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Understanding the surrounding atmosphere and reacting accordingly with a precise action are always
fascinating features of a material. Materials that pose such responsiveness are called smart materials.
Currently, research studies on smart materials are being accelerated exponentially around the world; this
is also true for smart hydrogels. Smart hydrogels with various chemically and structurally responsive
moieties exhibit excellent characteristics of reacting under different environmental conditions such as
pH, temperature, light, electric field, and magnetic field as well as biological and chemical stimuli. These
Received 4th March 2021, smart hydrogels are drawing the attention of researchers for a wide range of applications, for instance,
Accepted 4th May 2021 in designing biomedical, industrial, agricultural, electrical, healthcare, and hygienic products. This review
DOI: 10.1039/d1ma00193k encompasses the latest developments in the field of smart hydrogel synthesis based on their unique
features and different aspects of their responsive behaviors. Additionally, this paper covers some of the
rsc.li/materials-advances recent strategies for tuning special functional properties of smart hydrogels for targeted applications.
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paradigm in the field of polymer-based biomaterials. The bio-
mimetic nature of hydrogels has envisioned widespread applications
in biomedical engineering for cell culture, drug delivery, and
therapeutics. Hydrogels are water-absorbing polymeric networks
and are developed to mimic many of the inherent properties of soft
tissue.>” For instance, the properties of hydrogels can be tuned to
mimic the biochemical, mechanical, and rheological properties and
stimulus responsiveness of soft tissue.*® Smart hydrogels can
undergo structural and volume phase transitions in response
to external stimuli, providing enormous potential for scientific
observations and various advanced multidimensional technological
applications.® The development of smart hydrogels as functional
materials has revolutionized the field of study concerning
responsive materials known as stimuli-responsive hydrogels
(SRHs).” Generally, SRHs are absorbent to superabsorbent®
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materials that can react to any subtle environmental changes
such as pH,’ temperature,’® chemical species,'" ionic strength,"
electric field,”® and biological conditions.**™® Fig. 1 shows a
classification of external factors that can instigate smart hydrogels.
These wonderful characteristics have the potential to trigger many
applications, for example, biomedical (i.e., tissue engineering, drug
delivery, and drug release),'” personal healthcare and hygienic
products,'® agriculture (ie., soil moisturizing, conditioning,
nutrient carrier, and erosion control),"® wastewater treatment,*
sensors and actuators,?*? textiles,*® construction,?* electrical,*
membranes,”® and flocculation.”” Based on their desired appli-
cation trigger, hydrogels can be synthesized by physical inter-
actions and chemical reactions. Physical hydrogels can be
developed either by the interaction between oppositely charged
polyelectrolytes or oppositely charged multivalent ion/surfactants
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Fig. 1 Major classification of SRHs (based on ref. 48 and 58-61) [reproduced with permission from ref. 58, ©The Royal Society of Chemistry, 2014].

and polyelectrolytes.”®* In contrast, chemical hydrogels are typi-
cally formed through a covalently crosslinked polymeric network.*
These smart hydrogels are capable of swelling and shrinkage
reversibly in response to changes in external environmental
stimuli.” These hydrogels are composed of homo-polymeric,
co-polymeric, or multi-polymeric networks that are synthesized from
one, two, or multiple polymers, respectively.”>?' Consequently,
these hydrogels can display many functionalities. Such functional
hydrogels can be engineered in multiple desired dimensions. For
example, they can be subjected to biomedical applications by
modifying their chemical structure, composition, biological
functions, biodegradability, and various physicochemical
properties such as mechanical and rheological, spectral, pH
stability, release, and loading properties.***
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SRHs can be engineered based upon the application of
external stimuli that trigger them to show a switchable sol-
gel transition. External stimuli, including temperature, light,
magnetic and electrical fields, and ultrasonic waves, are con-
sidered as physical triggers, while pH and redox reactions are
considered as chemical triggers.>® In addition, biological trig-
gers include enzymes,**™*° antigens,'**' and DNA."*™*

During the past few decades, a plethora of research studies have
been conducted to fabricate hydrogels with stimuli-responsive prop-
erties that correspond to regular hydrogel attributes such as swelling,
porosity, physical structure, and modulus.”**® Furthermore, the
diversified properties and applications of hydrogels have resulted
in thousands of research articles focusing on various aspects. In
addition, numerous review articles have been found based on
hydrogel applications®>* and their types.>*>” However, a critical
review addressing the techniques to tailor different functional
properties and governing mechanisms of responsive behavior is
yet to be amassed into a single article. This review article is therefore
devoted to designing this. In this review article, we explicitly
concentrated on the recent and advanced hydrogel synthesis tech-
nologies, together with process design implications, and optimized
conditions of the preparation process.

2. Typical polymerization techniques
for hydrogel synthesis

Hydrogels are three-dimensional polymeric networks that can
absorb and contain water due to the presence of hydrophilic
groups in the constituent polymeric networks. The term

© 2021 The Author(s). Published by the Royal Society of Chemistry
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“network” implies the presence of crosslinks within hydrogels
which provide pure elastic to viscoelastic properties. Hydro-
philic monomers are typically used to prepare hydrogels, but
hydrophobic monomers are also included to tune the physical,
mechanical, and chemical properties towards specific applications.
Both synthetic and natural polymeric networks can be regarded as
hydrogels. Typically, synthetic polymers are hydrophobic and more
chemically stronger than natural polymers. They provide a slow
degradation rate and a mechanically robust structure when incor-
porated with natural polymers.®***

The most practical approach to producing SRHs is to
combine monomers that exhibit different behaviors in response
to various environmental stimuli. Any technique that is appropriate
for synthesizing a cross-linked polymeric network can be
applied to produce hydrogels. Free radical polymerization
techniques are commonly applied to natural and/or synthetic
hydrophilic monomers with multifunctional cross-linkers to
produce hydrogels.*’ The choice of the polymerization pro-
cess/technique influences the properties of the resultant hydro-
gels greatly.®® Hydrogels can be synthesized either through a
one-step process in the form of simultaneous polymerization and
crosslinking of multifunctional monomers or by a stepwise pro-
cess of producing polymers with reactive groups that can crosslink
themselves or can react with appropriate crosslinkers.?:%¢-¢”

Composite hydrogels are developed by combining two or
more types of organic, inorganic, and polymeric materials in
combination to bring about the best synergistic effect of those
materials for specific applications. For example, achieving
desired mechanical strength and conforming to a particular
shape could be achieved by incorporating hydrophobic polymer
segments in the presence of crosslinkers.®”%®
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2.1. Chain growth polymerization

Chain growth polymerization with a free radical mechanism is
popular to synthesize chemically crosslinked hydrogels. The poly-
merization process involves three steps: initiation, propagation, and
termination. Mostly hydrophilic -C—C- containing monomers
participate in free radical polymerization.*® Various free radical poly-
merization techniques for hydrogel synthesis are described below.
Bulk polymerization (Fig. 2a) is widely applied to produce
hydrogels because of its simple mechanism. This technique
involves the polymerization of liquid monomers and monomer-
soluble initiators with a small number of crosslinkers. The
polymerization process is typically initiated using ultraviolet
light, radiation, and/or chemical catalysts.”> Shin et al. synthe-
sized pH-responsive bulk polymerized hydrogels from sodium
functionalized acrylic acid (NaAAc) and hydroxyethyl methacry-
late (HEMA). At first, AAc was neutralized by NaOH to get
NaAAc. Afterward, the initiator (i.e. o,0’-azobisisobutyronitrile:
AIBN) and crosslinker (N,N’-methylenebisacrylamide: MBAAm)
along with HEMA were added to the reaction mixture. The
polymerization was continued on a Petri dish for 30 minutes at
75 °C in an oven. The unreacted reaction ingredients were
discarded by repeatedly washing with deionized (DI) water.”®
Bulk polymerization has a higher polymerization rate and
inefficient heat control, and the viscosity of the reaction
increases very rapidly. Therefore, it is crucial to control the
conversion rate to tune the hydrogel properties. The resultant
hydrogels exhibit a glassy and transparent polymer matrix,
which swells and becomes flexible upon immersion into
water.”* With the increase in reaction temperature and the
initial concentration of the initiator, the rate of polymerization
and conversion increases. By controlling temperature and the
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concentration of the initiator, it is possible to control the conversion
rate of bulk polymerization.” Besides, terminating the reaction at
low conversion could be another approach, but in large-scale
processes it is considered as uneconomical. Hence, other polymer-
ization techniques such as solution, suspension, and emulsion
polymerization are widely adopted for hydrogel synthesis.”

2.1.1. Solution polymerization. In solution polymerization,
ionic or neutral monomers with a solvent (e.g., benzyl alcohol,
water, ethanol, or water-ethanol mixtures) and multifunctional
cross-linkers undergo polymerization by ultraviolet (UV) or
redox initiation to form hydrogels. The hydrogel is separated,
and the residual monomers, cross-linkers, initiators, and other
impurities are extracted by washing with distilled water (Fig. 2b).”®
Solution polymerization is well-known for ease of synthesis and
low-cost processing with better heat transfer control during poly-
merization. Since polymerization occurs in the aqueous medium,
it is safe and harmless.”””” Solution polymerization is greatly used
for synthesizing cellulose-based superabsorbent hydrogels. The
polymerization rate is high, and the reaction can be conducted
at room temperature. Since the solution has low viscosity, stirring
of the reaction mixture becomes easier; therefore, better heat
transfer and dissipation are achieved in solution polymerization
than in bulk polymerization.””””® Generally, bulk and solution
polymerization processes are homogenous with the potential to
become heterogeneous when the formed polymer is insoluble in
the monomer and solvent in the respective processes.”®

2.1.2. Suspension polymerization (including inverse-suspension
polymerization). Suspension polymerization (Fig. 2¢) involves
generally insoluble monomers and initiators with a low hydro-
philic-lipophilic balance suspending agent in aqueous solution.
They are constantly agitated to create droplets of monomers
(0.1-5 mm in diameter). As polymerization proceeds, the polymer
hydrogel beads are formed, which can be filtered to separate from
the reaction mixture.”” Herein, individual monomers undergo
small-scale bulk polymerization. Since water is the usual medium,
it functions as an excellent heat transfer medium. However, a
protective colloidal agent [e.g., carboxymethyl cellulose (CMC) or
methylcellulose (MC) and polyvinyl alcohol (PVA)] is often used to
obstruct the coalescence of the droplets.”® Inverse suspension
polymerization is also widely used for hydrogel synthesis.”®

2.1.3. Emulsion polymerization (including micellar poly-
merization). Synthesis of hydrogels can also be done by emulsion
polymerization. A typical emulsion polymerization process
involves a water-soluble initiator, a surfactant, crosslinkers, and
real but small water-soluble monomers (i.e. slightly water-soluble
or completely hydrophobic monomers).***! In inverse emulsion
polymerization, a hydrophilic monomer from an organic liquid is
used.”® Fig. 2d shows a typical emulsion polymerization technique.
It produces polymer particles much smaller than those from
suspension polymerization (0.1-3 pm). The suspension and
emulsion polymerization processes can be easily controlled
and heat transfer can be performed effectively over bulk poly-
merization.”® In contrast to suspension polymerization, emulsion
polymerization uses a water insoluble initiator.

