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Multi-omics data integration considerations and
study design for biological systems and disease
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Michael S. Robeson II *c and Stephanie D. Byrum *ab

With the advancement of next-generation sequencing and mass spectrometry, there is a growing need

for the ability to merge biological features in order to study a system as a whole. Features such as the

transcriptome, methylome, proteome, histone post-translational modifications and the microbiome all

influence the host response to various diseases and cancers. Each of these platforms have technological

limitations due to sample preparation steps, amount of material needed for sequencing, and sequencing

depth requirements. These features provide a snapshot of one level of regulation in a system. The

obvious next step is to integrate this information and learn how genes, proteins, and/or epigenetic

factors influence the phenotype of a disease in context of the system. In recent years, there has been a

push for the development of data integration methods. Each method specifically integrates a subset

of omics data using approaches such as conceptual integration, statistical integration, model-based

integration, networks, and pathway data integration. In this review, we discuss considerations of the

study design for each data feature, the limitations in gene and protein abundance and their rate of

expression, the current data integration methods, and microbiome influences on gene and protein

expression. The considerations discussed in this review should be regarded when developing new

algorithms for integrating multi-omics data.

Introduction

The biological system is complex with many regulatory features
such as DNA, mRNA, proteins, metabolites, and epigenetic
features such as DNA methylation and histone post-translational
modifications (PTMs). Each of these features can be influenced by
a disease and cause changes in cell signaling cascades and
phenotypes. In addition to the host regulatory mechanisms
response to disease, the microbiome can make changes to
the expression of the host features such as their genes, pro-
teins, and/or PTMs. In order to gain insight into mechanisms of
disease, we need to investigate each of these features and their
interplay. For instance, cancers such as melanoma, lung, and
thyroid cancers are driven by the BRAF oncogene.1 However,
when patients are treated with therapies that inhibit BRAF, they
often develop resistance. Recent multi-omics studies have

revealed the heterogeneity and complexity of tumor features
such as their genetic mutations, transcriptome, proteins, and
signaling pathways. It is now appreciated that tumors can
bypass the therapy and give rise to resistance programs.1,2

Proper integration of multi-omics approaches has allowed
deeper insights into disease etiology, such as unveiling the
myriad ways in which the microbiome may play a part in
mitigating or enhancing disease risk. This case can be exemplified
in regard to incomplete breakdown of bisphenol A (BPA), a mass-
produced chemical that is widely used in food packaging, plastics,
and resins. BPA has become a growing public health concern as
BPA is an endocrine disruptor (as reviewed in Yu 20193). Thus,
research into the fast and complete degradation of BPA, and other
compounds via microbial means is of great interest. Yu and
colleagues (2019)3 were able to effectively combine multi-omics
data to analyze a microbial community’s ability to break down
bisphenol A (BPA) products. Though prior research had already
discovered the microbes’ ability to break down BPA, the interac-
tions that allowed this reaction were yet unknown. Through a
clever multi-omics design, the authors were able to use three
major types of integrated analyses to identify differences in
encoded and expressed microbial functions that were involved
in the BPA-degrading microbial community.3

Another example, Poore et al. (2020) leveraged multi-omics
and machine learning tools, to detect microbial biomarkers
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from blood and tissues, serving as a great example of microbiome-
informed oncology.4 Here the research team was able to
discriminate among healthy and cancer-free individuals as
well as between multiple cancer types using plasma-derived,
cell-free microbial nucleic acids. Finally, we refer the reader to
other reviews about the importance of integrating microbes
into multi-omics studies.5–10

There is a growing appreciation for multi-omics studies in
context of therapeutic treatments. However, the methodologies
are challenging for a variety of reasons. Each biological regu-
latory feature has technical hurdles to overcome due to
sample preparation, sequencing platforms and depth, limits
in instrumentation, and dynamic range.7,11 New data integra-
tion algorithms are being developed at a rapid pace. In this
review, we discuss the background of cellular processes, current
data integration methodologies, the considerations for multi-
omics study design, and future directions.

Understanding cellular processes in
context of ‘omics’

Biological systems are complex organisms with many various
regulatory features. For instance, the human genome is composed
of approximately 3.2 billion nucleotides that give rise to 20 000
to 25 000 protein coding genes, and through alternative splicing
events lead to over 1 million proteins (Fig. 1). Epigenetic
modifications, as well as the microbiome, can influence the
expression of both genes and proteins within the biological
system under various conditions. In addition to varying

numbers of genes and proteins within the biological system,
there is also a large dynamic range of high and low abundant
molecules within each feature. On top of biological complexity,
there are limitations in each of the omic sequencing platforms.
These factors should be considered when developing novel data
integration methods and are discussed below.

Different organisms have varying numbers of genes and
proteins. For instance, there are approximately 4300, 6000,
and 25 000 genes in the E. coli, S. cerevisiae, and H. sapiens
genomes, respectively.12 This leads to approximately 2400 to
7800, 15 000, and 300 000 mRNA molecules per cell for E. coli,13

S. cerevisiae,14 and H. sapiens,15 respectively. Mitochondrial tran-
scripts can account for approximately 20% of polyadenylated
RNA. Other high abundant transcripts include those that
encode for ribosomal proteins and proteins involved in energy
metabolism.16 It is important to note in sequencing platforms
that only a fraction of all transcripts in a sample are actually
sequenced and the potentially large number of transcript iso-
forms generated by alternative splicing events presents another
challenge when integrating gene and protein level expression.17

The transcript isoforms may also change across biological
conditions.18 An overview of the complexity of DNA, DNA
methylation, histone post-translational modifications, mRNA,
and proteins in humans is depicted in Fig. 1.

