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Exploring the behaviors of electrode-driven Si
quantum dot systems: from charge control to
qubit operations†

Ji-Hoon Kang, ‡ Junghee Ryu and Hoon Ryu *‡

Charge stabilities and spin-based quantum bit (qubit) operations in Si double quantum dot (DQD)

systems, whose confinement potentials are controlled with multiple gate electrodes, are theoretically

studied with a multi-scale modeling approach that combines electronic structure simulations and the

Thomas–Fermi method. Taking Si/SiGe heterostructures as the target of modeling, this work presents an

in-depth discussion on the designs of electron reservoirs, electrostatic controls of quantum dot (QD)

shapes and their corresponding charge confinements, and spin qubit manipulations. The effects of unin-

tentional inaccuracies in DC control biases and geometric symmetries on the Rabi cycle of spin qubits are

investigated to examine the robustness of logic operations. Solid connections to the latest experimental

results are also established to validate the simulation method. As a rare modeling study that explores the

full-stack functionality of Si DQD structures as quantum logic gate devices, this work delivers the knowl-

edge of engineering details that are not uncovered by the latest experimental work and can serve as a

basic but practical guideline for potential device designs.

1 Introduction

Semiconductors have been regarded as attractive materials for
the designing of universal quantum logic gates mainly due to
their advantage of easy integration with classical control hard-
ware using an industry-standard fabrication process. In par-
ticular, semiconductor quantum dot (QD) structures have
been extensively studied as an emerging platform for building
quantum logic gate blocks,1–10 where quantum bits (qubits)
are encoded as either charges or spins of the confined states
and can be manipulated by controlling the biases applied on
the external electrodes. Gallium–arsenide (GaAs) has been
widely adopted to create physical layers of carrier confinement
due to its high electron mobility.1,2 However, the broken inver-
sion-symmetry originating from the crystal anisotropies of
GaAs layers of a few nanometer (nm) scale11,12 serves as a
major factor that causes electric/magnetic field noises and
band gap fluctuations, making stable qubit operations
difficult.13 Silicon (Si) has also attracted considerable attention
for qubit designs since it can be easily procured and in prin-

ciple consists of an inversion-symmetric crystal. It has been
well known that the weak spin–orbit interaction of Si drives a
long spin-lifetime,14 and that the coherence of electron spins
can be retained up to 30 seconds in isotopically enriched
28Si.15 With the rapid progress in today’s lithographic techno-
logy, it is now possible to procure 300 mm 28Si wafers whose
purity reaches 99.99%,16,17 and successful synthesis of
99.999% enriched 28Si crystals has been also reported.18

Though qubits can be encoded using charges that are con-
fined in Si nanostructures,5,19,20 due to the above-mentioned
reasons, spin-based qubit encoding has been actively studied
during the last decade,3,4,6–10 and electron spin qubits in Si
QD structures are known to be able to retain their quantum
states ∼103 times longer than other competing technologies
such as superconducting qubits.21,22 Based upon the seminal
work of Loss and DiVincenzo who conceptually proposed the
designs of logic gate devices with electron spins in double
quantum dot (DQD) systems,23 experimentalists have devoted
huge efforts to investigating Si-based DQD systems. A success-
ful coherent control of electron spins in Si DQDs was demon-
strated by Maune et al.3 Veldhorst et al. then reported the indi-
vidual addressability of multiple spin qubits6 and realized con-
trolled-NOT (CNOT) gates by combining controlled-phase oper-
ations and 1-qubit operations.7 Zajac et al. reported ∼3× faster
CNOT gates involving a single control step,8 and, most
recently, Watson et al. demonstrated the successful implemen-
tation of a programmable 2-qubit quantum processor using
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the Si DQD platform, which has the capability to solve the
Deutsch–Jozsa and Grover algorithms.9