2.1.4. Graft polymerization mechanism. Poor mechanical
properties of a bulk polymerized hydrogel can be induced when

4536 | Mater. Adv, 2021, 2, 4532-4573
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using a grafting technique, especially when grafted onto more
robust support frames. Usually, free radical sites are generated
on the surface of the support where monomers can be directly
polymerized to form stronger covalent bonds with the support
structure. For example, grafting vinyl monomers onto polysac-
charides is common.*" Besides, grafted PAAc from hybridized
chitosan (CHT) with cellulose via thiourea formaldehyde resin
produces pH-responsive hydrogels which are mechanically more
robust than grafted AAc from CHT hydrogels.® Fig. 2e demon-
strates a different grafting approach to synthesize hydrogels.

2.2. Step-growth polymerization

Step-growth polymerization utilizes distinct functional groups
containing monomers to synthesize hydrogels. These complemen-
tary functional groups react and form covalent bonds to propagate a
one-step polymerization process.*® Tibbitt et al. studied the mechan-
ical properties of photodegradable hydrogels synthesized via chain
and step-growth polymerization processes (Fig. 3). It was demon-
strated that mechanical integrity, tensile toughness, ductility, and
shear strain to yield of step-growth hydrogels were better than those
of chain growth hydrogels because of network homogeneity and
cooperativity. However, the rate of erosion due to light exposure was
less for chain-growth hydrogels due to higher network connectivity
in chain-grown hydrogels.*® With the understanding of hydrogel
networking, desirable properties of hydrogels can be achieved.

3. Crosslinking methods of hydrogel
fabrication

Since hydrogels contain hydrophilic segments, cross-linking is
essential to avoid the dissolution of hydrophilic polymer segments
in the aqueous medium. Without substantial cross-links, the
solutions of hydrophilic polymers behave as Newtonian fluids.
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Fig. 3 Photo-degradable hydrogel based-on chain and step polymerization
of a photolabile monomer (PEGdiDPA). (a) Chain polymerization of PEGdiPDA
and PEGA via free radical mechanism (e.g. heterogeneous network structure).
(b) Step-polymerization of PEGdIDPA with PEG4SH via Michael-addition
polymerization [reprinted with permission from ref. 83, ©American Chemical
Society, 2013]. *PEGA (monoarylated poly(ethylene glycol)); poly(ethylene
glycol) di-photodegradable acrylate (PEGdiPDA); four-arm poly(ethylene
glycol) functionalized with thiol end groups (PEG4SH).

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Schematic illustration of hydrogel fabrication. (a) Physical cross-
linking. (b) Chemical Crosslinking [reprinted with permission from ref. 77,
©Springer Nature, 2018].

On the other hand, elastic to visco-elastic behavior is achieved by
increasing the number of cross-links.® The degree of crosslinking is
correlated with overall hydrogel properties and characteristics.>**°

Typically, hydrogels are classified into two categories and
their 3D networks can be formed in numerous ways, as shown

Chemically cross-linked
hydrogels

Methods of cross-linking
hydrogels

View Article Online
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in Fig. 5.%* The first category is known as physically crosslinked
hydrogels that form networks in polymers via physical interactions,
such as ionic interactions between polycations/multivalent cations
and polyanions, or hydrophobic interactions in polymer chains, and
so on (Fig. 4a). The other category is called chemically crosslinked
hydrogels that form networks in polymers via chemical interactions
(ie. covalent bonds). Herein, crosslinking can be instigated by
heating, or ultraviolet radiation, and/or by chemical crosslinking
achieved by different reactions, such as Michaelis-Arbuzov reaction,
nucleophilic reaction, and Michael’s reaction, to name a few
(Fig. 4b).%>®¢ Theoretically, different applications of hydrogels
are possible through the optimization of their properties which
is controlled by the degree of crosslinking.®”%

4. Synthesis of stimulus-responsive
hydrogels (SRHs)

4.1. Synthesis of thermo-responsive hydrogels (TRHs)

Hydrogels responsive to temperature are considered as one of
the smartest types of hydrogels that can change their shapes
and formation in response to temperature changes.®® They are
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Fig. 5 Methods of cross-linking hydrogels (based on ref. 63). *Polylactic-co-glycolic acid (PLGA); polybutylene terephthalate (PBT).
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Table 1 Conditions and parameters of PNIPAAmM synthesis
Synthesis
Synthesis method temperature  Fluid Crosslinkers Reagents Effect on PNIPAAm properties Ref.
Free radical 22 °C DI water MBAAmM APS and Increased sensitivity to temperature triggered controllable 98
polymerization TEMED drug release and improved mechanical properties
Surfactant-free emulsion 70 °C DI water MBAAmM KPS Improved crosslinks, charge distribution impact and 99
polymerization temperature-responsive deswelling behavior
Free radical polymerization 10, 15, 20, DI water MBAAmM APS and The transition towards a turbid substrate became more gradual 100
or 25 £ 0.2 °C TEMED (at 33.5-34.5 °C) which consequently had an influence on the
light scattering behavior in response to temperature
Free-radical precipitation 70 °C DI water MBAAm SDS, APS The particle size can be influenced by controlling the 101
copolymerization concentration of the free radical initiator, which is a crucial
factor for drug delivery
Sedimentation 80 °C Silicone MBAAm KPS, The swelling rate of the resulting hydrogel beads was directly 102
polymerization oil TEMED influenced by the morphology (especially porosity in the

structure) of the gel delivered by the applied polymerization

Abbreviations: ammonium persulfate (APS); N,N,N',N'-tetramethyl ethylenediamine (TEMED); potassium persulfate (KPS); sodium dodecyl sulfate

(SDS); and N,N’-methylenebisacrylamide (MBAAm).

mainly characterized by the presence of hydrophobic groups,
such as methyl, ethyl, and propyl groups.’® Usually, TRHs can
be divided into positively thermo-sensitive, negatively thermo-
sensitive, and thermally reversible gels.”’ Positively thermo-
sensitive hydrogels swell at high temperatures and shrink at
low temperatures, for instance, interpenetrating polymeric net-
works (IPNs) based on poly(acrylamide-co-butyl methacrylate)
[P(NIPAAmM-co-BMA)] and PAAc.”®> Conversely, negatively thermo-
sensitive hydrogels swell with decreasing temperature and vice versa.
TRHs can be synthesized from both natural polymers (e.g., chitosan,
cellulose, and gelatin) and synthetic polymers (e.g. poly(N-isopropyl-
acrylamide) (PNIPAAm) and polyfluorene 127).”* Here, the choice of
a monomer is important because the behavior of a hydrogel is
largely regulated by the type of monomer and crosslinker used for
the synthesis. The most common monomer, NIPAAm, is widely used
to design drug release systems. Research reveals that the presence of
both hydrophilic amide groups and hydrophobic isopropyl groups in
side chains allows PNIPAAm to show temperature-controlled phase
transition behavior in aqueous solution at a lower critical solution
temperature (LCST) of around 32 °C.°*°® PNIPAAm is one of the
most intensely studied hydrogels, especially in biomedical applica-
tions, because its volume phase transition temperature (VPTT) at
LCST is close to human body temperature and due to its fast on-off
switching.*®” Some typical parameters and ingredients considered
in the synthesis of PNIPAAm are shown in Table 1.

Another source of novel thermo-responsive hydrogels can be
in the form of renewable resource-based hydrogels. It is possible
to synthesize them using bacterial cellulose (BC) and castor oil,
in combination with NIPAAm.'*® Most of the thermo-responsive
polymers undergo phase transitions with the change of tem-
perature.'® The critical solution temperature is responsible for
controlling the solubility of such hydrogels.*”' The synthesis of
thermo-responsive hydrogels from polymers using temperature
changes as a trigger is shown in Fig. 6.

Some cellulose-based functionalized MCs with the protein
laminin can be used to develop a bioactive scaffold for neural tissue
engineering."®® Similarly, composite thermo-sensitive hydrogels
synthesized from CHT/CMC, CHT/collagen, and CHT/PEG can
be alternatives to invasive surgeries.'®”*°° They can also be used

4538 | Mater. Adv, 2021, 2, 4532-4573
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Fig. 6 Formation of TRHs using temperature as a trigger [reprinted with
permission from ref. 93, ©2018 by the authors, open access under
attribution 4.0 international (CC BY 4.0)].

as potential targeted drug carriers that are injected into the body
as a liquid and form a gel if the body temperature rises above
their LCST.*

TRHs have become an optimum material for advanced
bioprinting applications because of their easy tunability from the
sol-gel state by changing temperature (rapid gelation), printability
with good shape fidelity, high resolution,"*® cell compatibility'*"***
with the ability to mimic the micro-environment, natural shape, and
vascularization."">"™* TRHs that are used for bioprinting can be
synthesized from gelatin and its derivatives, MC, agarose, collagen,
pluronic and its derivatives, PEG/polyethylene oxide (PEO) based
block polymers, and poly(N-PNIPAAm) and its derivatives.""®
Josergio et al. developed a composite PAAm hydrogel containing
silica nanoparticles (NPs) with an enhancement in the thermal
diffusivity of PAAm hydrogel nanocomposites."’® Chu et al.
summarized the most used techniques to fabricate and engineer
different thermo-responsive smart hydrogel materials in different
forms of functional compounds (shown in Fig. 7).""”

4.2. Synthesis of light-responsive hydrogels (LRHs)

Hydrogels responsive to light show reversible deformations from a
flowable state to a non-flowable state when exposed to light

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Synthesis and engineering techniques for different thermo-responsive smart hydrogels (based on ref. 117).

sources such as UV light, visible light, and near IR light.>*"'® LRHs
are generally classified into two categories: one contains photo-
labile moieties (e.g. azobenzene and o-nitro benzyl) and the other
contains near IR absorbing nanostructures such as nanorods,
nano-shells, and carbon nanotubes embedded in thermo-responsive
hydrogels.""® Such hydrogels are functionalized as light-sensitive
through photochromism by incorporating photochromic molecules
into the hydrogel matrix. This can be performed by chemical
coupling or mechanical processes and controlled by the right
selection of chromophores, wavelength, light intensity, and chromo-
phore-polymer interactions."*® These hydrogels can undergo sol-gel
phase transitions due to the cleavage of photo-responsive moieties
linked to the hydrogel networks, contraction-expansion of volume
occurring due to photothermal heating of NPs incorporated
within TRHs,"™ and/or chemical modifications (as demon-
strated in Fig. 8).*?

Ter Schiphorst et al. developed a light-responsive hydrogel
by incorporating chromophore (photochrome) spiropyrans via
copolymerization with NIPAAm and AAc. This hydrogel contracts
and swells due to the photoisomerization of the photochrome."*
In another study, the incorporation of metallic NPs such as Au,
Pt, Ag, and Cu was reported to synthesize light-sensitive hydro-
gels due to their superior light adsorbing and/or scattering
capability than molecular chromophores.”** The light respon-
siveness of hydrogels based on trans—cis photoisomerization and
thereby sol-gel and gel-sol transitions were reported by Zhao and
Fraser Stoddart. The photoinduced cis-trans isomerization of
azobenzene found applications in many hydrogel systems. The
host-guest''® chemistry of some materials such as cyclodextrins
(CDs) and their derivatives was also used in the synthesis of
light-responsive hydrogels.'> Another study suggests that the
composite hydrogels of PNIPAAm synthesized with the nanofillers

© 2021 The Author(s). Published by the Royal Society of Chemistry

of glycidyl methacrylate (GMA) functionalized graphene oxide (GO)
exhibited light responsiveness due to the infrared light
sensitivity of GO.'*® A light-responsive hydrogel of polymeric
NPs (light-sensitive) embedded in a thermo-responsive and
mechanically stable double networked hydrogel was recently
developed.'*" Hydrogels based on photo-responsive agents (e.g.,
polydopamine)'®” and semi-conductive polymers'*® were also
synthesized and studied to fabricate light-responsive hydrogels.

4.3. Synthesis of electrically conductive hydrogels (ECHs)

Hydrogels responsive to electrical stimuli are typically polymeric
blends or co-networks of electroactive polymers and highly
hydrated hydrogels. The electroactive constituent contributes to
electrical conductivity and on-off electrical and optical switching,
whereas the hydrated constituent endows the swelling ability,
biocompatibility, and small molecular diffusion.* When a
water-swollen crosslinked polyelectrolyte gel (i.e. electroconduc-
tive hydrogels) is sandwiched between two electrodes and subject
to a DC voltage, a potential gradient is generated, and based on
the charges on the hydrogel it contracts anisotropically, thereby
discharging the water content.>*®'*° Hydrogels containing ionic
moieties exhibit such a contraction mechanism, whereas hydro-
gels with charge neutrality show zero contraction. The presence
of polyanions makes hydrogels contract extensively near the
anode and swell to a lesser extent near the cathode. On the
contrary, hydrogels with polycations show an opposite contraction—
swelling mechanism, meaning that they contract extensively
near the cathode and show little swelling near the anode.
Moreover, the contraction rate increases with the applied
electric field."”** 2

The use of free radical polymerization and the chemical
crosslinking approach was reported for the fabrication of

Mater. Adv,, 2021, 2, 4532-4573 | 4539
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electric field responsive hydrogels, for example, poly(2-(acryla-
mido)-2-methylpropanesulfonic acid) (PAMPS) hydrogels.'**'3

ECHs are synthesized by the incorporation of conductive
materials (Fig. 9) such as metallic NPs (e.g. Au NPs), conductive
polymers (e.g., polypyrrole (PPy), polyaniline (PANI), and poly-
3,4-ethylene dioxythiophene: PEDOT, etc.), and carbon-based
materials (e.g., graphene and carbon nanotubes) as fillers into
the hydrophilic hydrogel matrix."*"?*

The application of ECHs in soft electronics is drawing
attention due to their enhanced conductivity, stretchability, and
flexibility."*>"*® These properties are favorable for flexible strain
sensors and highly applicable in soft robotics, human-machine
interfaces, and micromachines."*! Biosensors and bioelectronics-
based conductive hydrogels for the detection of pathogens,'®”
glucose concentration,"*® and viruses,'* delivering drugs,"*® and
environmental monitoring’*® are being developed rapidly."**

4.4. Synthesis of magnetically responsive hydrogels (MRHs)

Usually, magnetic responsive behavior can be imparted by
incorporating magnetic NPs (MNPs) as a dispersion in a cross-
linked polymeric matrix rendering responsive behavior against
magnetic stimuli.'*?> With the change of magnetic state, the
mechanical, thermal, and acoustic behaviors are also affected
simultaneously as the magnetic part behaves as a composite along
with the hydrogel matrix."** Due to the inclusion of magnetic
NPs, the hydrogel application expands through many areas.
Moreover, the optimum effect can be achieved by ensuring the

4540 | Mater. Adv, 2021, 2, 4532-4573

homogeneous distribution of magnetic NPs to create a hybridized
hydrogel composite."***** Therefore, in the case of magnetic NPs
embedded into hydrogels, it is necessary to control the distribution
of NPs within the hydrogel network which can be manipulated by
creating a magnetic field outside. Furthermore, the properties of
such a hydrogel can also be affected by factors like the concen-
tration and size of both the hydrogel and magnetic particles. These
magnetic gel types can be synthesized by incorporating NPs that
are responsive to a magnetic field into a cross-linked hydrogel
network. Mainly, three major synthesis processes are followed to
develop a magnetic nanoparticle hybridized hydrogel: the blending
method, the encapsulation or co-precipitation method, and the
grafting approach (Fig. 10).4346714

By comparing hydrogels with randomly distributed MNPs
with those incorporating homogeneously distributed MNPs, it
is found that the distribution arrangement greatly influences the
magnetothermal behavior of hydrogels. Hence, magnetothermal
properties can be regulated by controlling the arrangement of
MNPs inside the hydrogel via the regulation of the magnetic
field.">"~">* To improve the collective magnetic properties of MNPs
as well as their monodispersity and homogeneity, they can be
assembled into a one-dimensional structure (Fig. 11)."**'8

Besides, when MNPs are exposed to an alternating electro-
magnetic field, the magnetization flip dissipates thermal energy
to the surroundings and causes magnetic hyperthermia.'>>"°%'%?
This phenomenon has been largely used in chemotherapy to kill
malignant cells."”>'**'%%%* There are four major methods for

© 2021 The Author(s). Published by the Royal Society of Chemistry
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the synthesis of magnetic stimulus hydrogels with suspension
polymerization (Fig. 12).

4.5. Synthesis of sound responsive hydrogels (SORHs)

Among different environmental stimuli, smart hydrogels are also
responsive to sound or ultrasound.'®*'®” Ultrasound refers to the
sound beyond the limit of human hearing and has applications
in many fields such as cleaning, mixing, and imaging.'®*"®°
Particularly in the biomedical field (e.g., drug release, cancer
therapy), its applications with hydrogels are prevalent.'¢”'7173
Polymers or hydrogels can be activated and allowed to burst due
to their interaction with ultrasound waves, thereby releasing drug
loads into specific tissues (Fig. 13a).

SORHs exhibit a reversible de-crosslinking-crosslinking
behavior when interacting with sound waves. In the presence
of ultrasound, crosslinks break and, conversely, regenerate
upon the withdrawal, thus rendering the self-healing ability
to SORHs (Fig. 13b). This mechanism can be incorporated to
release drugs in a controlled manner.'”’

4542 | Mater. Adv,, 2021, 2, 4532-4573

The synthesis of SORHs varies with their application. For
example, Zhang et al."”” developed a hydrogel composite with
an MXene (Ti;C,T,), which was found to be successful in
monitoring the phonatory process or sound of the human
voice. MXene (Ti;C,T,) nanosheets with PVA, water, and anti-
dehydration agents were combined to fabricate this hydrogel.

Kwok et al."’® synthesized a SORH to facilitate on-demand
drug release. They developed a methylene chain within the drug
insulin polymer to produce the final ultrasound responsive
hydrogel. Crosslinked hydrogel slabs were made via copolymer-
ization of the monomer HEMA, 2-hydroxyethyl acrylate (HEA),
poly(ethylene glycol) dimethacrylate (PEGDMA), and insulin.
PEG was incorporated to form large pores so that the hydrogel
can retain large protein molecules like insulin. Then the methylene
chains were developed over the PHEMA surface by processing it
with C-12 isocyanate, dibutyltin dilaurate (catalyst), and anhydrous
tetrahydrofuran.'”®'”® Exposure of ultrasound to this insulin
drug-containing hydrogel showed successful sound controlled
drug release.'”®

© 2021 The Author(s). Published by the Royal Society of Chemistry
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4.6. Synthesis of pressure responsive hydrogels (PRHs)

The ability of hydrogels to detect the pressure exerted on them and
exhibit various responses under various pressures is a novel
characteristic. This behavior is apparent in super-elastic, cellular
structured, and nanofibrous hydrogels, for example, hydrogels
produced by the combination of alginate and flexible SiO, nano-
fibers. Hydrogels with an ultrahigh water content (above 97%) do
not exhibit robust mechanical strength and significant recoverable

© 2021 The Author(s). Published by the Royal Society of Chemistry

deformation because of containing a high amount of water. These
hydrogels are formed by assembling different polymer units, such
as proteins, NPs, polysaccharides, polyelectrolytes, and so on, into
3D networks. Although they have a homogeneous distribution of
networks, they tend to lose mechanical properties in a high water-
containing environment. In such a case, hydrogels of cellular
fibrous networks can readily improve mechanical properties and
exhibit a significant response when pressure is applied.'®* %

