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mediation-based methods for reconstructing
causal gene networks in yeast†

Adriaan-Alexander Ludl and Tom Michoel *

Causal gene networks model the flow of information within a cell. Reconstructing causal networks from

omics data is challenging because correlation does not imply causation. When genomics and

transcriptomics data from a segregating population are combined, genomic variants can be used to

orient the direction of causality between gene expression traits. Instrumental variable methods use a

local expression quantitative trait locus (eQTL) as a randomized instrument for a gene’s expression level,

and assign target genes based on distal eQTL associations. Mediation-based methods additionally

require that distal eQTL associations are mediated by the source gene. A detailed comparison between

these methods has not yet been conducted, due to the lack of a standardized implementation of

different methods, the limited sample size of most multi-omics datasets, and the absence of ground-

truth networks for most organisms. Here we used Findr, a software package providing uniform

implementations of instrumental variable, mediation, and coexpression-based methods, a recent dataset

of 1012 segregants from a cross between two budding yeast strains, and the YEASTRACT database of

known transcriptional interactions to compare causal gene network inference methods. We found that

causal inference methods result in a significant overlap with the ground-truth, whereas coexpression did

not perform better than random. A subsampling analysis revealed that the performance of mediation

saturates at large sample sizes, due to a loss of sensitivity when residual correlations become significant.

Instrumental variable methods on the other hand contain false positive predictions, due to genomic

linkage between eQTL instruments. Instrumental variable and mediation-based methods also have

complementary roles for identifying causal genes underlying transcriptional hotspots. Instrumental

variable methods correctly predicted STB5 targets for a hotspot centred on the transcription factor

STB5, whereas mediation failed due to Stb5p auto-regulating its own expression. Mediation suggests a

new candidate gene, DNM1, for a hotspot on Chr XII, whereas instrumental variable methods could not

distinguish between multiple genes located within the hotspot. In conclusion, causal inference from

genomics and transcriptomics data is a powerful approach for reconstructing causal gene networks,

which could be further improved by the development of methods to control for residual correlations in

mediation analyses, and for genomic linkage and pleiotropic effects from transcriptional hotspots in

instrumental variable analyses.

1 Introduction

Causal gene networks model the flow of information from
genotype to phenotype within a cell or whole organism.1–4

Reconstructing causal networks from omics data is challenging
because correlation does not imply causation. However, when
genomics and transcriptomics data from a large number of

individuals in a segregating population are combined, genomic
variants can be used to orient the direction of causality between
gene expression traits. This is based on the fact that alleles are
randomly segregated during meiosis and genotypes remain
fixed during an individual’s lifetime, such that genomic var-
iants act as causal anchors from which all arrows are directed
outward.1,2,5 Moreover, local and distal expression quantitative
trait locus (eQTL) associations have biologically distinct inter-
pretations, because genomic variation at regulatory DNA
elements leads to altered transcription of nearby genes by
cis-acting, epigenetic mechanisms, whereas distal associations
must be intermediated by trans-acting factors.6,7
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These principles are combined in different ways in two
classes of causal inference methods that use genomic variants
as causal anchors: instrumental variable (known as Mendelian
randomization in genetic epidemiology) or mediation-based.8

Mediation infers the direction of causality between two traits
that are statistically associated to the same genomic variant by
testing whether the association between the variant and one of
the traits is mediated by the other trait, in which case there
must be a causal relation from the mediating trait to the other
one.9,10 Mediation does not require that one of the traits has a
‘‘preferential’’ relation to the genomic variant (as in cis or
trans). However, mediation fails in the presence of large
measurement noise or hidden confounders, such as common
upstream factors coregulating both traits, where it rejects true
interactions (i.e. reports false negatives).11

Instrumental variable or Mendelian randomization methods
assume that the genomic variant acts as a randomized ‘‘instru-
ment’’ for one of the traits, similar to the random assignment
of individuals to treatment groups in randomized controlled
trials, such that a statistical association between the variant
and the second trait is evidence for a causal relation from the
first to the second trait. The random group assignment, in
genetics the random segregation of alleles, ensures that causal
effects can be detected even in the presence of confounding.
However, instrumental variable methods fail if there are path-
ways from the variant to the second trait other than through the
first trait (pleiotropic effects).12–14

A detailed comparison between these two approaches
requires a standardized implementation where pre-processing
(e.g. data normalization) and post-processing (e.g. multiple test-
ing correction) are handled uniformly. Previously, we developed
Findr, a computationally efficient software package implementing
six likelihood ratio tests that can be combined in multiple ways to
reconstruct instrumental variable as well as mediation-based
causal gene networks.11 Findr expresses the result of each test
as a posterior probability (one minus the local false discovery
rate), allowing tests to be combined by the usual rules of
probability theory.10 This results in causal network inference
methods that are representative for the broader field. For
instance, the implementation of the mediation-based method
in Findr is identical to the method of Chen et al.,10 which had its
roots in the ‘‘likelihood-based causal model selection’’ (LCMS)
procedure of Schadt et al.9 The Causal Inference Test (CIT)
software15,16 is another implementation of an LCMS-based
mediation method, which combines statistical tests using omnibus
p-values and FDR estimates. We found previously that it results in
similar inferences as the mediation-based method implemented in
Findr.11 Instrumental variable methods on the other hand are
based on genetic associations, for which Findr uses categorical
regression of gene expression profiles on genotype values, similar
to for instance the ANOVA option in Matrix-eQTL.17