The estimated number of proteins in a cell is around 2.36 �
106, in E. coli and about 2.3 � 109 in H. sapiens HeLa cells.19

Within the vast number of total proteins in a cell, the most
abundant proteins can make up 5–10% of protein content
and consist of ribosomal proteins, acyl carrier protein (ACP)
(functions in fatty acid biosynthesis), chaperones and folding

Fig. 1 Overview of chromatin structure and gene/protein regulation. DNA access is regulated by DNA methylation and histone post-translational
modifications (PTMs). There are approximately 3.2 billion nucleotides in the human genome transcribed to approximately 20 000–25 000 protein coding
genes, which are translated to over 1 million proteins due to alternative splicing events. Each layer of regulation can also be modified by microbes that are
present in the environment and host organism. Each level of biological regulation can be sequenced by using various nucleotide and protein/peptide
sequencing technologies.
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catalysts, proteins of glycolysis (backbone of energy and carbon
metabolism), and structural proteins such as actin. Transcription
factors are low abundant proteins and range from 1–103 copies
per cell in bacteria and 103–106 in mammalian cells. The most
abundant proteins usually have many thousands of copies in
bacteria and many millions in mammalian cells. The number
of genes regulated by a transcription factor depends on its
concentration.19 The protein content depends on the growth
conditions and gene induction. Finally, this can become more
complicated given the ratio of microbial-to-host cell count, which
can depend on host cell type, and other factors.20

Sequencing technologies for various omics platforms only
capture a snapshot of what is happening in a population of
cells at one point in time due to limitations in instrument
detection, dynamic range, and the lifetime expression of the
molecules. For instance, the lifetime expression of mRNA trans-
cripts and proteins are vastly different. The median lifetime of an
mRNA in E. coli is 5 min, 20 min in budding yeast, and 600 min
for H. sapiens.19 However, the lifetime of proteins is approximately
1–2 days. The rate of transcription and translation varies among
organisms (E. coli: 10–100 nucleotides (nt) per second (s) and
10–20 amino acids (aa) per s. H. sapiens: 6–70 nt per s and 2 aa
per s; rate of transcription and translation, respectively) (Fig. 1).
For E. coli a single mRNA transcript can give rise to 10–100 proteins
before being degraded. Given this information we can see that
there will be an increased chance of detection of proteins with a
longer life span, conflating our choice of omics platforms and the
resultant interpretations of cellular processes.

It is important to recognize the biological complexity of
organisms, dynamic range of molecules, sequencing limita-
tions, as well as the lifetime of expression of those molecules
when considering a data integration study design, developing a
new algorithm, and when interpreting the results.

Microbiome influences on genes and
proteins

In recent years, the importance of the microbiome in host
health has been recognized. The idea of the holobiont and the
hologenome has had profound implications in how we view
the microbiome,21,22 especially in regard to therapeutics. The
idea is that the interactions of the host’s own genome and its
‘‘second genome’’,23 collectively called the hologenome, work
together to provide an ‘‘insurance policy’’ against a variety of
perturbations24,25 that affect host health. This close relationship
of microbe–host interactions can be more explicitly termed the
‘‘microbiota–nutrient metabolism–host epigenetic-axis’’.26

Microbiota and their metabolites can affect the host
epigenetic landscape, by directly modifying histones, altering
DNA methylation profiles, and influencing the nature of non-
coding RNAs (Fig. 1). For example, histones can be modified by
microbiota by altering the activity of histone modification
enzymes, and the levels of the enzymes substrates.27–29

Microbiota can also affect the therapeutic nature of drugs.
Many prodrugs, i.e. a drug that must metabolically converted in

order to become pharmacologically useful, may remain inactive
(i.e. the microbiota that mediate the conversion of the prodrug
to its active form are not present), or the drug/prodrug, may not
become bioavailable to the host, as a result of degradation
by the hosts microbiota.30 Moreover, patients taking NSAIDs
(non-steroidal anti-inflammatory drugs), may promote the pre-
ponderance of antibiotic resistant bacteria as 24% of tested
over-the-counter NSAIDs inhibited the growth of at least one
microbe in vitro.31 These metabolomic effects, raises concerns
about potential side-effects of therapeutic drugs, or other diet
and treatment regimens, intended to be used on humans and
agricultural systems. For example, antibiotics can eliminate
histone deacetylase (HDAC) inhibitor-producing microbes.
These microbes, when present, can augment regulatory T (Treg)
cells, which aids in anti-inflammatory processes.32

This means that the diversity of microbial metabolic
pathways, and their impact on drug pharmacokinetics and
pharmacodynamics,33,34 may partly explain the variation to
drug responses between individuals and populations. There-
fore, therapeutic treatments that involve the microbiome, may
have to be regionally tailored.30,35,36

Histones can undergo both variant replacement and post-
translational modification (PTM), together these form the
‘‘histone code’’. These local arrangements can affect chromatin
structure in such a way that leads to the activation or repression
of transcriptional activity.37,38 Thus microbes, through diet,
have the ability to modify methylation and PTM profiles
of the host, and can also affect the generation of short-
chain fatty acids (SCFAs) through the fermentation of dietary
carbohydrates. SCFAs, such as butyrate and acetate, can
inhibit deacetylase levels. Meaning that chromatin structure
becomes increasingly relaxed due to acetylation driving
increased transcriptional activity.26 In fact, it has been
shown that microbes can affect host tissue acetylated and
methylated chromatin states in a site-specific and combinatorial
fashion and even impact host developmental and metabolic
phenotypes.37–39