Mater. Adv., 2021, 2, 4532-4573 | 4543
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Respective swelling/shrinkage and expansion/contraction
are apparent upon the application of external pressure on hydrogels
containing large mono-domains. A study reports the incorporation
of a mechanical shearing technique for synthesizing half ester
nanocrystallized cellulose (CNC). This includes UV-triggered poly-
merization of a monodomain anisotropic gel converted by shearing.
When subjected to pressure between cross-polarizers, this hydrogel
displays rapid and reversible color changes, accompanied by the
degree of alignment observed as swelling.'®>'%

In another study, a SiO, nanofibrous hydrogel was synthesized
by incorporating four elements, namely, water, alginate, SiO, nano-
fibers, and a metallic cation (AI**), by applying the sol-gel electro-
spinning technique.'®” The pressure-responsive characteristics can
be readily used for different advancements in the field of hydrogels
such as flexible pressure sensors, tissue-engineered scaffolds within
the range of pressure stimulus, drug delivery vehicles, artificial skin,
and bio-actuators, to name a few.'*°

4.7. Synthesis of pH-responsive hydrogels (pHRHs)

pH-Responsive hydrogels are generally synthesized by utilizing
polymers constructed using monomers containing ionizable
pendant/functional groups of -OH, -COOH, -NH,, -CONH,,
-N<, and -SO;H.">*®18%189 when such a hydrogel is exposed
to a solvent (e.g., aqueous solution) of certain pH and ionic
strength, its pendant/functional groups will get ionized with
fixed charges and these charges will exhibit electrostatic repulsion,
resulting in a reversible swelling-deswelling mechanism depending
on the acidic or basic nature of the medium.*® The presence of
anionic and cationic pendant groups in polymers influences pH
depending on the swelling behavior of the hydrogels. Hydrogels
with cationic pendant groups [e.g. CHT, poly(N,N-dimethyl-
aminoethyl methacrylate) (PDMAEMA), and poly(N,N-diethyl-
aminoethyl methacrylate) (PDEAEMA)] swell at pH < pK, and
deswell at pH > pK, (Fig. 14a), whereas hydrogels with anionic
pendant groups (e.g. albumin and PAAc) swell at pH > pK, and

@ Basic Medium @ Acidic Medium (@

(y
Y
(a) Cationic pH responsive hydrogels

Basic Medium Acidic Medium
] —_)
OH- H*

(b) Anionic pH responsive hydrogels

Fig. 14 The schematic representation of pH-responsive hydrogels. (a)
Cationic hydrogels swell at low pH and deswell at high pH. (b) Anionic
hydrogels swell at high pH and deswell at low pH [reprinted with permis-
sion from ref. 190, ©2019 by the authors, open access under attribution
4.0 international (CC BY 4.0)].
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deswell at pH < pK, (Fig. 14b).*®>"°*'! Both synthetic and natural
polymers with ionizable functional groups can be utilized to
synthesize hydrogels with pH-responsive behaviors.”® This
pH-stimulated reversible shrinkage-expansion mechanism of hydro-
gels is utilized to deliver therapeutic drugs protectively.'*>

Numerous approaches can be adopted to synthesize
pH-responsive hydrogels such as free radical polymerized chemical
crosslinking,'®® free radical polymerized physical crosslinking,'*?
grafted polymerization,"** injection emulsion polymerization,’
radiation polymerization and crosslinking techniques,'® template
polymerization,'® covalent linkages,'®”'*® click reactions,'® etc.
The major advantage of these hydrogels is their capability to
administer drugs (especially protein and peptide-based drugs)
orally while protecting them through the gastrointestinal tract
(Fig. 15)."%

Hibbins et al. developed a novel drug delivering pH-responsive
hydro-porous hydrogel based on in situ free-radical copolymerization
of the monomers AAm and methacrylic acid with MBAAm as the
chemical crosslinking agent.'®® Similar polymerization and cross-
linking approaches were utilized by Shantha and Harding to fabri-
cate pH-responsive hydrogels of N-inylpyrrolidone (NVP), PEG
diacrylate, and chitosan, where the -NH, groups of chitosan were
able to ionize in acidic medium (pH 1.2). A combined process of
graft polymerization and free radical polymerized chemical cross-
linking was applied to synthesize dual responsive hydrogels (i.e. pH
and temperature) by grafting cellulose nanowhiskers onto AAm
(CNWs/AAm); afterward, CNWs/AAm was polymerized with
NIPAAm in the presence of MBAAm crosslinkers to obtain the
final hydrogels."®* Hydrogels based on the physical interactions
of AAc and 2-(dimethylamino) ethyl methacrylate (DMAEMA)
copolymers developed via free radical polymerization were also
studied by Suhag et al.’®?

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Hydrogels obtained through vy-irradiation initiated copolymer-
ization and the crosslinking approach were reported to be more
advantageous than those obtained via chemically initiated poly-
merization and crosslinking due to the exclusion of additives (i.e.
initiators and crosslinkers). This approach produces sterilized
hydrogels of non-carcinogenesis. Hydrogels of AAc and DMAEMA
obtained via the radiation technique were reported and simula-
tions were carried out in a buffer solution to study ketoprofen drug
delivery in the colon. Most importantly, template polymerization
can be performed to overcome the disadvantages of reduced
bioactivity and inhomogeneity of chemically and physically
crosslinked hydrogels, respectively."*® pH-responsive hydrogels
via template polymerization of PAAc and DMAEMA can facilitate
the immobilization of an enzyme (i.e. B-galactosidase)."®

4.8. Synthesis of redox responsive hydrogels (RRHs)

SRHs have been developed with the ability to sense reactive
oxygen species (ROS), which facilitate cell protection against
oxidative stress. These SRHs, herein designated as RRHs, can
sense and eliminate the ROS produced from cellular metabolism.
ROS are highly reactive reagents and abundantly present in the
human body. They play a significant role in cell signaling pathways
but cause strong oxidative degradation to liquids, proteins, nucleic
acids, etc.?*"*** As a result, excessive ROS generation disrupts body
functions and is responsible for systemic diseases.’*°® When a
redox-responsive hydrogel is mixed with an oxidant (e.g NaClO),
its viscosity reduces and a transition into a solution phase occurs;
on the contrary, when a reductant (e.g. glutathione (GSH)) is added
to this solution, its viscosity increases and gelation occurs. This
concept is applied to mitigate the effect of ROS. A similar
mechanism was also observed through electrochemically-
induced redox reactions (Fig. 16).2°42%°

A synthesis process of such a redox responsive hydrogel
includes the incorporation of redox-sensitive entities into a
temperature-responsive environment during fabrication. A study
reports that the functionalization of a copolymer fabricated by
ring-opening polymerization can be done via a thiol-yne reaction
to incorporate the redox-sensitive characteristic in the hydrogel.
Under the stimuli of chemicals like H,O,, the resulting copolymer
can show redox-sensitivity.”** The inclusion of redox-sensitive
organo-metallic compounds can also be applied to synthesize
RRHs. For example, Nakahata et al. developed a hydrogel based
on host (PAAc/B-CD)-guest (PAAc/FE) polymer chemistry by
integrating redox-sensitive ferrocene (FE) with PAAc.”® According
to another concept, disulphide linkage-based crosslinking is one
of the popular approaches to fabricate redox-sensitive hydrogels
based on thiol-disulphide exchange reactions."®

4.9. Synthesis of glucose-responsive hydrogels (GRHs)

Modern research into stimulus-responsive hydrogels has opened a
new dimension towards advancements that were beyond imagina-
tion once. One of the most widespread and commercialized studies
involves the synthesis of glucose-responsive hydrogels. These hydro-
gels can be very popularly used in advanced science such as self-
monitoring of blood glucose (SMBG) to regulate the blood glucose
level of diabetic patients,?*°*'* and as effective insulin and
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drug carriers. They can also be applied in the form of nanogels,
microgels, micelles, vesicles, mesoporous NPs, etc.>'*> One of
the popular synthetic methods is based on dynamic covalent
linkages. A study shows that the PEO-b-PVP diblock polymer,
a-cyclodextrin (a-CD), and phenylboronic acid (PBA)-terminated
PEO crosslinker can simply be mixed to form a hydrogel
solution. While PVA and PBA together form the crosslinker
required, the inclusion occurs between PEO and o-CD. This
reaction is responsible for both hydrogel formation and providing
necessary stability. The hydrogel structure tends to dissolve in the
presence of glucose and thus can be very effective to release loaded
drug proteins in the intended environment (Fig. 17).>"

In another study, free radical copolymerization has been
employed for producing other GRHs. Preparing a stock solution of
AAm and MBAAm in 4-(2-hydroxyethyl) piperazine-1-ethane sulfonic
acid (HEPES) is the first step, followed by mixing N-(3-dimethyl
aminopropyl acrylamide) (DMAPAAm) and N,N,N’,N’-tetramethyl-
ethylenediamine (TEMED) with the solution. Herein, 3-acryl-
amidophenylboronic acid (3-APB) acts as a free radical initiator.
Free-radical crosslinking takes place in the solution and thus GRHs
are produced. After confining the resulting hydrogel into a porous
membrane, when a change in the concentration of glucose around
it is brought, a transition is observed. The hydrogel senses the
glucose stimulation through the porous structure.”**">

4.10. Synthesis of CO, responsive hydrogels (CO,RHS)

The surface properties of CO,-responsive hydrogels are controlla-
ble with the stimulation of CO,. In most cases, the modification
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PEO-b-PVA

o-CD

Crosslinker Glucose

Fig. 17 Schematic illustration of the glucose response mechanism of the hydrogel formed with PEO-b-PVA, «-CD, and a cross-linker [reprinted with

permission from ref. 213, ©The Royal Society of Chemistry, 2014].

comes in the form of a reversible switching technique.>'® In one-
way CO, stimuli-responsive hydrogels can be prepared by cross-
linking the gels with discrete metal-organic macrocycles (MOM) or
metal-organo cages (MOC). This technique has added a new
magnitude of versatility in the field of supramolecular self-
assembled hydrogels.