Using simulated data from the DREAM5 Systems Genetics
challenge,18,19 we found previously that instrumental variable
methods generally outperformed mediation-based methods in
terms of area under the precision–recall curve, and that the
performance of mediation-based methods decreased with

increasing sample size, due to increased statistical significance
of confounding effects.11 However, at that time, no real-world
dataset with sufficient sample size as well as an accurate
ground-truth network of causal interactions was available to
test these predictions in a real biological system.

Fortuitously, a dataset has now become available which
includes genomic variation and gene expression data in more
than 1000 segregants from a cross between two strains of
budding yeast, a popular eukaryotic model organism.20 By
learning networks from these data, and comparing against
the wealth of transcriptional regulatory interactions and other
functional validation data available for budding yeast,21 a
thorough benchmarking of methods for reconstructing causal
gene networks has become possible.

2 Methods
2.1 Selecting strongest cis-eQTLs

Using the data on expression quantitative trait loci (eQTLs)
from ref. 20, we selected the strongest cis acting eQTLs for 2884
genes. The eQTLs were ranked in descending order according
to the absolute value of the correlation coefficient between
scaled expression levels and marker genotype (r, obtained from
[20, Source data 4]), and for each gene the highest ranked eQTL
was retained. Among the selected eQTLs 2044 occurred once,
337 eQTLs were strongest for two genes, 44 were strongest for
three genes, 6 were strongest for four genes, 2 were strongest
for five genes.

2.2 Network inference methods

We used the inference methods implemented in Findr.11 The
source code is available at https://github.com/lingfeiwang/
findr. The test P0 only uses gene expression data. For the other
tests (P, P2, P3, P5), we used the genotype and gene expression
data from ref. 20 (see Section 2.7 below for details) with
cis-eQTLs as causal anchors for the inference tests. Composite
tests are obtained by element-wise multiplication of the matrices
containing the results of individual tests.

2.3 Performance measures

The precision–recall curves and area under the curve (AUPR) for
interactions predicted by a given test were computed using the
scikit-learn package22 and three ground-truth matrices (see
Data Section 2.7). Recall is equivalent to the true positive rate
(TPR), i.e. the number of true positive predictions as a fraction
of all known positive interactions in the network. Precision or
positive predictive value is 1-FDR where FDR is the global false
discovery rate.

AUPR-ratio or fold-change is the AUPR divided by the
theoretical value for random predictions on a given ground
truth. The latter is obtained as the precision for random
predictions given by precrandom = NE/(NR � NT) where NR is
the number of regulating genes, NT is the number of target
genes, NE is the number of edges, i.e. the number of ones in the
ground-truth adjacency matrix.
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2.4 Subsampling

We performed subsampling on the segregants to evaluate the
change in performance of our inference methods on various
sample sizes. Four subsamples of randomly selected segregants
were drawn for the following sizes: 10, 100, 200, 400, 600, 800
and 1000. The inference methods were run on each sample. We
report the average AUPR and its statistical standard deviation
over the four subsamples in the results.

2.5 Genotypes covariance and target counts

We computed the covariance matrix of the genotypes at the
retained eQTLs for all 1012 segregants. The rows and columns
of the matrix were reordered according to the genome position
of the eQTL, the ordering algorithm is described below in
Section 2.7.

Findr posterior probability matrices were thresholded to
obtain discrete networks with an expected FDR target value as
described previously:10,11 because for each interaction the local
false discovery rate is given by fdr = 1 � p, where p is the
posterior probability value obtained by the test, the expected
FDR of a network consisting of all interactions with p Z pth is
the average of the local fdr of the retained interactions. We
determined pth as the threshold that gave the greatest expected
FDR below the target value (5 or 10%). We counted the number
of targets for each source gene with p 4 pth.

2.6 Data

We used gene expression data for 5720 genes and genotypes for
a panel of 1012 segregants from crosses of one laboratory strain
(BY) and a wine strain (RM) from ref. 20. Batch and optical
density (OD) effects, as given by the covariates provided in
ref. 20, were removed from the expression data using categorical
regression, as implemented in the statsmodels python
package.23 The paper20 also provides data on expression quanti-
tative trait loci (eQTLs) that was used to select the strongest
cis-eQTLs, as well as a file with annotations to the 102 hotspots
that they identified.