Modelling the development of the microbiome and its
commensurate ontogenetic changes of the host, are increasingly
being considered when trying to interrogate host health and
therapeutics.40 Many microbial ecological principles such as
community assembly are being brought to bear to investigate
these processes.41,42 These changes can be exemplified through
host immune maturation, considering that the host immune
system must not only be able to recognize ‘‘self’’ antigens, but
also those of symbiotic microbes. How microbes influence the
expression of the major histocompatibility complex (MHC), or
how host heterozygosity in turn affects the diversity of the
microbiota through MHC, is largely unknown and is an active
area of study.26,43 Finally, the role of microbes as they relate
to cancer and immune treatments are increasingly becoming
targets for the development of therapeutic strategies.44,45

Proteomics, in combination with other omics strategies have
been used to interrogate disease processes. However, if we do
not take into account the effects of microbiota (i.e. the entirety
of the holobiont), then we may miss meaningful insights to
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develop potentially therapeutic treatments. Particularly those
related to metabolic disorders (e.g. obesity), or the systemic
effect of metabolites (e.g. bile acids) on organ systems.46 There
is far more variation of our ‘‘second genome’’ that can be
leveraged for human benefit compared to our own.47

Advances in microbial ecology

With heavy emphasis on understanding the effect of the
microbiome it has become common practice for biomedical
researchers to include methods to investigate the diversity of
bacteria and archaea in their samples. The history of microbial
ecology centers around the sequencing and alignment of
appropriate phylogenetic marker genes. The 16S rRNA gene,
first purposed as a marker by Woese and Fox (1977),48 is by far
the most commonly used marker gene with massive databases
of full length gene isolate from environmental and culture-
derived sources (e.g. SILVA, RDP, Greengenes).49–51 (Table 1).
New microbial taxonomy databases, such as the Genome
Taxonomy Database (GTDB), not only curate a 16S rRNA gene
reference database, but are also leveraging phylogenomic
information52,53 to provide a consistent framework for deter-
mining the phylogenetic context partial or complete genomes
derived from metagenomes.54

Apart from selecting a marker gene and appropriate
database, researchers also have a choice between sequencing
methods and platforms. Due to limitations of short-read platforms
such as Illumina and Ion Torrent, researchers must select between
variable regions of the B1500 bp 16S rRNA gene. Each variable
region provides a different level of sensitivity and specificity
depending on microbial community composition. This is why
preliminary amplicon surveys often compare a collection of primer
sets and variable regions. The combination of the primer set and
the amplicon region that best differentiates among the common
taxa in the study, is then chosen. Alternative long-read platforms
have recently been adapted to deliver high-throughput full-
length 16S rRNA for researchers that need taxonomic resolution
beyond the genus to family level typically provided by short-
read technologies.55

Current metagenomic analysis techniques have allowed
researchers to obtain partial and complete draft genomes from
environmental/host-derived samples given sufficient sequence
coverage. This coverage factor is highly dependent on the species
evenness and richness. Researchers using these techniques can
investigate potential functional differences of a collection of
metagenome assembled (draft) genomes. However, often they
have to use concentrated universal proteins to place these
genomes in a phylogenetic context because of the difficulty of
assembling and correctly binning highly conserved genes like
the ribosomal subunit genes. Combined universal marker genes
are used to construct the phylogeny from genomes assembled
from environmental and host-derived sequences along with a
minority of familiar microbial genomes from culture collections.
The sudden rush of sequencing microbial genomes has necessi-
tated the construction of easy-to-use wrappers and pipelines to

aid biologists in learning how to approach the analysis of their
metagenome data, either in whole or in part. Some great
examples of such tools are, QIIME 2,56 metaWRAP,57

Sunbeam,58 SqueezeMeta,59 metAMOS,60 mg-RAST,61 IMG/M,62

Anvi’o,63 MicrobiomeAnalyst,64 and the variety of tools within
the biobakery65 collection (e.g. MetaPhlan2,66 PhyloPhlan,67

HUMAnN,68 LEfSe69), among others (see ref. 70 for a review
these and many other meta’omics tools). Biomedical researchers
wading into the depths of microbial ecology looking to integrate
disease metrics, host proteomics, and microbial diversity should
be aware of the various databases, curatorial rigor, and the
limitations of the sequencing platform they choose.

Sequencing technologies

Depending on the biological question, there are many types of
omics technologies targeting DNA, total RNA, mRNA, miRNA,
DNA methylation, proteins, protein modifications, histone
post-translational modifications, metagenomics, metaproteo-
mics, etc. Sequencing platforms have improved over the years
and now allow for the sequencing of large complex human
samples within a few days from small amounts of material
(Table 2). Several workflows have been developed to sequence
the whole genome, the whole exome (protein-coding portion of
DNA), and transcriptome (mRNA), and arrays for specific
cancer or immune-related genes. In addition, we can profile
modifications, such as DNA methylation using either whole
genome bisulfite sequencing or Illumina’s MethylationEPIC
BeadChip arrays. The detection of such modifications can also
be determined through the direct sequencing of long read DNA
and RNA via the Oxford Nanopore Technologies (ONT) MinION
platform,71–74 and PacBio instrumentation.