In one study, a new family of star block copolymers (SBCP)
prepared with MOM as the core show CO, responsive behavior
including CO, triggered morphology transition, CO, promoted
hydrogel formation, and even CO,-induced thermo-responsive
behavior. Moreover, the bubbling of N, results in a hydrogel
with a reverse sol-to-gel transition.>'”>*® Such CO, responsive
hydrogels have found applications in different sectors such as
CO, capture and monitoring, separation, encapsulation,
and CO, switchable vesicles.”””>*> The reversible swelling-
deswelling property in the presence of a green stimulus like
CO, is a topic of interest where external stimulation can be
used to exhibit responsiveness (Fig. 18).>%* %%

In addition to CO, responsive hydrogels, CO,-temperature
dual stimuli-responsive hydrogels can be conveniently used in
various circumstances and showed significant potential in

Folding SBCP 5 "o% 03’

2 PR ) oF
Stimuli-Responsive ‘5{;”(.,\,«
) Hydrogel "“WZ N2
t & U ep®

%,
% ¥

Fig. 18

targeted drug transport and controlled drug release. Lie et al.
synthesized a CO,-temperature-responsive hydrogel from
PDMAEMA with a B-CD via atom transfer radical polymeriza-
tion (ATRP). This supramolecular triblock stimuli-responsive
copolymer exhibits good biocompatibility with PNIPAAm and
PDMAEMA hydrophilic segments and polycaprolactone (PCL)
hydrophobic segments. The resultant triblock copolymer is
responsive to carbon dioxide (CO,) gas and temperature reversibly
through self-assembly into cell vesicles.>*

4.11. Synthesis of enzyme responsive hydrogels (EZRHs)

Since all the major changes occurring in living cells are because
of enzymes, in the field of artificial materials enzymes are being
used as a trigger to create biomimetic responsive materials.
These include hydrogels that not only undergo structural
changes but also interact with the environmental components
upon exposure to different enzymes.**™*° To synthesize novel
responsive polymers, enzyme and enzyme-catalyzed reactions
have turned out to be potential triggering elements.?®>*%>*!
Enzymes are biological substances that act as a natural trigger.
Since enzymes are biomolecules, it is possible to release as per

(b)