For validation we used networks of known transcriptional
regulatory interactions in yeast (S. cerevisiae) from YEASTRACT.21

Regulation matrices were obtained from http://www.yeastract.
com/formregmatrix.php. We retrieved the full ground-truth
matrices containing all reported interactions of the following
types from the YEASTRACT website: DNA binding evidence was used
as the ‘‘Binding’’, expression evidence including TFs acting as
activators and those acting as inhibitors was used as the
‘‘Expression’’, DNA binding and expression evidence was used
as the ‘‘Binding & Expression’’. Self regulation was removed
from all ground truths. The numbers of regulators, targets and
interactions for these three ground-truth networks are shown in
Table 1.

Annotations of the yeast genome were used to map gene
names to their identifiers and order them according to the
position of their causal anchor (eQTL) along the full genome,
first by chromosome and then by position along the chromo-
some. The sorting algorithm places mitochondrial genes first

(when present) and orders the chromosomes according to the
numerical value of the roman numerals. We used the gff3
file (Saccharomyces_cerevisiae.R64-1-1.83.gff3.gz) from the
Ensembl database (release 83, December 2015),24 which is the
version used by ref. 20. The file is accessible at ftp://ftp.
ensembl.org/pub/release-83/gff3/saccharomyces_cerevisiae/.

2.7 Software and data availability

The inferred regulatory relationships for the thresholds (pth)
reported in Table 2 for the causal tests (P2P3, P2, P2P5, P) and
scripts to reproduce the analysis are provided in the repository
https://github.com/michoel-lab/FindrCausalNetworkInferenceO
nYeast. The code release is archived on zenodo at DOI: 10.5281/
zenodo.4340600. Running all Findr inference tests on the data
from ref. 20 takes about 10 to 15 seconds on a typical desktop
computer.

3 Results
3.1 Findr reconstructs instrumental variable and mediation-
based causal gene networks in yeast

We used the software Findr11 to reconstruct causal and non-
causal gene networks in yeast from a dataset of genomic
variation and expression data for 5720 genes in 1012 segregants
from a cross between two strains of budding yeast.20 2884 genes
had an associated genomic causal anchor, here defined as the
variant most strongly associated to the gene and present in the
list of genome-wide significant eQTLs whose confidence inter-
val (of variable size) overlaps with an interval covering the gene,
1000 bp upstream and 200 bp downstream of the gene
position.20 Findr implements six likelihood ratio (LLR) tests
between triplets (E,A,B), where A and B are genes, and E is the
causal anchor for A. For each test i, Findr outputs the posterior
probability Pi of the selected hypothesis being true (Fig. 1A).
These posterior probabilities can then be combined to obtain
the posterior probabilities of various compound hypotheses
being true. Here we considered four causal tests and one non-
causal test to reconstruct directed gene networks:
� Mediation. Mediation-based approaches infer a causal

interaction A - B if gene B is statistically associated to the
causal anchor E, and the association is abolished after con-
ditioning on gene A.9,10,16 In Findr this is accomplished by the
compound hypothesis that test 2 and 3 are both true, i.e. by
the posterior probability P2 � P3. Mediation can distinguish
true positive (TP) from true negative (TN) causal interactions in
the absence of hidden confounders, but will report a false

Table 1 Properties of the YEASTRACT ground-truth networks. NR is the
number of regulating genes, NT is the number of target genes, NE is the
number of edges excluding self-edges, NsE is the number of self-edges.
Data was retrieved from YEASTRACT

21

Ground-truth network NR NT NE NsE

Binding 90 5151 19 099 28
Binding & Expression 80 3394 5680 24
Expression 113 5369 92 646 77
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negative (FN) if a real causal interaction is confounded by a
hidden factor (Fig. 1B, row 1), due to a collider effect.10,11

� Instrumental variables without pleiotropy. Instrumental
variable approaches assume that the causal anchor E acts as a
randomized instrument for gene A, and, in their simplest form,
infer a causal interaction A - B if gene B is statistically associated
to the causal anchor E, i.e. by the posterior probability P2 that test
2 is true. Instrumental variables can distinguish true positive from
true negative causal interactions even in the presence of hidden
confounders, but will report a false positive (FP) if there are other
pathways than through A that cause a statistical association
between E and B (pleiotropy) (Fig. 1B, row 2).
� Instrumental variables with perfect pleiotropy. To address

the problem of pleiotropy, we can additionally require that
genes A and B are not independent after conditioning on E,
accomplished by the compound hypothesis that test 2 and 5 are
both true, i.e. by the posterior probability P2 � P5. This correctly
identifies a true negative if E explains all of the correlation
between A and B, but will still result in a false positive if there is
a hidden confounder (Fig. 1B, row 3).

