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‘‘In analogy to the current situation in
Cosmology, glycans can be considered as
the ‘‘dark matter’’ of the biological uni-
verse: a major and critical component that
has yet to be fully incorporated into the
‘‘standard model’’ of biology.’’

Ajit Varki and Stuart Kornfeld1

Outlining the topic and
its importance

Glycomics and glycoproteomics define
powerful technologies that help scientists
to capture this biological ‘‘dark matter’’
and study all glycans and glycoproteins
expressed by cells, tissues or organisms at
a given time, space and condition.2–4

While both glycomics and glycopro-
teomics methods have existed for several
years,5–8 key advances in the separation
sciences, mass spectrometry and infor-
matics have recently allowed for a more
complete implementation and integration
of glycomics and glycoproteomics in the

life sciences. As exemplified by papers pub-
lished in this themed issue in Molecular
Omics ‘‘Glycomics & Glycoproteomics:
From Analytics to Function’’, studies that
concertedly apply two or more glyco-centric
‘omics techniques to uncover new mechan-
isms in various research areas in glycobiol-
ogy such as pathogen–host interactions
(Cain et al., DOI: 10.1039/D0MO00032A;
Mule et al., DOI: 10.1039/D0MO00043D;
Delannoy et al., DOI: 10.1039/C9MO001
73E; Mthembu et al., DOI: 10.1039/
C9MO00175A) cancer and biomarkers
(Chandler et al., DOI: 10.1039/D0MO000
09D; Acharya et al., DOI: 10.1039/C9MO00
061E) and embryogenesis (Qu et al., DOI:
10.1039/D0MO00005A), are becoming com-
mon in the literature. This themed issue
also illustrates that mass spectro-
metry-based glycoproteomics studies often
use multiple orthogonal fragmen-
tation schemes to produce complementary
glycan structural information to aid glyco-
peptide characterisation at scale, with sen-
sitivity, speed and accuracy (Pap et al., DOI:
10.1039/C9MO00160C; Chalkley et al., DOI:
10.1039/C9MO00178F). Other new technol-
ogy improvements (Cordina et al., DOI: 10.
1039/C9MO00181F; Zhang et al., DOI: 10.
1039/C9MO00180H; Sethi et al., DOI: 10.
1039/D0MO00019A), informatics advance-
ments (Chalkley et al., DOI: 10.1039/
C9MO00178F; Uh et al., DOI: 10.1039/
C9MO00174C; Phung et al., DOI: 10.1039/
C9MO00125E) and pathway analyses (del
Solar et al., DOI: 10.1039/D0MO00023J;

Donald et al., DOI: 10.1039/C9MO00168A)
also contribute to an ever-expanding analy-
tical toolbox that now allows scientists to
explore not only the structure but also the
biosynthesis and function of glycans and
glycoproteins.

The field has for years recognised that
no single technology can provide an in-
depth, often overlooked, understanding
of the compositional, structural and
functional heterogeneity inherently asso-
ciated with protein glycosylation. None-
theless, integration of glycomics and
glycoproteomics with the many inter-
facing ‘omics disciplines has only com-
menced recently. Multifaceted analytical
strategies and the integration of glyco-
mics and glycoproteomics with proteo-
mics, transcriptomics, metabolomics
and genomics are critical to dive deeper
into the immensely complex and
dynamic glycoproteome, the underpin-
ning glycosylation machinery and their
effects on cellular activity. Glycobiology,
arguably more than other biological
research areas, benefits from the synergy
that can be accessed using multi-omics
approaches as, for example, demon-
strated in ‘‘glycomics-assisted glycoproteo-
mics’’ studies.9–11 In such studies, the
glycomics data not only provide essential
information on the fine detail of the
attached glycan structures and define
the boundaries of the glycome, but also
enable more effective characterisation of
the accompanying glycoproteomics data
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and give insights into the role of glycans
in protein function.