Error rates and read lengths vary between DNA sequencing
technologies. Illumina short read sequencing (i.e. Hiseq,
Miniseq, etc.) typically have very low error rates, at about
0.25% per base, but are sensitive to low diversity libraries, as
is the case with applications such as 16S metagenomics and
targeted gene approaches. Long read technologies have higher
error rates, ranging from 13–15% for PacBio and 5–20% for
Oxford Nanopore instruments.75,76 Read length for Illumina
platforms have a maximum length of 600 bases but long read
technologies commonly achieve 10–30 kb for a single read.77

Optimal read length is also dependent on the application.
Where most sequencing experiments can collect suitable
information with 150–300 base pair read lengths, there are
exceptions. Illumina’s 16S Metagenomics protocol requires
2� 300 base pairs. For whole genome sequencing (WGS), the
longest read possible is optimal but with long read techno-
logies, the error rate increases with the length. Many researchers
have combined long read and short read sequencing to ‘‘fill
gaps’’ with WGS. Due to the fairly recent advent of long read
sequencing technology, information on optimal long read
lengths for applications other than WGS is sorely lacking but
Illumina short read sequencing is rich in optimal read length
recommendations.78
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Table 1 Available resources for big data sets. The table list resources available to download data sets from various omics platforms as well as sequence
and annotation information

Resource Data type Link Ref.

SILVA is a resource of databases of aligned ribosomal RNA
(rRNA) gene sequences from the bacteria, archaea and
eukaryota domains.

Gene sequences of 16S for pro-
karyotes and 18S for eukarya

https://www.arb-silva.de/ 121

Ribosomal database project: aligned and annotated rRNA
gene sequence data

16S rRNA sequences http://rdp.cme.msu.edu/ 122

Greengenes is a dedicated full-length 16S rRNA gene
database that provides users with a curated taxonomy
based on de novo tree inference.

Taxonomy based on the 16S rRNA
gene

https://greengenes.secondgen
ome.com/

123

Genome Taxonomy Database is an initiative to establish a
standardized microbial taxonomy based on genome phy-
logeny. The genomes used to construct the phylogeny are
obtained from RefSeq and Genbank.

A comprehensive and
phylogenomic-based taxonomy
for bacterial and archaeal taxa

https://gtdb.ecogenomic.org/ 52 and 53

Universal Protein Resource (UniProt) is a comprehensive
resource for protein sequence and annotation data

Protein sequence and annotation
database

https://www.uniprot.org/ 124

NIH National Center for Biotechnology Information
(NCBI) GenBank is an annotated collection of all pub-
lically available DNA sequences. Complete bimonthly
release updates are available. Data is exchanged daily with
the DNA DataBank of Japan and the European Nucleotide
Archive.

Genomic sequence and
annotation

https://www.ncbi.nlm.nih.gov/
genbank/

125

NIH/NCBI Reference Sequence (RefSeq) collection pro-
vides a comprehensive, integrated, non-redundant, well-
annotated set of sequences, including genomic DNA,
transcripts, and proteins

Genomic, transcriptomics, and
proteomic sequence and
annotation

https://www.ncbi.nlm.nih.gov/
refseq/

126

University of California Santa Cruz (UCSC) Genome
Browser for exploring genome sequences and annotation.
GenBank updates for mRNA, RefSeq, and EST data occur
on a semi-quarterly basis.

Genome sequence and annotation
database

http://genome.ucsc.edu/ 127

NIH National Human Genome Research Institute Ency-
clopedia of DNA Elements (ENCODE) Consortium project
uses Reference Genomes from NCBI or UCSC

DNA methylation, and immuno-
precipitation (IP) of proteins that
interact with DNA and RNA,
modified histones, transcription
factors, chromatin regulators, and
RNA-binding proteins. Genome
sequence and annotation
database.

https://www.encodeproject.
org/

128

Ensembl is a genome browser for vertebrate genomes that
supports research in comparative genomics, evolution,
sequence variation and transcriptional regulation.
Updates are released every 2–3 months.

Genome sequence and
annotation, gene models,
transcriptional data, genetic var-
iation and comparative analysis

http://ensembl.org/ 129

The Cancer Genome Atlas (TCGA) is a landmark cancer
genomics program that molecularly characterized over
20 000 primary cancer and matched normal samples
spanning 33 cancer types. This a joint effort between
the National Cancer Institute and the National Human
Genome Research Institute.

Individual patient tumor samples:
DNA, RNA, protein, epigenetic
changes

https://www.cancer.gov/about-
nci/organization/ccg/research/
structural-genomics/tcga

130

Cancer Cell Line Encyclopedia (CCLE) is a collaboration
between the Broad Institute, and the Novartis Institutes
for Biomedical Research and its Genomics Institute of the
Novartis Research Foundation to conduct a detailed
genetic and pharmacologic characterization of a large
panel of human cancer models. CCLE contains genomics
data and visualization for over 1400 cell lines.

Copy number, mRNA expression
(Affy), RPPA, RRBS, and mRNA
expression (RNAseq)

https://portals.broadinstitute.
org/ccle

131

Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) is a community resource project.
TARGET is organized into a collaborative network of
disease-specific project teams with the goal of identifying
molecular changes that drive childhood cancers.

Clinical information, gene
expression, miRNA expression,
copy number, sequencing data for
cancers

https://ocg.cancer.gov/pro
grams/target

Initiative
phs000218

Omics Discovery Index (OmicsDI) an open-source
platform that enables access, discovery and
dissemination of omics data sets.