� Instrumental variables with partial pleiotropy. To overcome
the problem of FP predictions in the ‘‘confounded pleiotropy’’
situation, we introduced test 4 in Findr, which tests whether
gene B is not independent of E and A simultaneously, and

found empirically that the combination P ¼ 1

2
ðP2P5 þ P4Þ per-

forms better than P2 � P5 alone.11 In particular, it identifies a
TP for causal A - B relations even in the presence of alternative
E - B paths and hidden confounding, at the expense of FP
predictions when the relation is reversed or absent (Fig. 1B,
row 4).
� Coexpression. As a basic reference, we reconstructed a gene

network based on coexpression alone, using Findr test 0. Note
that the posterior probability P0 is not symmetric (P0(A - B) a
P0(B - A)), because it is estimated from the observed distribu-
tion of LLR test statistics for each A separately.11

To illustrate the differences between coexpression, instrumental
variable, and mediation-based gene networks, we considered the
sub-networks inferred between the 2884 genes that had a causal
anchor (i.e. the sub-network where the probability of an edge

Fig. 1 (A) Likelihood ratio (LLR) tests implemented in Findr. E is a causal anchor of gene A. Arrows in a hypothesis indicate directed regulatory relations.
Genes A and B each follow a normal distribution, whose mean depends additively on its regulator(s), as determined in the corresponding hypothesis. The
dependency is categorical on genotypes and linear on gene expression levels. The undirected line represents a multi-variate normal distribution between
the relevant variables. In each test, either the null or the alternative hypothesis is selected, as shown. Figure r2017 Wang, Michoel, reproduced by
permission from ref. 11 under Creative Commons Attribution License. (B) Causal model selection with Findr. By combining the posterior probabilities Pi of
the selected hypothesis for test i being true, Findr determines whether coexpressed genes A and B are connected by a causal A - B relation. (Row 1) In
the absence of hidden confounders (H), mediation-based causal inference, combining Findr tests 2 and 3, correctly identifies true positive (TP;
correlation due to causal A - B relation) and true negative (TN; correlation without causal A - B relation) models. However, it reports a false negative
(FN) if the causal relation is affected by a hidden confounder. (Row 2) If the causal anchor is ‘‘exclusive’’ to gene A, then the instrumental variable method
based on Findr test 2 correctly identifies TP and TN models, even in the presence of hidden confounding. However, it reports a false positive (FP) if the
association between E and B is due to other paths than through A (pleiotropy). (Row 3) An instrumental variable method that combines Findr tests 2 and 5
correctly identifies a true negative if the correlation between A and B is entirely due to a pleitotropic effect of E, but will still report a false positive if there
is an additional effect from a hidden confounder. (Row 4) An instrumental variable method based on the compound hypothesis that test 4 is true, or test 2
and test 5 are true, reports a TP for causal relations where E - A - B is not the only path from E to B, with or without confounding, but will report a FP if
the true causal relation is B - A (or absent).
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can be estimated for both edge directions). As expected, the
coexpression network (P0) is largely symmetric (Fig. 2, left),
whereas the causal instrumental variable (P2, Fig. 2, center) and
mediation-based (P2P3, Fig. 2, right) networks show a clear
asymmetric structure with some genes having a very large
number of high-confidence targets. These genes correspond
to transcriptional hotspots, regions of the genome with a large,
genome-wide effect on gene expression.20 The overall structure
of the causal networks appears consistent with the general
considerations above. The overall signal (strength of posterior
probabilities) is weaker in the mediation-based network, con-
sistent with an increased false negative rate (Fig. 2, right). On
the other hand, the instrumental variable network appears to
have a genomic structure, where nearby genes are mutually
connected and have a similar target profile (Fig. 2, middle).
This could be due to genomic linkage between causal anchors:
if two genes A and A0 share the same or highly correlated
instruments E and E0, then their predicted target sets would
also be very similar, and probably include a large proportion of
false positive predictions for either gene.

3.2 Causal gene networks overlap significantly with known
transcriptional regulatory networks

We assessed the performance of networks predicted by Findr
on three ground-truth networks of transcriptional regulatory
interactions in yeast, where targets of a transcription factor (TF)
are defined by TF-DNA binding interactions (‘‘Binding’’ net-
work), differential expression upon TF perturbation (‘‘Expres-
sion’’ network), or the intersection of them (‘‘Binding &
Expression’’ network) (see Methods and Table 1). The preci-
sion–recall curves for the four causal inference methods
showed the characteristic peak of high precision at low recall
indicative of an enrichment of true positives among the pre-
dictions with highest posterior probabilities, and confirmed by
increased area under the precision–recall curve (AUPR) com-
pared to random predictions (Fig. 3). This was markedly the
case for the Binding & Expression ground-truth, with AUPR
more than 1.3 times higher than random. This is consistent
with the notion that genes which are bound by a TF as well as
differentially expressed upon TF perturbation are more likely to

Fig. 2 Matrices of predicted gene interactions. These square matrices represent the interactions between 2884 genes with causal anchors (eQTLs),
posterior probability values are color coded. Vertical bands correspond to hotspots. Left: The correlation based test P0. Center: The instrumental variable
test P2. Right: The mediation test P2P3. The genes are ordered according to the position of their causal anchor in the full yeast genome. See ESI,† Fig. S1
for the instrumental variable tests P2P5 and P.