Despite all the above-mentioned experimental efforts, there
are still issues that should be examined for a better under-
standing of Si DQD quantum gates from the perspective of
device design. The two issues that need urgent clarification, in
particular, can be (1) the robustness of gate designs against
any unintentional inaccuracy in design factors (unintentional
inaccuracy would essentially occur in the real world scenario)
and (2) the margin of control signals in which the stability of
quantum logic operations can be guaranteed. An elaborate
study of these issues needs to be pursued with computer-aided
simulations since the experimental investigations of all the
design variations would involve huge time and expense, and is
non-trivial since it not only presents a formalized design
guideline but can also invoke potential efforts to evolve the
existing device designs towards advanced regimes.
Accordingly, herein we propose a multi-scale scheme of device
simulations that combines a semi-classical Thomas–Fermi
model24 and electronic structure calculations based on a para-
bolic effective mass theory.25 Taking a recently reported Si
DQD structure as a modeling target,8 we discuss the designs of
a low-temperature 2D electron gas (2DEG) that is essential to
secure DQD-embedded ohmic contacts. The full charge stabi-
lity diagram is then modeled to explore the controllability of
the DC biases applied on the three key gate electrodes, and the
range of the control biases applicable for qubit initialization is
investigated. By taking the control biases and the dimensions
of the gate electrodes as factors subject to unintentional inac-
curacy, the robustness of logic operations is also discussed by
simulating 2-qubit time responses under a weak correlation.
As a full-stack modeling study digging out engineering details
that have not been clarified in previous studies, this work will
contribute to extending the knowledge on the designs of Si
quantum logic gates based on electrode-driven DQDs
structures.

2 Methods

The DQD structure to be modeled is based on a hetero-
structure consisting of Si and SiGe layers similar to a pre-
viously reported structure.8 Fig. 1(a) and (b) show a conceptual
illustration of the reported DQD structure and a simulation
domain used in this work, respectively. The domain is
assumed to be 2D, as the size of the physically realized struc-
ture is quite long (∼0.1 μm) along the [001] direction (Z). A ver-
tical quantum confinement (along the [010] direction (Y)) is
naturally formed in the middle Si layer by the conduction
band offset between the Si and Si0.7Ge0.3 layers. Inside the
middle Si layer, a lateral confinement (along the [100] direc-
tion (X)) can be created by applying appropriate biases on the
top gate electrodes so the target structure can have up to 2
QDs. In the simulations, these gate electrodes are taken into
account by imposing a Dirichlet boundary condition with
finite biases and Schottky barriers (ϕB) on a 2D Poisson

equation. The ϕB values of all the top electrodes are calculated
using the work-functions reported for metal electrodes consist-
ing of Ti/Au layers.26 At both ends of the middle Si layer along
the [100] direction, which serve as source/drain electron reser-
voirs, a Dirichlet boundary condition with ϕB = 0 is imposed
by assuming that the leads are ohmic, and 2DEGs are formed
well. A static magnetic field (BZ) is assumed to be applied
along the [001] direction with a gradient along the [100] direc-
tion (∂BZ/∂X) to make the Zeeman splittings of the two QD
ground states distinguishable, where the BZ distribution is
taken from the stray field profile simulated for a horseshoe-
shaped cobalt micro-magnet27, which is also employed in the
experiment.8 An AC magnetic field (BY), whose magnitude and
frequency are control variables, is applied along the [010]
direction to drive logic operations. Two-qubit time responses

Fig. 1 Simulation domain and modeling approach. (a) A conceptual 2D
description of the Si double quantum dot (DQD) structure reported in
ref. 8. QDs are created in the middle Si layer by controlling the left (VL),
middle (VM), and right (VR) gate bias, where the barrier gate bias (VB) is
used to separate the QDs and 2D electron gases (2DEG). (b) A 2D simu-
lation domain. The 2DEG regions are considered with a Dirichlet bound-
ary condition coupled to the zero Schottky barrier height. A spatial dis-
tribution of the magnetic field along the [001] (Z) direction is taken from
the stray field profile simulated for a cobalt micro-magnet in ref. 26. (c)
A numerical flow of simulations. Given a potential profile, a charge
profile is obtained in two ways: electronic structure calculations with a
parabolic effective mass model (applied to the middle Si layer labeled as
the quantum region in (a)) and Thomas–Fermi calculations (the other
region labeled as the classical region in (a)). With a charge profile, a non-
linear Poisson equation is solved to achieve a new potential profile.
These processes is repeated until the potential profile converges.
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are simulated by solving a time-dependent Schrödinger
equation coupled to the Heisenberg Hamiltonian of two neigh-
boring spins.28