PDMAEMA  MBAAm
PAAm PDMA :

~~~~~ Protonated PDMAEMA

ﬁ& H-bonding between PAAm
chains

(@) Schematic illustration of a CO, responsive hydrogel of a star supramolecular block copolymer (SBCP) [reprinted with permission from

ref. 217, ©American Chemical Society, 2017]. (b) Schematic illustration of CO, switchable swelling behaviors of P(AAm-co-DMAEMA) hydrogels

[reprinted with permission from ref. 233, ©Springer Nature, 2018].
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requirement wherever necessary by controlling physical attributes
and harmonizing the material response.>*> Enzyme responsive
hydrogels with low molecular weight gelators (LMWG) are recent
developments in this field as the enzymatic process involves
adaptation and reorganization of the gel surface.>****

For the synthesis of EZRHs, one of the most popular
techniques is the incorporation of an enzyme-catalyzed reaction.
Here, an enzyme acts as a key biological catalyst capable of
bringing about chemical or morphological changes within hydro-
gel cells. It can be used to obtain enzyme-mediated bio-responses,
especially in the biomedical field. To synthesize such EZRHs, there
are mainly three basic requirements. The hydrogel must contain
embedded enzyme recognition elements like linkers. Next, the
linkers must be accessible by the enzyme to ensure the enzyme-
catalyzed reaction. Finally, the enzyme linker reaction imparts
physical or chemical changes, ie. degradation or morphological
transitions.>*>?*+>%>

Another concept is that some hydrogels can release trapped
biomaterials in the presence of an enzyme. This is possible due
to the disintegration of hydrogel-forming polymer chains.
Hydrogels with such characteristics can be synthesized in two
ways: firstly, by a simple covalently cross-linked network of the
normal polymer and secondly in the form of a supramolecular
structure that takes place among multiple self-assembling
molecules (hydrogelators). The hydrogelators interact to form
nanofiber structures. The intermingling of these nanofiber
structures is responsible for forming a hydrogel network in this
Way‘243,2467248

The graphical illustration (Fig. 19) shows the action of the
hydrogels in the presence of an enzyme. The hydrogel contains a
linkage itself which links with the provided enzyme and brings
about morphological changes in the hydrogel structure. This is
applicable in both the intracellular cytoskeleton and extra-
cellular matrices (ECM). This is an example of bio-simulation or
bioactivation.>**>*%25

Generally, the chemical synthesis process of a hydrogel includes
covalent cross-linking among polymer chains. The formation of the
hydrogel is done via two principal steps. Initially, the biodegradable
component is dissolved into a liquid state.***"*>* The physical
hydrogel can be produced by ensuring physical interactions or

Enzyme

= Hydrogel Building Polymer Chain

= Enzyme

*

View Article Online
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cross-linking among biological components. As we know, some
enzyme-responsive polymers typically contain enzyme reactive
groups either in their main chain or as additional side groups.
They exist in the form of labile linkages. These linkages cause
modification and tuning of the transformation in the structure via
different non-covalent interactions triggered by enzymes.****" Some
of the physical networking processes are shown in Fig. 20.
Enzymes are specific in their actions and activated by hydrogel
degradation. They are absorbed as biocatalysts to regulate the
controlled release of drugs and biomolecules at desired locations.
For a polymer to be enzyme responsive, some conditions must be
met; for instance, an enzyme responsive substrate, a compound
having a high influence on the kinetics of the enzyme-catalyst
interaction. Finally, the enzyme-substrate reaction requires alter-
ing the material properties.”®* Enzymatic action on the substrate
as a consequence of the molecular interaction in terms of forming
different chemical bonds such as hydrogen bonds, electrostatic
interactions, van der Waals interactions, hydrophobic interactions,
n-7 interactions, or any other combination of these bonds triggers
the alteration of these surface properties (supramolecular archi-
tectures, self-assembly and swelling/shrinkage of hydrogels).>>> A
study shows the incorporation of urea and rhodamine 6G (RH6G)
to formulate a urea-based hydrogel that demonstrates a typical
sol-to-gel phase transition due to enzymatic hydrolysis in the
presence of the enzyme B-galactosidase (B-Gal).>>® Another study
reports a hydrogel formed of covalent cross-linking between
the B-(1 — 4) linked p-glucose unit and chitin which can be
incorporated for targeted medication release in response to
2-acetamido-2-deoxy-B-p-glucose.>*

4.12. Synthesis of antigen responsive hydrogels (ARHs)

Antigen responsive hydrogels exhibit a volume or mass transition in
the presence of an antibody or its supplementary. Physical entrap-
ment of the antigen in the hydrogel network, chemical conjugation
of the antigen, and the utilization of the antibody-antigen pair as a
reversible cross-linker are usually employed to fabricate them with
great potential for application in biosensors.'**"

In the field of supramolecular hydrogels, it is possible to
prepare an antigen-responsive structure. LMWG can be
manipulated to exert self-assembly to construct supramolecular

" Fa

A

A\ = Enzyme Linkage

= Bio Medicine / Bio Molecules

Fig. 19 Hydrogel responding to the enzyme and mechanism to release biomolecules [reproduced with permission from ref. 242, ©SAGE Publications,

2016].
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Fig. 20 Physical interaction processes for producing enzyme responsive

hydrogels. The stability of a supramolecular hydrogel capsule
in a cell culture medium allows it to further upgrade to an
enzyme and a cell responsive hydrogel, which possesses an
appropriate mechanism to release fluorescent drugs stimulated
by prostate specific antigen (PS)-catalyzed proteolysis. It has
good potential for application in the diagnosis of prostate
Cancer.15‘257_260

A hydrogel-based smart membrane can be produced by
grafting the dextran backbone in a fluorescein isothiocyanate
(FITC) antigen and a sheep anti-FITC IgG antibody where
the bio-specific interactions between IgG and FITC ensure
additional stabilization of the structure.”®® A recent study
demonstrates the synthesis of a hydrogel from the copolymerization
of IgG2a and NIPAAm through redox initiation and chemical
crosslinking via MBAAm."*
change in their crosslinking density in response to target
molecules, a target responsive hydrogel can be engineered.'®
This novel hydrogel shows great potential for quantitative
point-of-care testing with higher sensitivity and accuracy in
detecting cocaine, ochratoxin A, and lead ions. The hydrogel

Using a similar mechanism of

was constructed as described in earlier studies>*>** with DNA
grafted linear PAAm and cross-linking DNA for targeted recog-
nition. The mechanism of this action is presented in Fig. 21.
The hydrogel was formed upon the hybridization of polymer
strands and linker DNA (aptamer or DNAzyme). The hydrogel
response to the target substance allows the release of the pre-
loaded Pt NPs, which have good stability and excellent catalytic
ability for decomposing H,0, to O,. Then, the generated O,
in an enclosed environment leads to a significant pressure
increase, which is rapidly traceable by a pressure meter
(Table 2).>%°

The list of recently developed major stimuli-responsive
hydrogels is given below.

4548 | Mater. Adv,, 2021, 2, 4532-4573

hydrogels (based on ref. 84, 241 and 253).

’ Target x“ . f
Gel

&PS-A &s PS-B E'Aptamer Q
5 e

Aptamer-target
complex
Fig. 21 Working principle of the target-responsive hydrogel pressure-
based assay [reprinted with permission from ref. 265, ©American Chemical
Society, 2017].

@ PiNPs

5. Synthesis of hydrogels for targeted
applications

Functional hydrogels are programmed by surface modifications
that can partly endow hydrogels with desired properties while
retaining the original intrinsic physicochemical properties of the
hydrogel network. This surface functionalization is considered as
an alternative strategy for the fabrication of multifunctional hydro-
gels for targeted applications.>**°* Functionalization of the sur-
faces of hydrogels can be done in three ways: the construction of a
surface structure, physical incorporation of functional micro/
nanomaterials, and chemical grafting.'””*%>"

The properties of hydrogels are easily tunable by modifying
functional groups®'* and incorporating functional materials.**>*”

© 2021 The Author(s). Published by the Royal Society of Chemistry
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ical properties®**2® and stretchability**’*?® can be synthesized.
Hydrogels for superior mechanical applications

enhancing the mechanical properties of hydrogels. Since soft tissues
such as tendons, ligaments, and other supporting tissues are tough
materials, which are vulnerable to injury and incapable of regenerat-

ing spontaneously, materials with similar toughness and hydration
To utilize hydrogels in mechanical strength demanding applications,

increasing the toughness of hydrogels is a prerequisite. Many of the
a multi-crosslinker with PAAm and can interact with gelatin via
electrostatic and/or hydrogen bonding interactions, which
significantly increases its elasticity, fracture stress/strain, and
softening properties relative to the neat PAAm and gelatin/
PAAm hydrogels. The presence of GO made the hydrogel denser,
resulting in the reduction of the swelling property. Additionally,
the interactions between GO and gelatin caused the deteriora-
tion of self-recovery properties.>*> A semi-interpenetrating net-
worked hydrogel of BC and CHT (Fig. 22b) was developed by
Wahid et al. The CHT part of the hydrogel was cross-linked by
glutaraldehyde, while the BC part adhered via hydrogen bonding.
The resulted hydrogel demonstrated better mechanical and
thermal properties than the neat hydrogels of BC and CHT.
The scanning electron microscopic image exhibited a dense
network structure, which could be due to the enhanced entangle-
ment of bacterial cellulose in cross-linked chitosan networks.**
Triple-networked (Fig. 22c) hydrogels of PVA, PVP, and PAAc-Zn>*
obtained via similar physical-chemical crosslinking techniques
were developed by Li et al Formation of hydrogen bonding
between PVA and PVP chains along with chemical-crosslinking
of PAAc resulted in triple-networked hydrogels with superior
tensile and frictional properties to those of neat PVA and PVP/PVA
hydrogels.*** A combination of hydrophilic and hydrophobic

of double networking,**? interpenetrated networking,**° triple
networking,>** synergistic copolymerization effects,*** and
nano-additive enforced networking®*® have been employed to
(Fig. 22a). Due to the hydrophilic nature of GO, it functions as
polymeric segments can endow hydrogels with versatile properties.
For example, hydrogel containing hydrophobic rich segments can
provide hydrogel with stiffness and strength, whereas low
hydrophilic segments can provide properties like stretchability
and toughness. A mechanically enhanced copolymeric hydrogel
fabricated from hydrophobic phenyl acrylate and hydrophilic
AAm monomers was reported by Mredha et al (Fig. 22c)

tune the mechanical properties of hydrogels. For instance, Yan
et al. developed double networked hydrogels of PAAm and
gelatin reinforced with GO nanosheets (gelating/PAAm/GO)

Thus, hydrogels that possess important features including self-
healing’”**'® and extreme flexibility*'®** with superior mechan-
Hydrogels have immense applications in tissue engineering,
wastewater treatment, wound healing, antimicrobial applications,’*’
and controlled drug release, but the lack of mechanical strength has
limited their applications substantially.*****> The bio-mimicking
ability of hydrogels have made researchers explore the means of
properties could be a great choice for remodeling such injuries.**®
reported hydrogels are weak, brittle, and have low toughness, which
somewhat limits their applications.*****! Therefore, techniques
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Fig. 22 Means of tuning the mechanical properties of hydrogels. (a) Double networking [reprinted with permission from ref. 332, ©Elsevier, 2018].
(b) Interpenetrated networking [reprinted with permission from ref. 329, ©Elsevier, 2019]. (b) Triple networking [reprinted with permission from ref. 333,
©Elsevier, 2019]. (d) Synergistic effect of copolymers [reprinted with permission from ref. 334, ©Elsevier, 2018]. (e) Nano-additive enforced networking

[reprinted with permission from ref. 325, ©gElsevier, 2019].

Formation of lower water content and higher phenyl acrylate
containing hard regions with high water content and higher
AAm containing soft regions was observed.*** The presence of
nanomaterials within hydrogel networks can significantly
enhance the mechanical properties of hydrogels. The hydrogels
reported by Chen et al. incorporated lignin nanoparticles within
PAAm hydrogel networks. Presence of the lignin nanocomposite
endowed the hydrogels with better compressive stress enabling
them to distribute the applied load efficiently. The improve-
ment was mainly due to the presence of nanonetworks and
hydrogen bonding between the hydrogel forming materials.**’

To use hydrogels in loadbearing areas, researchers have
developed numerous methods, such as chemical cross-linking,
hydrogel networking (i.e. interpenetrating and double networking),
and nano-additives, to improve their mechanical properties.*>*>¢
Table 3 summarizes the synthesis methods/techniques, hydrogel
types, process flow, test results, and applications of several hydro-
gels with superior mechanical properties.