Fig. 3 Performance of causal inference on YEASTRACT ground truths. Precision–recall curves for four causal inference methods (P2P3, P2, P2P5, P) and one
coexpression method (P0) are shown for the Binding (left), Binding and Expression (center) and Expression (right) ground-truth networks. The insets show
the area under the precision–recall curves (AUPR) as the ‘‘fold change’’ relative to the baseline performance for random predictions. The horizontal red
line shows the baseline performance for random predictions and is used as reference for AUPR fold change (insets). The network inference methods are
described in Section 3.1.

Molecular Omics Research Article

Pu
bl

is
he

d 
on

 1
7 

D
ec

em
be

r 
20

20
. D

ow
nl

oa
de

d 
on

 1
/1

/2
02

5 
3:

13
:2

0 
A

M
. 

View Article Online

https://doi.org/10.1039/d0mo00140f


246 |  Mol. Omics, 2021, 17, 241–251 This journal is © The Royal Society of Chemistry 2021

be real TF targets, that is, that the Binding & Expression
ground-truth is of higher quality than the others. Differences
between causal inference methods were modest, with instru-
mental variable methods (P2, P2P5, P) showing somewhat better
performance than the mediation-based method (P2P3) on the
Binding and Binding & Expression ground-truths, and vice versa
on the Expression ground-truth (Fig. 3). In contrast to the
causal inference methods, the coexpression-based method
(P0) did not show any improvement over random predictions.
This is not surprising. An unbiased evaluation of 35 diverse
methods for network inference from expression alone did not
find any improvement over random predictions on a comparable
ground-truth network for yeast.25

3.3 The performance of mediation saturates at large sample size

The availability of more than 1000 segregants in the genotype
and gene expression dataset allowed us to evaluate the performance
of network inference across sample sizes by random subsampling of
the data. The clearest pattern was again observed for the
Binding & Expression ground-truth, consisting of the most
reliable known transcriptional regulatory interactions, where
the three instrumental variable methods (P2, P2P5, P) showed a
monotonous increase in AUPR with increasing sample size
(Fig. 4). The mediation based method (P2P3) initially showed
a similar performance as the instrumental variable methods,
but saturated above 400 samples when accounting for statis-
tical error and dropped from having the highest to the lowest
average performance of all causal inference methods. The same
pattern is also observed on the Binding ground-truth, albeit in a
less pronounced way, presumably due to lower AUPR values
relative to random predictions for all methods.

These results are consistent with previous work on simulated
data, where we observed a decrease in performance with increasing
sample size for mediation-based methods.11 There we showed
that hidden confounders and measurement noise can lead to a
residual correlation between the causal anchor E and a target
gene B after adjusting for the regulatory gene A (cf. Fig. 1). At
sufficiently large sample size, this residual correlation becomes

significantly different from zero and thereby leads to a false
negative prediction.

Sample size showed little effect on the coexpression method
P0 for sample sizes larger than 400 for all ground truths. This is
consistent with the notion that estimates of correlations will
stabilize around their true values at smaller sample sizes than
estimates of causal effects.

3.4 Instrumental variable methods are affected by genomic
linkage blocks

Next, we assessed the extent to which instrumental variable
methods are affected by genomic linkage between causal
anchors which would lead to false positive predictions due to
(real or apparent) pleiotropic effects (cf. Fig. 1). For instance for
the P2 method, if two genes in the same genomic neighbour-
hood have causal anchors with strongly correlated genotype
values, the method would predict them to have similar sets of
target genes.

To perform the analysis, we first truncated the posterior
probability values in order to obtain discrete, directed net-
works. Thresholds were determined to obtain networks with
an expected FDR r5% (for the instrumental variable methods)
or r10% (for the mediation-based method) (see Methods
section). The larger FDR value for mediation was chosen to
counterbalance its increased false negative rate, and resulted in
posterior probability thresholds that were comparable between
all methods (Table 2).

Despite the similar posterior probability thresholds, the
instrumental variable networks are around ten times more
densely connected than those obtained by the mediation-
based method (Table 2); a difference that cannot be explained
by the lower sensitivity of the latter alone. We show that in the
instrumental variable networks, high interaction counts occur
in blocks that roughly follow the structure of the causal-anchor
genotype covariance, whereas they occur more in spikes in the
mediation network (Fig. 5). This becomes apparent when
plotting the number of targets for each regulatory gene (i.e.
each gene with a significant cis-eQTL) versus its position on the