Genomics, transcriptomics,
proteomics, metabolomics

https://www.omicsdi.org/ 132

Multi-Omics Profiling Expression Database (MOPED)
is a repository for multi-omics data of human and
model organisms.

Transcriptomics and proteomics
data and visualization

https://omictools.com/moped-
tool

133

ProteomeXchange (PX) Consortium consists of PRIDE,
PeptideAtlas, PASSEL, MassIVE and jPOST. Devoted to
mass spectrometry (MS)-based proteomics data.

Proteomics data sets http://www.proteomexchange.
org/

134 and 135
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Long read sequencing technologies such as ONT and PacBio
have already ushered in significant improvements in both the
amplicon and metagenomic sequencing space. From high
resolution analysis of the full length 16S gene,55 the entire
rRNA operon,79 to improving the ability to close entire micro-
bial genomes.80 For an in-depth overview on these long-read
sequencing technologies, see Amarasinghe et al.77

Mass spectrometers have also improved by increasing
sequencing depth capabilities over the past 5–10 years. The
technology has advanced from sequencing roughly 3000 proteins
in a cell line experiment using older LTQ mass spectrometers to
routinely sequencing 8000–10 000 proteins using newer Orbitrap
Lumos and Orbitrap Eclipse mass spectrometers. Most proteomics
experiments are performed using data dependent acquisition
(DDA) mode. In this method, the top 20 most abundant
peptides in the MS1 scan that are eluted from a liquid chro-
matography (LC) column are selected for fragmentation in the
orbitrap in order to generate the peptide sequence MS2 scan.
The complexity of the sample mixture highly influences the
sequencing depth and how many proteins will be identified.
Understanding the protein abundance and make-up of the
samples is critical. If transcription factors are the target mole-
cules, then some method of removing highly abundant proteins
prior to mass spectrometry may be necessary. This is especially
critical for serum and plasma samples that have high abundant
molecules, such as albumin and hemoglobin. Otherwise, the
mass spectrometer will sequence thousands of molecules of
albumin and miss the most interesting low abundant
proteins.81

The latest mass spectrometry technology utilizes data inde-
pendent acquisition (DIA) to sequence all of the peptides from
the MS1 scan as they elute from the LC column as opposed to
DDA methods that only sequence the top most abundant peaks.
DIA methods are beneficial over DDA for complex mixtures,
such as in the serum example above. This method helps to
overcome complex mixtures that are highly influenced by high
abundant proteins.82–84

In addition to shotgun sequencing for the host genes and/or
proteins, we can also utilize shotgun sequencing for the micro-
biome. Shotgun metagenomics/metaproteomics may only
sample the dominant microbiota when the sequencing depth
is very shallow. A major challenge of shotgun sequencing the
microbiome is the difficulty in assembling genome fragments
due to under sampling, it is also just as difficult to piece
together peptides for robust protein and taxa identification.

Despite these potential issues, it is possible to sample the
microbial proteome in depth from a variety of human body sites
and diseases, such as saliva, gut/feces, cervicovaginal, or chronic
kidney disease.40,85–87 However, the study/sampling design and
analytical approaches one must consider can differ greatly
between each study. Several sampling preparation approaches
have been shown to enrich microbial biomass ranging from
differential centrifugation through double-filtering differential
separation. These approaches are often followed by a variety of
optimized microbial lysis protocols, typically involving mechan-
ical disruption (e.g. bead beating, sonications), complemented
with enzymes (e.g. trypsin) and detergents. Upon successful lysis,
it is just as important that remaining enzymes, detergents and
salts be removed. For more details see the review by Issa Isaac
et al. and Lin et al.7,40 and the references therein.

Another complication for metaproteomics experiments is
due to the fact that proteins within the same organism have
shared peptide sequences. In order to have confidence in the
protein identification, a unique peptide match for the protein
should be identified with high confidence. This is made even
more complicated when mapping peptide sequences to hundreds
of different species that have conserved protein sequences.
Mass spectrometry does not sequence proteins, but rather
measures the mass-to-charge of peptides and relies on mass
spectra matches to a database of protein sequences for protein
identification. However, there is hope to make sense of these
(Tables 1 and 2).7,40

Curated databases are critical to properly analyze nucleotide
and protein sequencing data generated from these various

Table 2 Coverage and read recommendations by application. Each genomics platform has a recommended sequencing depth depending on the
biological question and focus136

Application

Recommended coverage (�) or reads (millions)

Ref.Illumina PacBio Nanopore

Whole genome sequencing 415� 435� 440� 75 and 137
Whole exome sequencing 415� 435� 440� 75 and 137
Transcriptome sequencing (mRNA;
differential expression analysis)

10–30m 430m 430m 138 and 139

Transcriptome sequencing (alternative
splicing; allele specific expression)

50–100m 50–100m 50–100m 139

miRNA sequencing 430m 430m 430m 138
16S metagenomics 4100� 4100� 4100�
Shotgun metagenomics 480m 480m 480m 140
Histone ChIP-seq 420m for narrow peak,

445m for broadpeak
420m for narrow peak,
445m for broadpeak

420m for narrow peak,
445m for broadpeak

141

Transcription factor ChIP-seq 420m for narrow peak,
445m for broadpeak

420m for narrow peak,
445m for broadpeak

420m for narrow peak,
445m for broadpeak

141

ATAC-seq 425m 425m 425m 141
DNA methylation sequencing
(RRBS per strand)

415� 415� 415� 142
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sequencing platforms. The ability to align reads to a reference
genome is only as good as the sequence and annotation
information present in the reference genome. There are several
resources that continually curate and update nucleotide sequence
information and annotation including University of California
Santa Cruz (UCSC) Genomics Institute genomes, National Center
for Biotechnology Information (NCBI) GenBank and RefSeq,
Encyclopedia of DNA Elements (ENCODE), and Ensembl to name
a few. The Universal Protein Resource (UniProt) contains both
Swiss-Prot (manually annotated and reviewed) and TrEMBL
(automatically annotated and not reviewed) databases for
protein sequence information (Table 1).