5.2. Hydrogels for antimicrobial applications

Tailoring high-performance and multi-functional properties of
hydrogels, especially natural polymer hydrogels, has drawn
attention recently.*****° Different types of techniques like

4552 | Mater. Adv., 2021, 2, 4532-4573

double-network hydrogels,>*' nanocomposite hydrogels,**>

macromolecular microsphere composite hydrogels,*** polyam-
pholyte hydrogels, etc.>****> have been developed to impart
functional properties. The produced hydrogels have the functional
properties of high swelling in water, soft pliable nature, elastic
properties, self-healing performance, and compatibility with
human physiology. These improved properties have added a new
dimension in the field of drug delivery, tissue engineering, food
packaging products, cosmetics, and biomedical engineering.>**>>°
Many studies were performed to develop hydrogels as alternative
materials for antibacterial applications. For example, the desired
properties of hydrogels, such as hydrophilicity and porosity, can be
integrated by selecting the types of monomers and crosslinkers.
Moreover, some types of hydrogels also have inherent antibacterial
properties. Based on the hydrogel matrices and antibacterial
agents, antibacterial hydrogels are divided into (i) inorganic
nanoparticle-containing hydrogels, (ii) antibacterial agent-
containing hydrogels, and (iii) hydrogels with inherent anti-
bacterial capabilities.>***>> However, antimicrobial hydrogels
can be synthesized in the ways mentioned in Fig. 23.
Incorporation of metals is one of the most pristine and
widely used techniques to functionalize antimicrobial properties,
but with the recent development of nanoscience, the incorporation

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Preparation of hydrogels with superior mechanical properties
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Synthesis method/

techniques Hydrogel type Cross-linking method =~ Main materials Applications Ref.
Chemical cross-linking Cellulosic nanomaterials Ionic cross-linked PAAm, polyelectrolyte Wastewater treatment 324
(cellulose nanocrystals, networks Na-Alg
bacterial cellulose fibers, and
TEMPO-oxidized cellulose
nanofibers) dispersed
interpenetrating hydrogels
Quinone Nanofiber-reinforced gelatin ~ Chemical cross-linking Deacetaldehyde chitin Agricultural and biomedical 326
nano-fibrillated fields
suspension, DI water,
PTFE membrane
Physical cross-linking RSF based double networked RSF/SDS network AAm, Irgacure 2959, SDS, Strain sensors, touch screen 335
hydrogels NacCl, RSF, PTFE spacer pen, and the electronic skin
of artificial robots
Physical cross-linking The 3D-printed tough hydrogel Hydrogen bonded DMSO, MAAc, NPAM, photo- Soft robots, implant devices, 336
of MAAc and NPAM cross-linking initiator IRGACURE 2959 and tissue engineering
Chemical-physical BC and CHT semi- Glutaraldehyde BC membrane, CHT, Antibacterial applications 329
crosslinking interpenetrating networked cross-linked network glutaraldehyde
hydrogels
Chemical-physical PAAm/lignin nanoparticle Free radical networking PAAm, MBAAm, ascorbic = Tissue engineering or 325
crosslinking nanocomposite hydrogels in lignin nanoparticle  acid, hydrogen peroxide regeneration, artificial
dispersion muscles, strong underwater
antifouling materials
Chemical-physical Silicon dioxide/PVA composite Injection molding of PVA, MTMS, HCl Artificial articular cartilage, 337
crosslinking hydrogels the hydrolyzed solution drug delivery, and
biosensors
Chemical cross-linking Hydrophobic and hydrophilic MBAAm cross-linked Phenyl acrylate, AAm, Diverse load-bearing 334
monomer-based hydrogels network DMSO medium, MBAAm, applications
2,2-azobisisobutyronitrile
Chemical-physical Triple-network hydrogels of =~ MBAAm cross-linked PVP, PVA, AAc, MBAAm, Engineering applications 333
crosslinking PVP/PVA/PAAc network ZnCl, with better mechanical
properties and lower friction
coefficients
Chemical cross-linking Non-swellable gradient HCL cross-linked Sodium pyrophosphate Biomedical applications 338

hydrogels

network

dispersion, LAPONITE®,
PAAm, HCL

Abbreviations: N,N’-methylene bis-acrylamide (MBAAm); sodium dodecyl sulfate (SDS); regenerated silk fibroin (RSF); methacrylic acid (MAAc); N-
(pyridine-2-yl) acrylamide (NPAM); dimethyl sulfoxide (DMSO); bacterial cellulose (BC); methyltrimethoxysilane (MTMS); polyvinylpyrrolidone (PVP).

Synthesis of Antimicrobial

Hydrogels
|
[ I I I - 1
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Hydrogels Containing Hydrogels Containing Hydrogels At bactarial Synergetic Effects
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Loaded Nanoparticle Oxide Biological Antibacterial Metal
Nanoparticle Extract-Loaded Polymers Nanoparticles
Loaded Loaded
Gentamicin —
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Silver : : : Containin,
— . Synthetic Antibacterial taining
v = Nanoparticle Antibacterial Peptides Antibiotics
gncomycin Drug-Loaded
Loaded
| Gold
Other Nanoparticle Amphoteric lon
Antibiotic Cabols Hydrogels
T.caded | | Other Metal Material-Loaded
Nanoparticle

Fig. 23 Synthesis of antimicrobial hydrogels (based on ref. 351).

of metals, especially Ag, Au, Cu, and Zn, with hydrogels is done
mainly in the form of NPs.**"*>* Ag is most widely used due to its

© 2021 The Author(s). Published by the Royal Society of Chemistry
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good antibacterial properties and relatively low toxicity. However,
other metals, such as gold, copper, and zinc, have their advantages
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Fig. 24 Antibacterial mechanisms of metals and metal oxide NPs
[reprinted with permission from ref. 354, ©Elsevier, 2013].

and provides antibacterial properties as well.>** 1t is hypothesized
that the interaction between silver ions (Ag") and the thiol group in
proteins of the bacterial cell membrane is responsible for affecting
the bacterial cell viability by inhibiting the replication of DNA
(Fig. 24).>"

Both natural and synthetic polymers are used as the matrix
of hydrogels containing Ag NPs. Polysaccharides, mainly alginate,
chitin, CHT, and CMC, are common natural polymers.>®" The
antimicrobial action of CHT is more rapid against fungi and algae
than toward bacteria.***>® The resistance against microbes
depends on several intrinsic factors such as the type of CHT,*”
the degree of CHT polymerization, the host, the natural nutrient
constituency, the chemical or nutrient composition of the sub-
strates or both, and the environmental conditions (e.g., substrate
water activity, moisture or both).**®

Both chitin and CHT have antimicrobial and metal-binding
properties. Chitin- or CHT-based hydrogels such as the CHT/
2-glycerophosphate/nano-silver hydrogel and silver molybdate
nanoparticle/chitin matrix (Ag,Mo0,0,/chitin) hydrogels are
resistant to E. coli.**>*°° The other polysaccharide hydrogels
include the iota-carrageenan-based Ag NP hydrogel and the Ag
NP-loaded PVA/gum acacia hydrogel; both actively show good
antibacterial activity against the Gram-negative bacterium
E. coli.**'*%* The recent developments of antibacterial hydrogels
incorporating metal particles and their oxides are summarized
in Table 4.

5.3. Hydrogels for cell adhesive applications

The structure of hydrogels is analogous to that of biological soft
tissues which have excellent potential to be used as scaffolds for
cell growth and proliferation.*®>*%" A magnetic PAAm hydrogel
synthesized by integrating magnetic nanoparticles into gelatin
can act as a cell adhesive hydrogel interface. Furthermore, this gel
can act as a multi-array cell culture matrix. The order, degree, and

4554 | Mater. Adv., 2021, 2, 4532-4573
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distribution of cell adhesives, as well as cell-cell and cell-matrix
interactions throughout the multilayer matrix, determine the cell
behavior including emulating the extracellular matrix (ECM). It is
possible to induce a different form of hepatocyte 3D spheroids
and thus transition by controlling cell adhesion affecting the cell
behavior. A magnetic anisotropic hydrogel structure can be
formed using Fe;O, MNPs, AAm monomers, MBAAm, and tetra-
ethyl ethylenediamine all mixed in water. The solution is sub-
jected to ultrasonic agitation in a polytetrafluoroethylene (PTFE)
module. PAAm gelation is induced by heating (approx. at 50 °C)
after the exposure of the resulting solution to a magnetostatic
field for a certain time. This hydrogel with a superior cell
adhesive functionality is thought to hold great potential for
anticancer drug and hypothermia therapy.>**%° A peptide
modified PEG scaffold is a cell-adhesive hydrogel scaffold that
can act as a vessel for human blood-driven endothelial progenitor
cells (EPC). It is a potential cell source for applications like vascular
tissue engineering. A mild photocrosslinking process is used to
encapsulate the EPC within a PEG-based hydrogel. After cell
culture and network formation to prepare EPC, a solution is
formed by reacting the cell adhesive peptide ligand, arginyl glycyl
aspartic acid (RGDS), with acrylate-PEG-succinimidyl valerate
(Acryl-PEG-SVA) to provide purified RGDS conjugated PEG
(PEG-RGDS)."® A matrix metalloproteinase (MMP) sensitive
peptide sequence (PQ) was also reacted with Acryl-PEG-SVA to
give the Acryl-PEG-PQ-PEG-Acryl (PEG-PQ) conjugate. A
solution of both PEG-PQ and PEG-RGDS was formed by dissol-
ving both into PBS. Later, the hydrogel was formed by exposure
to white light (Fig. 25a).%%%%%”

A polydopamine-polyacrylamide (PDA-PAAm) single network
hydrogel with super-stretchability, high toughness, cell affinity,
and tissue adhesiveness properties was synthesized. The PDA-
PAAm hydrogel was prepared in the following two steps. In the
first step, PDA was prepared by oxidizing dopamine (DA) under
alkali conditions. In the second step, AAm was polymerized and
crosslinked to form PDA-PAAm hydrogels (Fig. 25b).**®

An alginate-based cell adhesive bio-hydrogel (AdhHG) is an
important potential discovery in the field of biomedical engineering.
Such hydrogels are capable of encapsulating and delivering
mesenchymal stem cells (MSC) to the desired location and thus
contribute to tissue engineering and regenerative medicine. Cell
adhesion plays an important role in both cell regeneration and
sealing tissue or coating implants in the desired location. .-DOPA
amino acid (DA) modified alginate hydrogels show strong adhesion
to cells. First, a methacrylate alginate hydrogel is synthesized by
polymerization of the methacryloyl group in the alginate chain. DA
hydrochloride is integrated to induce the crosslinking ability. The
adhesive property is further improved by reacting with collagen
emulating short peptides to form AdhHG. Crosslinking is carried
out in the Ca*" medium. Finally, the hydrogel is formed by photo-
polarization through exposure to blue-green light.**** Similarly, a
novel peptide-based hydrogel containing cell adhesion and cell
proliferation properties is expected to show inherent antibacterial
characteristics and act as a potential scaffold for cutaneous wound
healing. The hydrogel is synthesized from a series of peptides, Poly
(Lys).(Ala),. These are derived from ring-opening polymerization of

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Information on hydrogels with different metal NPs
Metal  Synthesis technique Hydrogel matrix Bactericides Applications Ref.
Ag NPs Electrochemical synthesis and rehydration Alginate nanocomposite  S. aureus, E. coli Potential wound 363
hydrogels dressing
Free radical polymerization and green process Alginate/PVA silver E. coli, S. aureus Wound dressing, 364
nanocomposite hydrogel water purification
Free radical polymerization NIPAAm-based nanogels E. coli, S. epidermidis Biomedical applications 365
Cross-linking via radical redox polymerization Sodium alginate-based E. coli, S. aureus Drug delivery 366
semi-IPN hydrogels
Synthesis at low temperature Thermosensitive S. aureus, P. aeruginosa Wound dressing 359
CHT/2-glycerophosphate/
nanosilver hydrogels
Free radical cross-linking polymerization and P(MMA-co-MAA)/silver S. aureus, B. subtilis Smart material 367
follow-up reduction of silver nitrate nanocomposite
hydrogels
Physical cross-linking in sodium tripolyphosphate as ~ CHT hydrogel beads E. coli, S. aureus Potential drug 368
the cross-linker delivery carrier
NaCMC was dissolved in distilled water. FA was FA cross-linked CMC S. aureus, K. pneumonia Cotton fabric 369
added to the solution hydrogel
In situ reduction of GO using vitamin C in the RGO-based composite N/A Wastewater treatment 370
presence of heat (90 °C) hydrogel
Freeze-thaw method QPVA hydrogel E. coli, S. aureus, Antimicrobial dressing 371
P. aeruginosa
Au NPs Incorporation of nanosized HAP particles into SF/nano-HAP hydrogel MRSA, E. coli Bone tissue engineering 372
porous SF hydrogels
Genipin cross-linking Gelatin hydrogels N/A Carriers in drug delivery 373
Au NPs through sodium borohydride reduction AuC-liposome hydrogel  S. aureus Microbial infections 374
method and liposomes through the standard
extrusion method
ZnO The hydrogel was made from ZnO NWs and the CHT-based composite E. coli, S. aureus Biomaterials, cosmetics, 354
combination of CHT and AAc. ZnO NWs were pre- hydrogel food packaging
pared by a hydrothermal strategy using zinc acetate
with NaOH as precursors and PEG as an assistant.
CHT-co-AAc hydrogels were prepared by free-radical
graft polymerization
CHT pellet was mixed with alginate solution as a  Alginate hydrogel E. coli, S. aureus, Wound infections 375
cross-linker to strengthen the hydrogel through a C. albicans, MRSA
freeze-dry process
ZnO-PEGMA and AG-N3 IPN nanocomposite AG with IPN structure Gram-positive and Wound dressing 376
hydrogels were synthesized under UV irradiation Gram-negative bacteria