The body of research papers compiled
in this themed issue and elsewhere
clearly shows that glycomics and glyco-
proteomics have matured considerably
over the past years. As the wider scientific
community increasingly accesses these
technologies, and the workflows and
data collection, interpretation, reporting
and sharing are being streamlined, we
are beginning to unlock the real poten-
tial of glycomics and glycoproteomics to
generate new insights into how the het-
erogeneous glycosylation of proteins is
involved in so many biological processes.

Future directions of the
field

At present, the mass spectrometric tech-
nologies, when applied to mixtures of
intact glycopeptides, mostly assign the
monosaccharide compositions of glycans
to peptides, and only in favourable cases
to discrete sites. However, more intricate
structural features of glycans are often
required to understand the effect of gly-
cosylation on protein function in such
areas as cellular interactions, protein
cleavage, immune recognition and in
biomarker discovery. Technologies that
can uncover the heterogeneity of detailed
structures decorating each protein site
remain at this time a ‘‘holy grail’’ of
glycobiology. Excitingly, innovative devel-
opments in ‘‘structure-focused glycopro-
teomics’’ employing, for example, diagno-
stic tandem mass spectrometry fragment
ions,12–14 sequential exoglycosidase
digestions on glycopeptides,15,16 differ-
ential liquid chromatography and ion
mobility based retention,17–21 and
linkage-specific derivatisation of glyco-
peptides,22 to annotate certain glycan
structural features together with site
information, are beginning to appear in
the literature.

The other missing link for biological
researchers is the means to be able to
more easily interpret the volume of data
obtained by the specialised mass spectro-
metric approaches that are being con-
stantly expanded to cover top down,
middle down and bottom up analyses of

glycoproteins.23–25 The development of
glycobioinformatics tools and curated
databases, together with the implemen-
tation of standardized reporting guide-
lines such as MIRAGE (Minimum
Information Required For a Glycomics
Experiment)26–29 (https://www.beilstein-
institut.de/en/projects/mirage/), to cope
with these data are essential for the
continued penetration of glycobiology
into the many streams of life sciences.
The agreed implementation of a com-
mon ‘‘glyco-language’’ via the ‘‘Symbol
Nomenclature for Glycans (SNFG)’’30,31

together with the assignment of unique
accession numbers to the glycan struc-
tures (https://glytoucan.org/) has started
to unify and facilitate the depiction and
data sharing of complex biomolecular
structures across the chemical and bio-
logical sciences.

Despite this progress, the most com-
mon response of scientists to the ques-
tion as to why they have not explored the
glycobiology of their research question at
hand has been that it is ‘‘too hard’’ – this
reluctance can only be addressed by the
availability of user friendly methods,
software and accurate knowledge bases
of glycobiological information. This
information needs to be not only that
acquired by the technologies of glyco-
mics and glycoproteomics, but the seam-
less integration of such datasets with
information delivered by well-estab-
lished genomics, transcriptomics, pro-
teomics, metabolomics and/or lipido-
mics technologies for an integrated and
holistic understanding of cellular biology
in health and disease, such as has now
begun with the international glycoinfor-
matics initiatives of GlyConnect (https://
glyconnect.expasy.org/), Glygen (https://
glygen.org/) and GlyCosmos (https://gly
cosmos.org/) under the collaborative Gly-
Space Alliance.32

Once the dynamics and functional
glycan features are determined on pro-
teins within a complex biological system
it is important to translate these findings
into useful practice. Coordinated efforts
in glycobiotechnology and clinical gly-
coscience that aim to connect fundamen-
tal and applied glycobiology and to
translate findings in this field into pro-
ducts including new therapeutic targets

to treat, cure and ultimately prevent
disease and new biomarkers to diagnose
and prognose diseases, are ongoing.33–35

Not to be forgotten in the future, of
course, is that glycomics does not only
apply to the structure and function of
proteins, but also refers to the character-
isation of glycans that are found attached
to lipid anchors or found as free glycans,
proteoglycans, bacterial lipopolysacchar-
ides and peptidoglycans. At this time, the
technologies for the analysis of these
molecules are in their infancy, and are
practised by few laboratories world-wide,
but must be taken into consideration as
we come to realise that multi-omics ana-
lyses must be addressed across the entire
breadth of molecular sciences if we are to
understand the complex systems that are
biology.
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