For the self-consistent determination of the electrostatic
profiles in the target DQD structure, we implemented a hybrid
modeling approach using the numerical flow shown in
Fig. 1(c). Given an initial potential profile, a spatial charge dis-
tribution is calculated using either a simple semi-classical
Thomas–Fermi (TF) method24 or electronic structure simu-
lations coupled with a single-band effective mass approach
(EMA).25 The methodological choice for the charge calcu-
lations depends on the region of interest in the simulation
domain. For a region that can be assumed to have no charges
at very low temperatures (labeled as the Classical Region in
Fig. 1(b)), the TF method is employed since there are no criti-
cal needs for quantum mechanical solutions that require a
huge computing expense. In the middle Si layer and its sur-
rounding region where the confined electrons are expected to
reside (labeled as the Quantum Region in Fig. 1(b)), however,
an EMA-based Schröedinger equation is solved for the precise
prediction of quantized energy levels and spatial distributions
of electron wavefunctions (note that the ESI† presents a more
detailed explanation about how the EMA is used to model the
electron spin-states in this work). Once the charge profile is
determined, we solve a nonlinear 2D Poisson equation (with
boundary conditions addressed in the previous paragraph)29

to obtain a new potential profile that will be again be used to
obtain a new charge distribution unless the potential profile
satisfies a user-defined convergence criterion (a mean square
error less than 10−10 eV in our case). For all the modeling
works, we assume a temperature (T ) of 1.5 K.

3 Results and discussion

The first focal point of discussion in this section is the for-
mation of 2DEG, which has huge importance in the DQD-
based designs of quantum logic gates, as it acts as an electron
reservoir that enables the injection of carriers into the DQD
channel. To examine the design conditions of 2DEGs in Si/SiGe
layers whose thickness and alloy composition are identical to
the ones shown in Fig. 1(b), we performed simulations with a
2D domain that had a single top electrode as shown in
Fig. 2(a). A Dirichlet boundary condition (with a bias of VE) was
imposed on a Poisson equation to describe the top surface. A
zero-field boundary was used for the other three surfaces, as
the physical structure would be very long along +X, −X, and +Y
directions.8 The spatial distribution of the conduction band
minimum (EC) simulated at VE = 430 mV is shown in Fig. 2(b),
where the Fermi-energy (EF) was set to zero. A potential barrier
of ∼0.2 eV, observed at the interface of Si/SiGe layers due to the
conduction band offset, confined electrons along the [010]
direction. Along the [100] direction, however, electrons were not
confined. Therefore, once electrons existed in the middle Si
layer, they could move freely along the [100] direction forming a
2DEG, as the simulation domain was assumed to be infinitely

long along the [001] direction. Electrons can fill the middle Si
layer by increasing VE, as shown in Fig. 2(c), where we plotted
the 1D-cuts of VE-dependent EC profiles along the [010] direc-
tion. Increasing VE lowers EC, and, in our results, the ground
state in a quantum well formed by the middle Si layer becomes
lower in energy than EF when VE ≥ 430mV, being occupied with
an electron. Fig. 2(d) and (e) show the electron density
profiles (ρ) at VE = 430 mV and their 1D-cuts along the [010]
direction, respectively, and both profiles have a maximum
value of ∼4 × 1022 cm−3 at the center of the middle Si layer
and are uniform along the [100] direction. The 1D-cuts of the
EC profiles along the [010] direction at VE = 427–430 mV are
shown in Fig. 2(f), indicating that increasing VE does not
necessarily lower EC due to the screening effect once 2DEG is
created.