Fig. 4 Performance of causal inference across sample sizes. AUPR fold change values for four causal inference methods (P2P3, P2, P2P5, P) and one
coexpression method (P0) (see Section 3.1) at various sample sizes for the Binding (left), Binding & Expression (center) and Expression (right) ground-truth
networks. Four samples were randomly drawn from the expression data and evaluated with each test. Error bars represent the standard deviation across the
four subsets. The horizontal grey line indicates the level of random predictions. The fold change is relative to the baseline performance for random predictions.
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genome. In instrumental variable methods, the genomic causal
anchor is used as a ‘‘proxy’’ for the regulatory gene. Hence, if
the causal anchor genotypes of two genes within the same locus
are correlated due to genomic linkage, then their target sets will
unavoidably be similar as well, resulting in the pattern
observed in Fig. 5. In mediation-based methods, the expression
profile of the regulatory gene is used as the mediator (in test 3,
cf. Fig. 1A), and hence a target set will be specific to a regulator,
even when its causal anchor is correlated or shared with
other genes.

3.5 Causal network inference suggests causal genes for
transcriptional hotspots

Regions of the genome that are statistically associated with
variation in expression of a large number of genes (the peaks in

Fig. 5B) are called transcriptional ‘‘hotspots’’, and finding the
causal genes underlying a hotspot is an important problem in
quantitative genetics.26 Albert et al.20 identified 102 hotspot loci
using their data, and developed a fine-mapping strategy to
narrow the confidence intervals for the hotspot locations.
Overlaying the hotspot markers (median bootstrap hotspot
locations20) with the P2 target counts in the 5% FDR network
(Fig. 5B) showed good consistency, as expected; 37 of those
hotspot markers were in our list of causal anchors (i.e. strongest
local eQTL for at least one gene). Albert et al.20 defined candidate
causal hotspot genes as the genes located within the fine-
mapped hotspot regions, and for 26 hotspots they obtained
three or fewer candidate genes. Here we illustrate how causal
gene network inference can contribute to the identification of
causal hotspot genes using two representative examples STB5
and DNM1.

STB5 is a transcription activator of multidrug resistance
genes,27 and the only gene located in one hotspot region on
chromosome VIII. The hotspot marker, chrVIII:459310_C/G, is
located 11 bp upstream from STB5, and is the causal anchor for
STB5 and for no other genes (Fig. 5B and Fig. 6, left). The
instrumental variable method P2 predicted 131 targets at FDR
below 5% for STB5, which are strongly enriched for STB5 targets
in the Binding (hypergeometric p-value 2.3� 10�12) and Binding
& Expression (hypergeometric p-value 1.9 � 10�10) ground-truth
networks. This suggests that when a hotspot can be confidently
mapped to a single gene, instrumental variable methods pre-
dict biologically plausible target sets confirming the candidate

Table 2 Properties of thresholded predicted networks. We report the
thresholds (pth) used to select significant interactions for the four causal
inference methods, the corresponding global False Discovery Rate (FDR),
as well as descriptors for the resulting networks: NR is the number of
regulating genes, NT is the number of target genes, NE is the number of
edges, and r is the filling ratio of the adjacency matrix, i.e. the ratio of non-
zero and zero values in the thresholded matrices

Test pth FDR NR NT NE r

P2P3 0.8175 0.09953 1808 5628 144 091 0.014
P2 0.825 0.04974 2884 5720 2 319 854 0.141
P2P5 0.8375 0.04994 2884 5719 1 740 251 0.106
P 0.8575 0.04982 2884 5720 2 428 039 0.147

Fig. 5 Hotspots and genotype covariance. (A) The counts of significant interactions for the mediation-based method P2P3 at FDR below 10%, with
annotations for eight regulatory genes with more than 1000 targets. (B) The counts of significant interactions for the instrumental variable method P2 at
FDR below 5% (in grey), and the number of non-zero effects for 102 hotspot markers from ref. 20 (in black); the subset of these hotspots that are also a
causal anchor (i.e. the strongest local eQTL for at least one gene) for the Findr analysis are marked in green and are also indicated by diamonds at the top
of the panel. Interaction count plots for the other instrumental variable methods are in ESI,† Fig. S3. (C) The diagonal of the genotype covariance matrix
for the 2884 causal anchor eQTLs. Genes are ordered along the horizontal axis according to the position of their causal anchor in the yeast genome.
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causal hotspot gene. In contrast, the mediation-based method
P2P3 predicted only nine STB5 targets at FDR below 10%, with
no enrichment in the ground-truth networks. A possible
mechanism that could explain the loss of sensitivity of media-
tion in this case was already suggested by Albert et al.:20 STB5
does not show allele-specific expression, but carries protein-
altering variants between the two yeast strains that were
crossed, suggesting that the causal variants in this hotspot
act by directly altering Stb5p protein activity; moreover Stb5p is
predicted to target its own promoter in YEASTRACT. Taken
together, this leads to a model where transcription of STB5 is
a noisy measurement of Stb5p level, that does not block the
path from the protein-altering variants to STB5 target genes via
Stb5p protein level (Fig. S4, ESI†). Hence conditioning on STB5
transcription in P2P3 does not remove the association between
these variants and the target genes completely, resulting in
false negative predictions by a process similar to the measure-
ment noise model studied in ref. 11.