Data integration and current
methodologies

Several data integration methodologies have been developed to
integrate certain types of omics data. In addition, large data
repositories have been created to house data from sequencing
experiments for various diseases. These resources provide
valuable building blocks and large amounts of biological
samples that can be utilized to push data integration methods
forward. Currently, data integration tools implement a variety
of methods but generally fall under two categories: multi-
staged analysis and meta-dimensional analysis.88 Multi-staged
integration models are constructed using only two numerical or
categorical features of the data. For example, gene counts from
an RNA-seq experiment are combined with protein information
from a mass spectrophotometry run. Meta-dimensional analysis
attempts to incorporate all the types of data of interest by
concatenation or transformation into a simultaneous matrix or
‘‘metadata’’ set that can be analyzed simultaneously. The latter
method has more statistical power but can be challenging when
attempting to combine data from different types of datasets. Yet,
how does a researcher decide which tool or method is most
appropriate? As stated above, the biological question is the driving
force in the type of analysis method chosen and factors such as
sampling, the type of platform, and quality of the data are
important. How were the samples collected and prepared? Can
the data be effectively analyzed if sequencing depth or quality is
low? Are the data types compatible? How much signal is lost after
normalization and filtering? These are all questions that should
be considered before choosing the appropriate tools.

Unfortunately, data integration and analysis are very com-
plicated and there currently do not exist many user-friendly
tools for researchers with limited bioinformatics backgrounds.
Many tools utilize the statistical language R, which requires
programming expertise in addition to strong biostatistical
knowledge. For example, the R package integrOmics, which
combines proteomics, transcriptomics, and pathway analysis
on two data sets uses correlation analysis and partial least
squares regression.89 The R package mixOmics uses multi-
variate analysis for data exploration, dimension reduction and
visualization.90 Micrographite integrates miRNA and gene
expression with pathway analysis91 and iClusterplus92 and

LRACluster93 use clustering to integrate methylation and gene
expression data (Table 3).

For both multi-state and meta-dimensional methods, many
different algorithms are used, but the most common ones
are clustering, network analysis, data reduction (PCA), and
Bayesian analysis.94 Ray et al. (2014) used Bayesian analysis to
analyze gene expression and methylation data in ovarian cancer
using data collected from the Cancer Genome Atlas Project and
detected a gene, SPON1, which appears to be regulated by
methylation of its CpG site.95 Correlation based analysis can
be useful when prior knowledge of biochemical interactions
is lacking.96 Regardless of the methodology, appropriate
normalization and data filtering is very important as data is
being incorporated from multiple sources.

There also exist some web-based tools such as Paintomics97

that attempt to make the data analysis easier but can still be
difficult for the inexperienced user and the researcher must
have a good working knowledge of their data.98 Further, there
are databases that are commonly used in integrated omics
analysis, such as the Cancer Cell Line Encyclopedia (CCLE),
The Cancer Genome Atlas Program (TCGA), Tumor Alterations
Relevant for Genomics-driven Therapy (TARGET), and Omics
Discovery Index (OmicsDI)94 (Table 1). CCLE and TCGA have
characterized thousands of cancer data sets and can be used
for data mining and visualization. TARGET utilizes clinical
information and has resources for analytical tools on their
websites. OmicsDI provides a platform for searching public
and protected data for a large variety of organisms.

Considerations for study design and
power evaluation

As for any high-quality study, conducting a multi-omics study
should always begin with identifying the scope and restrictions of
a study. Careful planning and execution will improve a study’s
robustness and reproducibility and are especially crucial in multi-
omics studies, as they involve a large number of comparisons,
tailored statistical analysis, substantial financial and timely
investments.10,98 Involving a statistician from the very beginning
of a study is critically important to assist the researcher to identify
the research question, define clear a priori hypotheses, proper
experimental design, study analysis and interpretation,
drawing conclusions and much more.99,100

Once research hypotheses are clearly defined, a suitable
study design is selected that addresses the research hypotheses
best. Therefore, several questions need to be evaluated, such as:
are one or more intervention groups compared to a control (or
themselves), or is an effect evaluated in the same samples
before and after intervention? Is an intervention effect over
one period of time or will samples be measured at several
different time points? Will biological samples be pooled or
analyzed individually and what is the scientific justification
for it101? Which types of omic platforms will provide the most
value101 and how are the multi-omics data going to be inte-
grated? Are samples from the same biological source available
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for all multi-omics platforms of interest? Ideally, samples for all
omic platforms would be collected from the same source.
However, this is not always possible due to sample-specific
limitations or accessibility and amount of the material.101 For
instance, generating multi-omics data from formalin-fixed
paraffin-embedded (FFPE) tissue might not be possible for
certain omic platforms.101 While there are many questions to
be considered during the selection of the experimental design,
the deciding factor for the choice of a study design is usually its
feasibility and financial limitations.10,102