Being injected from 2DEGs under a small electric field
imposed along the [100] direction, the electrons could be con-
fined in the channel with appropriate biases of the barrier
(VB), left (VL), middle (VM) and right (VR) gate electrodes
(Fig. 1(b)). To examine the contribution of these electrodes to
electron confinement, we modeled a full charge stability
diagram taking VL and VR as control factors, and the details of

Fig. 2 Electrode-driven 2DEG formation. (a) A simulation domain used
to investigate the formation of 2D electron gases (2DEG). (b) 2D distri-
bution of the conduction band minimum (EC) that is simulated at VE =
430 mV and T = 1.5 K. (c) Gate controllability of the EC profile at T =
1.5 K. The 1D-cut (along the [010] direction) profiles of EC are presented
as a function of the gate biases. (d) Electron distribution in the middle Si
layer at VE = 430 mV and T = 1.5 K, and (e) the corresponding 1D-cut
profiles along the [010] direction. The results in (d) and (e) clearly indi-
cate a strong confinement of electrons in the middle Si layer along the
[010] direction with a peak density of 4 × 1022 cm−3. (f ) Effect of elec-
tron-filling on EC. Electron-filling in the middle Si layer at VE = 430 mV
increases the channel EC due to the screening effect as indicated by the
four 1D profiles.
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conductance calculations are available in the ESI.† Fig. 3(a)
shows the result obtained at VM = 400 mV and VB = 200 mV,
and the shape of the diagram is quite similar to that of the
diagram measured for the reported physical DQD structure.8

Being identified with two numbers that show the number of
electrons in the left/right QD, the charge states, for the conven-
ience of discussion, are represented with points labeled as P00,
P01, P10, and P11. The two control paths for channel initializa-
tion to the (1,1) state, which is the starting step of qubit logic
operations, are described with white arrows, e.g., P00 → P01 →
P11 or P00 → P10 → P11. In the P00 → P01 → P11 path, for
example, the state is transferred from (0,0) to (0,1) at VR =
545 mV and VL = 535 mV (indicated with a red arrow), where
the ground state energy-level of the right QD touches the EF
value that is fixed by the 2DEG reservoirs. The state-transfer
from (0,1) to (1,1) then occurs at VR = 555 mV and VL = 546 mV
(indicated with a yellow arrow).

The electrostatic phenomena at the four charge states are
shown in Fig. 3(b), where we present the spatial distribution of
EC in the middle Si layer at each charge state with its 1D
profile cut along the white dotted line marked in the 2D
profile. When the system is at an empty state (P00 at VL = VR =
535 mV), the EC profile has a smooth double-well shape, as VL
and VR are higher than VM(= 400 mV). Increasing VL(VR) con-
tinuously lowers EC around the left(right) QD when the
channel is empty. Once the left(right) QD is filled with an elec-
tron (P10(P01) at VL = 555(535) mV and VR = 535(555) mV),
however, the channel EC moves up due to the screening effect.
When both QDs are filled with an electron (P11 at VL = VR =
555 mV), the EC profile of the middle Si layer no longer shows
energy valleys, indicating that the channel has no chances to
grab more electrons, which even though can be still injected
from 2DEGs. As the stability diagram shown in Fig. 3(a) cannot
explain the VM-driven charge control, we provide another
diagram in Fig. 3(c), which shows the feasibility of channel
initialization as a function of (VM, VL = VR). The two points,
which correspond to the P00 and P11 states in Fig. 3(a), are
marked as examples to help easy recognition of the bias regime
where the channel can (white) or cannot (black) be initialized.