DNM1 is a gene located near a hotspot region on chromo-
some XII, and is among the genes with highest target count in
the mediation-based network (Fig. 5A and Fig. 6, right). The

hotspot marker is also the causal anchor of DNM1, which is
located 11 363 bp downstream of this marker and outside the
hotspot region mapped by Albert et al. Comparison with the
target counts in the instrumental variable network, which
closely follow the genotype covariance pattern, shows that
DNM1 is the gene in this region that retains the most targets
by far in the mediation network (P2, 2910 targets; P2P3, 1421
targets; Fig. 6, right). This is particularly true when compared
with two of the four candidate causal genes of Albert et al. that
also have a local eQTL within the hotspot region, YLL007C (also
known as LMO1; P2, 2846 targets; P2P3, 139 targets) and MMM1
(P2, 3610 targets; P2P3, 8 targets). Based on the high specificity
of the P2P3 test, we conjecture that DNM1 is a more likely causal
gene for this hotspot than LMO1 or MMM1. Functional analysis
in this case does not help to distinguish between these candi-
dates, because Dnm1p and Mmm1p are both essential proteins
for the maintenance of mitochondrial morphology,28 and
Lmo1p is a signaling protein involved in mitophagy.29 However,
deletion of DNM1 and MMM1 results in distinct mitochondrial
phenotypes,28 and hence this prediction is experimentally
testable in principle.

Fig. 6 Details of predicted targets in the vicinity of two genes. We show the local structure at two genes: STB5 with eQTL chrVIII:459310_C/G
(left) and DNM1 with eQTL chrXII:136527_T/C (right). The top row shows genotype covariance in the vicinity of the eQTL (red line) for the gene,
in the region where the covariance is greater than 0.8. The middle row shows number of targets predicted by P2 (instrumental variables) at
FDR below 5%. The bottom row shows number of targets predicted by P2P3 (mediation) at FDR below 10%. The horizontal axis gives the
position along the chromsome of the eQTL corresponding to each gene. Genes are annotated with their short name where available. Note
that data points overlap in genotype covariance and in P2 for some genes because they share the same eQTL and that P2P3 gives no targets on
certain genes.
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4 Discussion
4.1 Causal inference from genomics and transcriptomics data
infers truly directed gene networks

Reconstructing transcriptional regulatory networks from trans-
criptomics data has been a major research focus in computational
biology during the last 20 years. Existing methods span the entire
range of correlation, mutual information, regression, Bayesian
networks, random forest, and other machine learning methods,
as well as meta-methods combining multiple of these
approaches.19 Yet, performance on eukaryotic gene expression
data has been disappointing, with overlap between predicted
and known networks generally not better than random
predictions.19 To some extent, this is due to the lack of reliable
ground-truth data. For instance, there is little overlap between
the two most common high-throughput experimental techni-
ques for measuring regulatory interactions, mapping TF-DNA
binding sites using ChIP-sequencing and measuring differen-
tial expression after TF deletion or overexpression,30 see also
Table 1. Exceptions to this rule are the transcriptional networks
controlling early development in multi-cellular organisms,
which are mapped in exquisite detail in some model
organisms.31 When conventional network inference methods
are applied to developmental transcriptome data, good perfor-
mance is in fact observed.32 Nevertheless the problem of
reconstructing signalling transcriptional networks from obser-
vational expression data remains, and a key missing ingredient
in existing approaches is the directionality of the edges. Without
additional information, any association inferred from tran-
scriptomics data alone is essentially symmetric.

Causal inference is designed to reconstruct truly directed
networks, by integrating genomics and transcriptomics data
based on general principles of quantitative trait locus analysis.1

The publication of a dataset of more than 1000 yeast segregants
has allowed us to demonstrate that causal inference indeed
results in directed networks with strong, non-random overlap
with networks of known transcriptional interactions. Moreover,
the overlap was highest for the most reliable ground-truth that
combined two sources of experimental evidence (DNA binding
and response to perturbation). Although 1012 samples for an
organism with around 6000 genes may seem a large number,
our analysis also shows that there is no sign yet that perfor-
mance is saturating as a function of sample size. Causal
inference indeed requires larger sample sizes than
coexpression-based methods, because it relies on more subtle
patterns in the data, something that was already apparent in
early considerations of causal inference in this context.5

