 35
DACO2

�/CO2
�1.29 35

DAHCOOH/HCOO� 15.8 35
EIE 13.62 47
DdisG

o
H2

4.21 47
DEH(OH2) 0.35 35
kBT ln(coL3) �0.19 35
kBT ln(RT co/po) 0.082 35

Table 2 Results of free energy integrals DA for all half reactions, followed
by the corresponding full reaction Gibbs free energies DG and acidity
constants pKa

Half reactions DA (eV) DG (eV) pKa

COOH(aq) - CO2
�(aq) + H+(g) 15.49 �0.05 �0.7

HCOO(aq) - CO2
�(aq) + H+(g) 15.29 �0.25 �3.9

HCOOH(aq) - COOH�(aq) + H+(g) 17.32 1.78 27.2
COOH�(aq) - COOH(aq) + e�(vac.) 0.35 �0.47
HCOO�(aq) - HCOO(aq) + e�(vac.) 2.30 1.49
COOH�(aq) - CO2

�(aq) + 1/2H2(g) 15.90 �0.45
HCOO�(aq) - CO2

�(aq) + 1/2H2(g) 17.40 1.04

Fig. 6 Scheme of the possible reaction pathways for CO2 electroreduc-
tion to formic acid in aqueous media. The colour code for the arrows
corresponding to electron, proton or hydrogen-atom transfer is the same
used in Fig. 3. The equilibrium potentials for electron transfer reactions in
the SHE scale are presented above the corresponding arrows. Similarly, the
pKa values of proton transfer reactions and free energies in eV for
hydrogen-atom reactions are presented next to the corresponding arrows.
Values denoted with an asterisk (*) have been taken from ref. 35.
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energies, on one side, and the hydrogen-atom transfer free
energy being only 0.1 eV. Regarding the pathway from CO2

� to
HCOO�, this difference is 0.2 eV. We attribute this difference to
the statistical error in MD calculation. Since our statistical error
in MD calculation is about 0.1 eV, the sum of the two results
may cause the error to double. Other sources of error in this
work, such as the finite size effect under PBC, the statistical
error in MD calculation and the DFT error in calculating highly
oxidant couples have been analysed in ref. 35, 38 and 48. Note
that the DFT error in the reduction of HCOO/HCOO� could be
significant compared to the redox potential of Cl� (under-
estimate about 0.9 V at GGA level) reported in Cheng
et al.’s35 work.

DFT-MD allows for a detailed investigation of the thermo-
dynamic stability of the possible intermediates involved in the
electroreduction of CO2 to formic acid. Interestingly,
COOH is more stable in aqueous solutions than HCOO
(pKa,HCOO = �3.9 o pKa,COOH = �0.7), which suggest that
protonation of the CO2

� radical on its carbon atom as proposed
by Hori (Fig. 1) is unlikely in the absence of a catalytic effect
from the electrode surface. However, if HCOO is formed it
would be readily reduced, as suggested by the very positive
equilibrium potential (1.49 V vs. SHE) of the HCOO/HCOO�

couple. Since the CO2
� radical and its conjugate acid (HCOO or

COOH, denoted as HCO2) are difficult to observe in experiment,
the pKa value of HCO2 is controversial.4,49–52 Considering errors
in the computation, our calculated pKa,COOH is consistent with
several experimental results, such as the pKa,HCO2

= �0.2
obtained by Jeevarajan et al.50 and pKa,HCO2

= 1.4 obtained by
Buxton and Sellers.49 However, Janik and Tripathi52 measured a
higher pKa,HCO2

value (ca. 3.4) than previous studies, which is
nearly the same as the pKa of formic acid (experimental value of
pKa,HCOO� is 3.7). Because the thermodynamic results in Fig. 6
suggest that, once formed HCOO can be readily reduced to
formic acid, we speculate that what was actually measured in
Janik and Tripathi’s experiment was the acidity constant of
HCOO�.

The results of this preliminary work suggest that, in the
absence of a catalytic effect of the electrode surface, although
protonation of the CO2

� radical generated in the first reaction
step on one of its oxygen atoms is preferred to protonation on
its carbon atom, the very positive equilibrium potential of the
HCOO/HCCO� couple makes this the thermodynamically pre-
ferred pathway to formate (eventually coupled to a proton
transfer reaction to yield HCOOH if the solution pH is acidic
enough), as initially proposed by Hori. As also proposed by
Hori, generation of CO as the preferred product, or as the
intermediate for further hydrogenation, probably requires suf-
ficiently strong interaction of the CO2

� radical with the elec-
trode surface through the carbon atom to prevent its
protonation (which would lead to formate, a dead end for
further reduction). Although these conclusions had been
reached in previous works, the internal and external consis-
tency of our data prove the potential of our DFT-MD method for
the calculation of free energies of electron and proton transfer
reactions and, therefore, for the estimation of the most likely

reaction pathways in the electrocatalytic reduction of CO2

beyond CO, as well as their potential dependence. Furthermore,
because our computations have neglected any catalytic effect
from the electrode, they provide an ideal starting point for
screening candidates for possible electrocatalyst.

4. Summary and outlook

This work suggests an alternative approach to study catalytic
effects in electrochemistry from both the electrode surface and
the electrolyte. Reaction free energies in aqueous solution are
obtained, which do not take into account any interaction with
the electrode surface. This can be considered as a first step in
trying to decompose catalytic effects among contributions of
the solvent, the electrode surface and the components of the
electrolyte that will then allow to screen electrode materials or
the components of the electrolyte.
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