The main role of the middle gate bias VM is to control the
barrier height between the two QDs, and the barrier height
affects the exchange interaction of the two spin states that are
occupied by confined electrons. Representing the coupling
strength between the ground down-spin states, the exchange
constant ( J) acts as a control factor for the generation of
quantum entanglement between two spin qubits in a DQD
structure. The behavior of J under varying biases thus must be
precisely understood. Fig. 4(a) shows the 1D profiles of EC (cut
along the white dotted line marked in Fig. 3(b)) simulated at
VL = VR = 535 mV and VM = 390–410 mV, where the barrier
height is also plotted as a function of VM in the inset figure.
Although VL and VR are fixed, increasing VM causes an overall
reduction of EC in the middle Si layer. The reduction however
is highest near the region below the middle gate; therefore, the
barrier height between the two QDs reduces, and the modeling
result indicates that the barrier height varies almost linearly
and is inversely proportional to VM. As shown in Fig. 4(b),
where the charge density profile at the (1,1) state (at VL = VR =
555 mV) is plotted for two different values of VM (400 mV and
405 mV), the reduced barrier height also affects the confine-
ment shape such that the two electrons in the left and right
QDs become closer. While VM exerts non-trivial effects on the
barrier height (and coupling) between the two spin states, a
noticeable change in the Zeeman splitting energy of each
state, a critical factor that determines the frequency at which
each electron spin resonates, is not observed. The results in
Fig. 4(c) show that the Zeeman splitting energy of the ground
state in each QD (EZR and EZL) fluctuates within 0.1% of its
average in the range of VM, indicating that the resonance fre-
quencies of the two spin states and their coupling strengths
can be controlled independently. The sensitivity of J to VM, cal-
culated from the electron distribution in each QD, turns out to
be quite high, and hence J increases by ∼30 times with a ΔVM

Fig. 3 Charge control and qubit initialization. (a) A full charge stability
diagram simulated for the target structure at VM = 400 mV and VB =
200 mV. Being in excellent agreement with the diagram measured for
the reported device,8 the result shows the four representative charge
states (P00, P01, P10, and P11) with two control paths (white arrows) that
can be used to initialize the double quantum dot (DQD) system for gate
operations. (b) Conduction band minimum (EC) profile at each charge
state. Once the channel is initialized to the (1,1) state, the energy valleys
are vanished due to the screening effects of the electrons in QDs. (c)
Feasibility of the channel initialization represented as a function of (VM,
VL = VR). The two biasing points (P00 and P11 state) are included as
examples for the clear description of the bias regime where the DQD
channel can (white) or cannot be initialized (black).
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of just 5 mV (Fig. 4(d)) (for those who are interested, we have
presented the numerical values of ΔEZR, ΔEZL and ΔJ per unit
mV of ΔVM in Table S1 of the ESI†).

Once EZR, EZL and J at the (1,1) state are known with device
simulations as discussed so far, the time responses of the elec-
tron spin qubits in the DQD system can be predicted by
solving a time-dependent Schrödinger equation that is estab-
lished with the Heisenberg Hamiltonian of two neighboring
spins.28 Here, we chose the real-time 1-qubit NOT logic oper-
ation as a modeling target, and to control the electron spin
resonance (ESR) in the QDs, a dynamic magnetic field BY,
whose amplitude and frequency were user-defined factors, was
assumed to be applied along the [010] direction. As addressed,
the starting step of the qubit logic operations was the initiali-
zation of the DQD system, following which the ground down-
spin state of each QD (|↓〉L and |↓〉R) was filled with a single
electron. For this purpose, the system was simulated at VL = VR
= 555 mV. VM was set to 400 mV to lead both QDs to perform
independent 1-qubit operations with a weak correlation. In a
2-qubit frame, this initial state was represented with |↓↓〉 =
|↓〉L ⊗ |↓〉R, where the symbol ‘⊗’ indicates a tensor-product

operation. Fig. 5(a) and (b) show the corresponding 2-qubit
time responses when the drive frequency of BY is set equal to
the Zeeman splitting energies EZL (8.045 GHz) and EZR (8.134
GHz), respectively. When the frequency is 8.045 GHz, ESR
occurs only in the left QD, and the spin qubit in the right QD
remains unchanged from its initial down-spin state. Among
the time responses of the four 2-qubit states in Fig. 5(a), there-
fore, only the two cases (|↑↓〉 and |↓↓〉), where the right qubit
is |↓〉, show a Rabi oscillation. Likewise, at a frequency of 8.134
GHz that drives ESR only in the right QD, the oscillation was
observed only in the time response of |↓↑〉 and |↓↓〉, as shown
in Fig. 5(b). In both cases, a NOT logic operation was achieved
when the probability of a specific output satisfied a certain
condition. If ESR occurs only in the left QD (Fig. 5(a)), for
example, a NOT logic operation can be achieved at all the time
spots where P(|↑↓〉) (the probability that a |↑↓〉 state is
measured) becomes 1.