Following the selection of a study design, available resources
need to be allocated between the individual omic platforms.101

This allocation should be guided by the cost and contribution
of each individual omic platforms to the multi-omics study as
well as the statistical power of each individual omic platforms.
Omic platforms with a substantial signal-to-background noise
ratio will require less samples and allow for an allocation of
more resources to omic platforms with a small(er) signal-to-
background noise ratio, as these platforms require more
samples to achieve (similar) adequate statistical power. In
addition, some omic platforms will also require some internal
distribution of resources. For example, when designing an
RNA-Seq study the trade-off between the number of samples
and sequencing depth will need to be balanced.10

The sample and data collection should be guided by the data
analysis to reduce confounding and technical artifacts, such as
batch effects.10 These effects can be introduced during steps of the
sample collection, preparation and storing (e.g. multiplexing).10,101

While some ad hoc methods attempt to reduce such biases
introduced by technical artifacts, they are inferior to a randomized
design.98 However, some technical artifacts cannot be avoided,
and in these cases it is important to identify and understand such
limitations early in experimental design to mitigate and recognize
their impact on the results and conclusions.10,101

Due to the complexity and large volume of data associated
with multi-omics studies it is crucially important to tailor the
statistical analysis to a specific research project.10 A variety of
methods for integrating multi-omics data have been proposed
and categorized as either supervised, semi-supervised, or
unsupervised;103 as well as, conceptual, statistical, correlation,
network, and model-based integration.102 The integration and
statistical analysis of a multi-omics study depend on the selection
of omic platforms and their associated types of data (e.g. count
values, percentages). Nevertheless, each analysis and method have
its underlying assumptions that need to be verified.98

As in any well-designed study, an initial power calculation
is increasingly crucial to evaluate and estimate a sufficient
number of samples and avoid a potential waste of resources,
especially in such large-scale studies.10 Power is defined as the
probability of correctly rejecting the null hypothesis, which is
the likelihood of detecting a true signal or effect. A mathema-
tical power calculation is usually impossible due to the complex
nature of the study design and data; however, estimating
statistical power using simulation is a valuable alternative.
The evaluation of statistical power involves four major steps.
First, data needs to be simulated and a pilot study, prior

knowledge, literature or experts can be beneficial for the
generation of realistic data. Next, a true signal needs to be
introduced and should be guided by the expected effect size.
The data can then be analyzed, and the statistical power can be
estimated empirically. In the context of a case-control study,
the statistical power is the percentage of correctly identified
features out of all features with an introduced effect size.

The statistical power of a study depends on several factors
(Fig. 2) of which some can be controlled, while others are fixed
due to the study and its design. First, the choice of statistical
method used for the analysis. While some tests are more
powerful than others, it is important that their assumptions
are verified and met. Another factor that influences the statis-
tical power of study is the number of variables measured by the
individual omic platform, which is usually dictated by the omic
platform.101 For example, genomics typically measures millions
of variants,104,105 transcriptomics quantifies tens of thousands
of molecules,106 and proteomics107 and metabolomics108,109

profile thousands of molecules. Further, statistical power is
affected by the magnitude and prevalence of the effect of the
phenotype or exposure (effect size). How distinct is the effect?
How substantial is the signal difference between groups? And
how many measured variables are affected? Information about
the effect size might be available from previous literature or
expert knowledge but is often unknown.101 In such cases, a
pilot study can assist with estimating the effect size, but these
estimates need to be handled with caution due to instability.101,110

Yet another power influencing factor is the homogeneity of the
measured values, describing the natural variance of the sample,
the precision of the measurement instrument and detection
limits. With an increasing variance the statistical power will be
reduced. The variance of the samples can be the result of many
aspects, such as the sample population selection, choice of tissue
type or confounding factors.111 In addition to sample variance
inflation, confounding factors can also introduce biases in the
data, and therefore it is important to collect sample meta-data to
mitigate some effects of confounding.101 Because most of the
factors affecting the statistical power of a study are fixed or
dictated by the study design, the factor that is most commonly
used to adjust the statistical power of a study is the sample size.

Applying power analyses for microbiome data is still a
burgeoning field of inquiry and is replete with difficulties.112–115

The types of power analyses, like those outlined above, differ
based on the questions being asked of microbiome data.
Typically, power analyses of microbiome data center on mea-
sures of alpha and beta diversity, and differences in composi-
tional abundances of taxa.114,116,117 Which of these measures to
use will depend on the question at hand. How to integrate these
into a multi-omics study is still underdeveloped.115

Power and sample size evaluation is a valuable technique
during the experimental design of a study to ensure adequate
power and sample size. While under- and overpower studies
unnecessarily deplete resources, the risk of failure of a study is
especially prevalent in underpowered studies. Underpowered
studies and studies with improper experimental design are
more likely to miss true signals, produce bias results, false
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positive (type I error) and false negative (type II error) results,
which will lead to misinterpretations.10,101,111 Such incorrect
inferences will impact the reproducibility, scientific progress
and the cost of science.98,118

Conclusion and future directions

It is important to consider the context of the disease or research
question that is under investigation and what types of data will
provide valuable insight when integrated together. Depending
on the biological question, type of material (fresh tissue, FFPE
tissue, serum/plasma, and cell lines), amount of DNA/RNA/
protein, number of biological replicates, and the number of
confounding effects in a study, these factors will determine the
best sample preparation and sequencing methods needed
for data acquisition. Sample preparation methods including
the day each sample is prepared, the type of DNA, RNA, and/or
protein that is extracted, library generation for genomics,
protein digestion and peptide labeling methods for mass
spectrometry, and the sequencing platform/instrumentation
are all key factors in the study design and the interpretation

of the final results. If one sample is prepared on a different day
than the other biological replicates, this will introduce variance
and/or bias and reduce the statistical power of the analysis. If
proteomics samples are multiplexed using multiple TMT-10plex
batches, this will introduce a batch effect across sequencing runs.
These factors should be discussed prior to sample preparation.