CMCh solution cross-linked with CMCh hydrogel Gram-positive and Applications in 377
epichlorohydrin at 80 °C Gram-negative biomedical fields
bactericides
Ni NPs Nickel NPs prepared by a hydrothermal method Ni NP chitin nanogels S. aureus Biomedical field 378
MgO «C was blended with Na-CMC dissolved in distilled Modified kC hydrogel N/A Drug delivery, especially 379

water

in gastrointestinal
tract studies

Abbreviations: FA, fumaric acid; GA, gum acacia; HEMA-2, hydroxyethyl methacrylate; IPN, interpenetrating polymer network; MRSA, methicillin-
resistant S. aureus; PBS, phosphate buffered saline; PMAAc, poly(methacrylic acid); QPVA, quaternized polyvinyl alcohol; RGO, reduced graphene
oxide; NW, nanowires; AAc, acrylic acid; SF, silk fibroin; CMCh, carboxymethyl chitosan; kC, k-carrageenan; PEGMA, poly(ethylene glycol) methyl

ether methacrylate; Ni NPs, nickel nanoparticles; AG-N3, 4-azidobenzoic agarose; NaCMC, CMC sodium salt; HAP, hydroxyapatite.

N-carboxylic anhydride (NCA), i.e. NCA-Lys and NCA-Ala monomers.
PEG-amide succinimidyl glutarate (ASG) is chemically cross-linked
with peptides to form a hydrogel exhibiting cell adhesion properties.
Wound dressings containing such hydrogels provide not only
resistance against infections but also a suitable physiological
environment for cell generation.***~%°

Another general cell adhesive hydrogel synthesis process
starts with prepolymer solutions and several cross-linking methods
including chemical, enzymatic, or photoreactions (Fig. 26A). For a
successful tissue engineering process, an additional method is also
required including tailoring biomechanical properties, tailoring
degradability, tailoring bioactivity, and finally cell culture. Bio-
mechanical properties can be improved by increasing the poly-
mer concentration and by changing the architecture like linear,

© 2021 The Author(s). Published by the Royal Society of Chemistry

branched, etc. (Fig. 26B). The degradation properties of hydrogels
can be controlled by the integration of crosslinkers in polymer
networks. For instance, the incorporation of a matrix metallo-
proteinase sensitive peptide sequence in hydrogels makes them
prone to cell-mediated degradation (Fig. 26C). The bioactivity,
another important property for cell adhesion and proliferation, of
hydrogels can be improved by binding bioactive compounds with
hydrogels (Fig. 26D).>*” For example, a collagen-binding peptide
is incorporated in an alginate hydrogel.>*®

5.4. Hydrogels for self-healing applications

Self-healing is the capability of materials to recover from their
damage themselves. Self-healing materials are considered as
the next-generation materials for high-performance structures.

Mater. Adv,, 2021, 2, 4532-4573 | 4555
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This fascinating property can also be induced in hydrogels. Several
underlying mechanisms of self-healing hydrogels are mainly
divided into two broad categories: dynamic covalent bonds and
non-covalent interactions (Fig. 27). Self-healing hydrogels possess
dynamic covalent bonds that are mostly synthesized from Diels—
Alder reaction, coordination bonds, imine bonds, boronate ester
bonds, and disulfide bonds, whereas noncovalent interaction
methods include hydrogel bonds, host-guest interactions, hydro-
phobic interactions, and electrostatic interactions.>®

The chemistry of self-healing can be successfully incorporated
in both natural and synthetic polymers (Fig. 28). The generally
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used natural polymers to synthesize self-healing hydrogels are
polysaccharide-based polymers including alginate, chitosan, and
hyaluronic acid. Self-healing hydrogels with natural polymers are
normally biocompatible. Synthetic polymers including PEG,
PAAc, PVA, and PAAm give stronger and more elastic self-
healing hydrogels.***

A multifunctional composite self-healing hydrogel can be
developed from a series of Li-alginate/poly(acrylamide-co-stearyl
methacrylate) [Li-alginate/P(AAm-co-SMA)] hydrogels with a
fully physically cross-linked interpenetrating network.*®® In
addition to their excellent stretchability and self-healing ability,
the produced hydrogels exhibit the maximum fracture energy
that enables them to be used as fire-resistant materials.’”* A
rapid self-healing hydrogel was developed by aligning the poly-
mer network with dangling hydrocarbon side chains containing
polar functional groups. These groups can be hydrophilic and
hydrophobic moieties that allow the side chains to mediate
hydrogen bonding across two separate hydrogel pieces or a
rupture in the hydrogel. A polysaccharide derivative cross-
linked with PVA forms a hydrogel that is capable of displaying
rapid self-healing behavior when subjected to rupture. The
hydrogel synthesis technique involves the extraction of bioactive
laminarins (polysaccharides) from alginic acid, fucoidan, or
some other seaweeds. These laminarins contain B-glucan which
is modified by reacting with phenylboronic acid. Later, the
resultant biopolymer and PVA are cross-linked by boronate
esterification and form a self-healing hydrogel.****%

Another type of self-healing hydrogel called a fluorochromic
hydrogel that responds to light and ferric (Fe**) ions shows
decent self-healing capability. Such a hydrogel is synthesized
via the physical crosslinking of PVA. y-Cyclodextrin-spiropyran
(y-CD-SP), a fluorophore, forms hydrogen bonds with PVA and
thus is integrated into the PVA gel. The presence of tannic acid
creates numerous binding sites to the PVA chain. This helps to

Fig. 28 Synthetic and natural polymers used to synthesize self-healable hydrogels are highlighted here [reprinted with permission from ref. 401, ©John

Wiley and Sons, 2019].

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 5 Preparation of hydrogels for special applications

Synthesis method/

Special properties  techniques Hydrogel type  Materials Applications Ref.
Heavy metal Physical crosslinking  Cellulose-based Cellulose, glycine, NaOH, acetic acid Wastewater treatment & cartilage 411
adsorption tissue engineering in soft
electronics
Biocompatibility, Ionotropic crosslinking Cellulose-CHT CHT, AA, alkali lignin, NH,OH Tissue engineering, wound healing, 412
Fe’" removal based regenerative medicine, & water
treatment
Super-absorbency Chemical crosslinking Lignin based Lignin, montmorillonite, Cu(u) ion removal 416
K,S,05-Na,S0;, AAc and MBAAm
Higher compressive Physical crosslinking/ ~ PAAm/lignin AAm, lignin dispersion, MBAAm, Tissue engineering 325
and tensile strength in situ free radical NPs based ascorbic acid, and hydrogen peroxide
polymerization water solution
Super-absorbency to Chemical crosslinking/ Alginate based PDA particles, alginate hydrogel Drug delivery 414
gatifloxacin chemical (Alg-PDA), ammonia aqueous solution
co-polymerization of sodium periodate and CaCl,
High mechanical Chemical crosslinking ~Composite PF127, DA, PLGA and GO Biomedical applications as drug 413
toughness with based carriers and antibacterial scaffolds
shape memory
Viscoelastic solid-like Chemical crosslinking Composite DNA, synthetic hectorite (SWN), Structural applications, such as gas 417
properties based alkaline cations barrier films and load-bearing
applications
Viscoelastic Chemical crosslinking Composite PVA and PVP polymer mixture, brine, Water shut-off performance at 418
based resorcinol solution, formaldehyde, higher temperatures
NaOH
Superabsorbent Cross-linked/free radical CMTKG based CMTKG, Na-Alg, K,S,0g5, MBAAmM Water conserver, soil conditioner 419
co-polymerization and nutrient carrier
3-D printing Physical cross-linking ~ Nanocomposite LREH aqueous dispersion, aqueous Electronic skin, wearable 415

performance based

Abbreviations: chitosan (CHT), acetic acid (AA

solutions of Na-Alg and PAAS*?%*>!
), acrylic acid (AAc), N,N'-methylenebisacrylamide (MBAAm), polydopamine (PDA), Pluronic F127

electronics, and soft robotics

diacrylate (PF127 DA), poly(lactide-co-glycolide) (PLGA); graphene oxide (GO); polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), sodium alginate

(Na-Alg); layered rare-earth hydroxide (LREH); sodium polyacrylate (PAAS);

improve both the mechanical strength and self-healing ability
of the hydrogel (Fig. 29).767%8

Similarly, a self-healing hydrogel based on CNC can be
synthesized via a one-pot polymerization technique. Herein,
sodium alginate along with CNC acts as a macro-cross-linker.
The reaction is initiated by introducing the aldehyde group via
mild oxidization of both CNC and sodium alginate. Next, a
Schiff-base linkage is incorporated to bind the CNC surface
with the oxidized sodium alginate core. The hydrogel is capable
of self-healing within several hours of dissociation at room
temperature.***!°

5.5. Other applications

Hydrogels are emerging materials that have attracted significant
fundamental and applied interest for wastewater treatment,*"" tissue
engineering,*>*'* drug delivery,">*'* wearable electronics,*"> and

4558 | Mater. Adv, 2021, 2, 4532-4573

alginate hydrogel (Alg), carboxymethyl tamarind kernel gum (CMTKG).

energy-storage materials.*'* Apart from the aforementioned syn-
thetic processes, the following recent works of functional hydrogels
have extended their applications in numerous fields (Table 5).

6. Future prospects and conclusion

Hydrogels, a unique class of soft materials, have significant
potential to be used in a wide range of applications including
biomedicine, skin, and personal care products. Due to their
significant potential, over the past few decades, rapid integration
of 3D structures and easy customization with advanced synthesis
techniques have spurred the popularity of hydrogels with a wide
variety of applications, thus attracting research attention. To cope
with these exponential demands, researchers are continuously
developing new design and synthesis strategies. In this paper,

© 2021 The Author(s). Published by the Royal Society of Chemistry
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some recently developed hydrogels and their fabrication techniques
have been summarized. Researchers are developing several pro-
cesses to synthesize stimuli-responsive and functional hydrogels.
However, numerous complexities associated with hydrogels
mimicking the natural 3D structure have been reported.
Multi-stimuli (physical, chemical, and biological)-responsive
hydrogels mimicking the natural 3D structure and improve-
ments in their responsive characteristics could be developed in
future research. Additionally, these 3D structured hydrogel
fabrication techniques inevitably destroyed the intrinsic hydro-
philicity and biocompatibility of a hydrogel. These research booms
involve the fabrication of diverse hydrogels in combination with
different polymers, which also directs to the explanations of new
mechanisms of the external stimuli-responsive hydrogel. The
scope for developing smart hydrogels with desired functional
and intact intrinsic physicochemical properties is yet to be
explored.

In particular, substantial research is required to develop
novel smart hydrogels with complex but programmed self-
folding, twisting, and bending behaviors. An adverse immune
response occurs when hydrogen scaffolds are inserted into a
body which may lead to the rejection of scaffolds. Thus, future
research should focus on synthesizing such hydrogels that can
control and reduce immune cells like macrophages and adjust
the plasticity and reprogramming to form/repair/reconstruct
tissues. Another important property of natural hydrogels is having
less toxicity. However, during the manufacturing process, different
solvents have been used which may increase the toxicity level.
Future research should focus more on incorporating natural
materials in cross-linked hydrogels. Future research should also
emphasize on scaling the size of hydrogels down to the single-cell
sampling level. This is important as the present sequencing in
bulk samples provides information on the population level, losing
key information about biological subsets within the sample. It is
possible to individualize sequencing ‘omic’ data on a cell-by-cell
level by partitioning single cells into separate wells or droplets.

Injectable hydrogels have recently attracted the significant
attention of researchers as they offer several benefits including
cytocompatibility, non-invasive administration, tunable mechanical
properties, high permeability, controllable degradability, and inject-
ability, and these hydrogels can be used as scaffolds or as carriers of
therapeutic agents such as drugs, cells, and proteins. However,
several essential challenges still need to be overcome to use these
injectable hydrogels successfully. Two important properties for the
effective application of injectable hydrogels are strength and
degradation. Although researchers are now producing high-
strength hydrogels, the balance of strength with degradation
is crucial for hydrogels. The degradation rate of hydrogels
should be well adjusted with cell adhesion and proliferation.
Also, developing advanced controllable electro-sensitive hydro-
gels with a faster response rate for smart drug delivery is
another area to explore further in depth.

Finally, we may conclude that significant developments have
been made over the past few decades to improve the properties
of hydrogels and these improvements need to be continued in
the near future to improve, modify, and create a new paradigm

© 2021 The Author(s). Published by the Royal Society of Chemistry
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of application opportunities. Therefore, the authors of the manu-
script feel that a comprehensive overview of synthesis processes
and understanding the strategies of tuning special functional
properties of smart hydrogels are a pressing need.
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