Though we chose a bias point of VL = VR = 555 mV and VM =
400 mV to initialize the DQD channel, other (VL, VR) biases at

Fig. 4 Controllability of the middle gate. (a) VM-driven changes of the
barrier height between double quantum dots (DQDs). VL and VR are set
to 535 mV, and VM is varied from 390 to 410 mV with a 5 mV step. The

barrier height (ΦB) drops almost linearly with increasing VM, and
@ΦB

@VM
is

about −0.1 eV V−1. (b) Charge density profiles in the channel at the (1,1)
state, and they are obtained for two values of VM (at VR = VR = 555 mV).
Increasing VM not only reduces ΦB but also makes the two electrons
confined in the DQD channel become closer. (c) Sensitivity of the
Zeeman splitting energy (EZ) and (d) exchange energy (J) to VM. EZ of
the ground states in each QD (EZR and EZL) does not show any notice-
able dependence on VM. But the J values of the two confined electrons
exponentially grow with increasing VM. This huge difference in the sensi-
tivity implies that the resonance and entanglement of two electron spins
can be controlled independently.

Fig. 5 NOT logic operations under noises in control signals. (a) and (b)
Two-qubit time responses of the double quantum dot (DQD) system
under an AC magnetic field whose drive frequency is set to 8.045 GHz
and 8.134 GHz. The system is initialized with VL = VR = 555 mV and VM =
400 mV. At a frequency of 8.045 GHz where the electron spin resonance
(ESR) is observed only in the left QD, for example, a NOT operation is
achieved at time spots when the probability that a |↑↓〉 state is measured
(P(|↑↓〉)) becomes 1. (c) The ESR frequency of the left QD ground state
shown as a function of (VL, VR) at VM = 400 mV. (d) Time responses of a
|↑↓〉 state at a frequency of 8.045 GHz and ΔVR = ±5 mV. (e) The fidelity
of the first NOT operation shown as a function of the variation in the
exchange constant (dJ). Results in (c)–(e) reveal that the ESR frequency
is quite independent of the shape of the QD potential, even though the
system is under a magnetic field with a spatial gradient, and support the
robustness of 1-qubit operations against the noise of input signals.
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VM = 400 mV, in principle, must be also available for the same
purpose as long as they belong to the top-right regime in the
stability diagram (Fig. 3(a)). However, if these DC bias points
and the resulting ESR frequencies of the QDs are strongly cor-
related, the complexity in controlling the logic operations
would increase. A modeling result of the corresponding corre-
lation is shown in Fig. 5(c), where we plotted the relative vari-
ation of the drive frequency in the left QD as a function of (VL,
VR). The frequency driven at VL = VR = 555 mV and VM =
400 mV is taken as a reference. With ΔVL and ΔVR at ≤5 mV,
the maximum deviation of the frequency turns out to be under
0.02% of its reference value, and this deviation is more sensi-
tive to ΔVL than ΔVR since the confinement of the left QD is
affected more strongly by the left gate electrode than the right
one (detailed dataset for the variation of ESR frequencies per
unit mV of ΔVL and ΔVR is available with the corresponding
valley-splitting energies in Tables S2 and S3 of the ESI†). The
time responses of a |↑↓〉 state with ΔVL of ±5 mV are plotted in
Fig. 5(d). Even though the frequency deviation driven by ΔVL is
extremely small, the resulting phase-shift keeps being accumu-
lated, and remarkable changes may be driven in the response
as time elapses. However, up to ∼500 ns, the change in P(|↑↓〉)
measured does not become noticeable (≪1%). The robustness
of the logic operations against the unintentional inaccuracy in
VL can be also explained with the modeling results. Assuming
that the input bias has an uncertainty of ∼1 mV under the
experimental conditions, we observed that the fidelity of the
first NOT operation (at 34.5 ns) dropped by less than 0.2%.
The fidelity is also depicted as a function of the unexpected
deviation of J (dJ) in Fig. 5(e), which shows a fidelity of 99.96%
even at dJ of 50%. Considering that J doubles up with the ΔVM
of 1 mV (Fig. 4(d)), we conclude that 1-qubit operations in the
target DQD system, represented by a NOT operation, are
reasonably robust against the noise of input signals.