It is also critical to know what population of regulatory
features were captured for sequencing and can be integrated.
For example, membrane bound proteins cannot be integrated
with gene expression data if membrane proteins were not
solubilized during sample preparation prior to performing
mass spectrometry. A caveat with mass spectrometry data is
the fact that a missing value does not necessarily mean a
protein is not expressed, but only that the protein is below
the detection limits of the mass spectrometer. The biological
questions should be a driving force in the methodology used
for multi-omics data integration.

Though multi-omics datasets can provide an individual with
a greater depth of understanding in certain scenarios, this is
not without cost. Omics studies often rely on large numbers of
comparisons, the correct data type, appropriate statistical
analyses, and a considerable investment of time, skilled personnel,

Fig. 2 Factors that influence the statistical power in multi-omics studies. The statistical power of a multi-omics study can be effected by several factors
including and must be considered at the beginning of the study. Such factors include, but are not limited to (the effect of the following factors on power
are under the assumption that the remaining factors remain constant): (1) the type of the study. While randomized controlled studies are generally more
powerful than observational studies due to controlling unwanted effects, limitations can prohibit this application of a randomized controlled study.
(2) The sample allocation. In general, a balanced study, where samples are equally distributed among group, is more powerful unbalanced study.
(3) Sample size. As the number of samples in a study increases the statistical power improves. (4) Effect size. The greater the true differences between
groups, the greater the statistical power of a study. (5) Hypothesis test. While parametric tests are in general more powerful than nonparametric test,
parametric tests are not applicable if there assumptions are not met. (6) Significance level a. The significant level represents the probability of type I errors,
the probability of rejecting the null hypothesis given that the null hypothesis is true. As the numerical value of a increases, the probability of type I errors
increases as well as the statistical power (probability of rejecting the null hypothesis given that the null hypothesis is true). (7) Number of tests. Testing
multiple hypotheses requires a correction and reduces the statistical power. (8) Background noise and sample variation increase the variance and
complicate the detection of a true signal and therefore decrease the statistical power. (9) Confounders can increase variance and/or introduce a bias,
which decreases the statistical power.
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and money. When constructing an experiment one must be
weary of what types of omics data can and should be integrated
to achieve the greatest understanding of the system being
studied.98 High throughput omics platforms are not always
necessary to answer the research question. Traditional techniques,
such as enzyme-linked immunosorbent assay (ELISA) assays,
immunohistochemistry (IHC), and quantitative polymerase chain
reaction (qPCR), may be all that is necessary to validate a particular
biological mechanism. In fact, these techniques are often required
to validate the findings from a larger omics study in order to verify
the significant molecule identified from omics data is a true
positive result.

For the most part, current tools utilize clustering, networking,
data reduction and Bayesian analysis. Because of ever increasing
acquisition of data, resulting in large datasets and increasing
numbers of them, machine learning will become more and
more necessary for effective analysis and data mining. There is
a need for accessible and well documented methods, tools and
algorithms.96 As with all scientific endeavors, the easy questions
will be answered first and ‘‘low hanging fruit’’ will be become
less prevalent. Thus, there is a need for more effective algorithms
and computing resources.88 Because of the variety of platforms
used to generate multi-omics data, standardization of data
formats would make integration easier.94

Future multi-omics data integration algorithms should take
advantage of the ‘‘big data’’ resources (Table 1) and the advent of
machine learning and artificial intelligence algorithms.10,119,120

Machine Learning has played an increasingly important role in
allowing scientists to integrate multi-omics datasets. By utilizing
a machines ability to compare and identify patterns in large
quantities of biological data, we allow for far more accurate and
efficient methods of elucidating complex cellular mechanisms
and in some cases providing predictions to clinical outcomes.
This is achieved through the computer’s unique ability to
observe multiple layers of omics data simultaneously providing
a more holistic view of the systems at play, rather than observing
each omic system individually and drawing simple conclusions
based on visible correlations.4,120

New data integration methods should include variables
related to each omic platform’s weaknesses and limitations.
Each method is limited by its statistical power, sample size,
technical variables, batch effects, sequencing depths, sample
preparation, and a multitude of other factors. These factors are
important to keep in mind when designing, conducting
and analyzing a study and interpreting the results. Therefore,
it is highly recommended to involve a biostatistician/
bioinformatician from the very beginning of any study. Their
expert knowledge can be valuable at any stage of a study to
prevent errors, wasting resources and optimize the study. The
need for trainings program in this rapidly evolving field has
been recognized by many institutes, such as Jackson Labora-
tory, Bioinformatics.org, UC Davis and Johns Hopkins, and
many bioinformatics training programs are available online for
free or with costs. Lastly, researchers should always remember
to validate significant findings using other traditional wet lab
techniques to unmask false positive results.
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