Although the integration of genomics and transcriptomics
data addresses the key shortcoming pertaining to lack of
directionality in network inference when using transcriptomics
data alone, important limitations remain. Apart from those
already discussed at length in this paper—low sensitivity due to
hidden confounders for mediation-based methods, and
increased false positive rate due to genomic linkage for instru-
mental variable methods—another fundamental problem
remains: transcriptional regulation is, for the most part, carried

out by proteins. Hence, causal interactions inferred from
genomics and transcriptomics data are by definition indirect.
If an intermediate, unmeasured protein C (e.g., the protein
product of A) lies on the path from gene A to gene B, that is, A
also mediates associations between C and local eQTLs for A,
then this does not affect the causal inference for the interaction
A - B (Fig. S2, ESI†). However, variation in transcription level
of a transcription factor (or other regulatory protein) does not
always translate to equal variation in protein level, and vice
versa. For instance, Albert et al.20 found several protein-altering
variants in candidate causal genes mapped to hotspot regions
that did not have any local eQTLs. In such cases, our methods
would wrongly assign the trans-associated target genes to a
gene with local eQTL (if one exists), and miss the non-varying
(at transcription level) causal gene. This limitation can only
be addressed by integrating another layer of information—
proteomics data, which is not yet available in comparable
sample sizes.

The methods implemented in Findr and analyzed in this
paper are broadly representative of the current state-of-the-art
for causal inference from genomics and transcriptomics data.
Nevertheless, some ideas have been proposed recently that we
did not evaluate here. For instance, in addition to the statistical
tests implemented in Findr, Badsha and Fu33 propose to also
use a causal anchor for the target gene B to obtain evidence for
a causal interaction A - B. However, including this test
requires limiting the analysis to interactions where both source
and target genes have a significant eQTL. Yang et al.34 on the
other hand propose to address the hidden confounder problem
in mediation by adjusting for selected surrogate variables (e.g.
principal components). However, such variables are necessarily
composed of combinations of genes and it is challenging to
ensure that they only represent common parents and no
common children of an A - B interaction (which would
introduce false positives if conditioned upon, see Fig. S2, ESI†).
It will be of interest to include these developments in future
comparisons.

4.2 Biological data matches theoretical predictions

Causal inference is in essence a hypothesis-driven approach:
the causal diagrams in Fig. 1 encode prior knowledge and
assumptions of how genotypes, genes, and unknown confounding
factors influence each other. Based on these diagrams, we can
make certain predictions about the patterns we expect to find in
the data, such as the relative sensitivity and specificity of media-
tion versus instrumental variable methods, the different situations
where each method will be successful or not, etc. It is gratifying to
see these predictions confirmed using real data, strengthening
significantly our previous findings on simulated data.11

The hypothesis-driven nature of causal inference lies in
between the use of biophysical models of gene regulation and
the application of unsupervised machine learning methods for
reconstructing gene regulatory networks. Biophysical
approaches attempt to include quantitative models of TF-DNA
interactions into the network inference process,35,36 but are
hampered by a lack of resolution in omics data (due to both
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noise within a sample, and limited sampling density). Unsu-
pervised machine learning approaches search for non-random
patterns within the data, but without specifying the type of
pattern that corresponds to a real biological interaction, they
lack the ability to identify truly directed associations. Super-
vised or semi-supervised methods, which use data of known
regulatory interactions to label all or some of the gene pairs as
interacting or not,37 could potentially overcome this limitation,
but such labelling data is sparse for non-model organisms.

The agreement between theoretical predictions and empirical
results indicates that we have a correct understanding of how
causal gene network inference algorithms work. Moreover, we
are able to interpret results in terms of which type of interactions
these algorithms do and do not identify, albeit without any
reference to the underlying biophysical mechanisms.

4.3 Practical recommendations and future work

We conclude this paper by sharing practical recommendations
for researchers wanting to apply causal inference methods for
the integration of genomics and transcriptomics data.

In general, we recommend instrumental variable over
mediation-based methods, as their increased sensitivity tends
to outweigh the higher specificity of mediation-based methods.
The saturation of performance of mediation-based methods
with increasing sample sizes is particularly worrying, although
for most current datasets the point where performance satu-
rates is probably not yet reached.

We found limited differences between instrumental variable
methods. In the absence of any ground-truth data to evaluate
results, we would generally recommend to use the P2P5 method,
because it will remove at least the most obvious cases of
pleiotropy from P2, while having an easier interpretation than
the P method.

The main weakness of instrumental variable methods is their
susceptibility to false positive predictions due to genomic link-
age. This is a particular concern in data from experimental
crosses or inbred organisms, where linkage blocks are large.
However, in human data as well it has been found that around
10% of non-redundant local eQTLs are associated to the expres-
sion of multiple nearby genes.38 As illustrated, mediation-based
causal inference and manual analysis of gene function can
sometimes be used to resolve linkage of causal anchors.

In conclusion, causal inference from genomics and tran-
scriptomics data is a more powerful approach for reconstruct-
ing causal gene networks than using transcriptomics data
alone. This could be further improved upon by the inclusion
of additional layers of omics data and by the development of
methods to control for or find signal in residual correlations
among genes in mediation analyses, and to resolve genomic
linkage and pleiotropic effects from transcriptional hotspots in
instrumental variable analyses.
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