All the modeling results discussed so far assumed a perfect
symmetry in relation to the device geometry. However, a per-
fectly symmetric DQD structure may not be always guaranteed
in the real world scenario due to unintentional lithographical
errors. Although the geometric symmetry can be broken by a
variety of physical features, including non-uniform compo-
sitions in SiGe layers and surface and interface roughnesses,
to explore the connection between the broken symmetry and
device functionality, here we only focus on the case wherein
the left and right gate electrodes have different sizes. As
Fig. 6(a) shows, this size mismatch is introduced in the simu-
lation domain with two variables (ΔWL and ΔWR) that also
affect the size of the middle gate electrode. In spite of the
broken symmetry observed in the DQD potential profile at VL =
VR = 555 mV and VM = 400 mV, its effect on the major factors
that determine 1-qubit logic operations turned out not to be
quite remarkable in the considered range of (ΔWL, ΔWR). In
Fig. 6(b), we show the 1D-cuts of the electron density profiles
(along the [100] direction in the center of the middle Si layer)
and the corresponding variations in J for four cases (ΔWL =
±4 nm and ΔWR = ±4 nm). Even with a size-mismatch of 4 nm
corresponding to ∼7% of the reference size of the electrodes,

the dJ value led by the change in the electron density profile
stays under 2% with respect to the symmetric case. The
Zeeman splitting energy (ESR frequency) of each QD is shown
in Fig. 6(c) and (d) as a function of ΔWL and ΔWR, respectively,
and the results indicate that the relative change in the frequen-
cies is less than just 0.03% at a size mismatch of 4 nm, imply-
ing the robustness of the logic operations.

4 Conclusion

Electron spin quantum bits (qubits) in electrode-driven Si
double quantum dot (DQD) structures were elaborately exam-
ined from the perspective of device design with a systematic
modeling approach based on a hybrid utilization of the semi-
classical and quantum mechanical theory. Through rigorous
simulations of a recently realized DQD structure,8 we dis-
cussed the designs of electrode-driven electron reservoirs and
derived a full stability diagram which nicely reproduced the
experimentally measured charge controls, validating the mod-

Fig. 6 Effects of the electrode-driven geometric asymmetry. (a) A con-
ceptual illustration showing how the size mismatch between the left and
right gate electrodes is incorporated into the simulation domain. Note
that ΔWL and ΔWR also affect the size of the middle gate electrode. (b)
Electron density profiles (cut along the [100] direction in the center of
the middle Si layer) and the corresponding changes of the exchange
constant (dJ) with respect to the symmetric case (VL = VR = 555 mV, VM

= 400 mV). (c) and (d) ESR frequencies as a function of ΔWL and ΔWR.
Since even a 4 nm size mismatch between the two electrodes (6.7% of
the size of electrodes in the symmetric case) drives |dJ| < 2% and
changes the frequency <0.03% against the symmetric case, the robust-
ness of the logic operations can be understood to be strong against the
geometric asymmetry driven by electrodes.
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eling approach. After quantifying the range of DC control
biases that led the system to be ready for quantum logic oper-
ations, we found that the Zeeman splitting energy (EZ) of the
spin states, which determines the resonance frequency of spin
qubits, was not quite sensitive to bias-driven changes in the
confinement potentials even under a spatially varying mag-
netic field, thereby theoretically confirming that EZ and the
exchange interaction between two neighboring spin states ( J)
could be manipulated independently in real DQD systems. The
effects of non-ideal factors on the quality of the gate devices
were also investigated by the modeling of limited cases, and
the results showed the robustness of real-time NOT logic oper-
ations under variations in the control signals and sizes of the
gate electrodes. Though this work is still in progress, since it
does not yet include a rigorous discussion on multi-qubit logic
operations involving quantum entanglement, the engineering
details we delivered at this preliminary stage already presented
sound design clues, indicating the practicality of our systema-
tic modeling approach that is hard to replace with full
quantum mechanical simulations.
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