Issue 1, 2021

Integrated bioelectronic proton-gated logic elements utilizing nanoscale patterned Nafion

Abstract

A central endeavour in bioelectronics is the development of logic elements to transduce and process ionic to electronic signals. Motivated by this challenge, we report fully monolithic, nanoscale logic elements featuring n- and p-type nanowires as electronic channels that are proton-gated by electron-beam patterned Nafion. We demonstrate inverter circuits with state-of-the-art ion-to-electron transduction performance giving DC gain exceeding 5 and frequency response up to 2 kHz. A key innovation facilitating the logic integration is a new electron-beam process for patterning Nafion with linewidths down to 125 nm. This process delivers feature sizes compatible with low voltage, fast switching elements. This expands the scope for Nafion as a versatile patternable high-proton-conductivity element for bioelectronics and other applications requiring nanoengineered protonic membranes and electrodes.

Graphical abstract: Integrated bioelectronic proton-gated logic elements utilizing nanoscale patterned Nafion

Supplementary files

Article information

Article type
Communication
Submitted
01 Jul 2020
Accepted
30 Oct 2020
First published
02 Nov 2020

Mater. Horiz., 2021,8, 224-233

Integrated bioelectronic proton-gated logic elements utilizing nanoscale patterned Nafion

J. G. Gluschke, J. Seidl, R. W. Lyttleton, K. Nguyen, M. Lagier, F. Meyer, P. Krogstrup, J. Nygård, S. Lehmann, A. B. Mostert, P. Meredith and A. P. Micolich, Mater. Horiz., 2021, 8, 224 DOI: 10.1039/D0MH01070G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements