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Corannulene-based nanographene containing
helical motifs†
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Di Sun b and Hua Jiang *a

The synthesis and structural analyses of corannulene-PAH hybrids 1 with a [4] helicene subunit and 2 with a

[7] helicene subunit have been reported. The structures of 1 and 2 were confirmed by single-crystal X-ray

diffraction. The experimental data in combination with theoretical calculations revealed that the terminal

ring of helicene and the π-surface of the corannulene unit of 2 adopt a convex conformation, which is a

more stable conformation. Meanwhile, 2 displays a red-shift in fluorescence emission but a shorter fluor-

escence lifetime, in comparison with 1. The optical resolution of 2 was successfully carried out by chiral

HPLC, offering enantiopure P-2 and M-2, which were further characterized by CD and CPL spectroscopy.

Introduction

Distorted polycyclic aromatic hydrocarbons (PAHs) or nanogra-
phene bearing curved π-conjugated structures have received
significant attention due to their unique optical and electronic
properties that result from their contorted structures, making
them attractive for applications in materials science.1

Corannulene (C20H10), a segment of C60, is regarded as an
ideal precursor for developing π-extended distorted PAHs or
nanographenes because it has been mass-producible2 and
exhibits distinguishing features that involve convex/concave
π-surfaces, unusual reactivity, thermodynamic bowl-to-bowl
inversion, and electron-accepting ability.3 Thus, tremendous
effort has been devoted to discover new features and appli-
cations of π-extended distorted PAHs based on the curved
structure of corannulene.4 Consequently, a variety of distorted
PAHs or nanographenes fused with corannulene have been
developed, and they exhibit potential applications not only in
semiconductor materials5 as organic field-effect transistors
and light-emitting devices, but also in bioimaging6 as poten-
tial fluorescent probes. However, there are only limited studies
on the chirality of these corannulene-based PAHs or
nanographenes.4c,7 For example, Siegel and Baldridge groups
disclosed the indenocorannulene chirality owing to the

concave/convex π-surface of the corannulene unit.8 Sygula and
co-workers developed a corannulene cyclotrimer with three [5]
helicene subunits and three corannulene units, which dis-
played chirality and uncovered the influence of the [5] helicene
subunits on the bowl-to-bowl inversion barrier.7a Recently,
Scott and co-workers synthesized a corannulene-[6] helicene
and revealed the effect of concave/convex π-surfaces on the
dynamics of the [6] helicene moiety.4c More recently, we have
also reported helical hybrids of corannulene and dibenzocoro-
nene, which exhibit achiral properties due to the formation of
meso-double helicenes.9 These findings demonstrate that the
incorporation of helical motifs and corannulene into a fused
chiral π-system may produce appealing properties,4c,7 such as
crystal packing, and photophysical and electronic properties.
Thus, we were motivated to develop two corannulene-PAH
hybrids 1 and 2 bearing different helical lengths (Fig. 1) as
models to shed light on the influence of the helical π-system
on their properties. We anticipated that the different lengths
of the helical motif would significantly change the molecule
behaviour and consequently exert great influence on the pro-
perties of distorted nanographenes.

Fig. 1 Molecular structures of 1 and 2.
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In this work, we report a straightforward bottom-up syn-
thesis of two corannulene–PAH hybrids 1 and 2 with [4] and
[7] helicene subunits, respectively (Fig. 1). The structures of 1
and 2 were unambiguously confirmed by X-ray diffraction crys-
tallography and they exhibited different packing motifs in
solid phases. The absorption and emission spectra in combi-
nation with theoretical calculations revealed the structural
diversity and dynamic behaviors. Moreover, owing to the stabi-
lity of the [7] helicene subunit, two enantiomers of 2 were
obtained by chiral HPLC, and their circular dichroism (CD)
and circularly polarized luminescence (CPL) spectra were
recorded.

Results and discussion

The synthesis of 1 is shown in Scheme 1a. First, cyclopentadie-
none 39 and ethynylcorannulene 410 undergo the Diels–Alder
reaction to afford the intermediate compound 5 in 65% yield.
Then, the Scholl reaction of 5 with DDQ as an oxidant resulted
in 1 in a good yield of 88% under strongly acidic conditions
(MeSO3H) at 0 °C for 1 hour.

The synthesis of 2 is shown in Scheme 1b. In the begin-
ning, palladium-catalyzed Suzuki–Miyaura coupling reaction
of 6 9 and 1-naphthylboronic ester 7 11 gave a product 8 in 71%
yield. Similarly, 8 was further treated with a combination of

DDQ and MeSO3H, yielding the desired 2 in 38% yield. The
decrease in the yield of 2 can be attributed to the greater steric
congestion during the formation of the [7] helicene subunit in
comparison with 1 containing a short helical motif. All com-
pounds are characterized by HRMS and NMR spectroscopy
(see the ESI†).

The structures of compounds 1, 2 and 5 in solid phases
were unequivocally investigated by single-crystal X-ray diffrac-
tion (Fig. 2, Fig. S1–3 and Tables S1–3†). As shown in Fig. 2a
and c, the crystal structures indicated that the nanographenes
1 and 2 are hybrids of the planar PAH domain and corannu-
lene unit. The PAH domain was slightly twisted due to the
repulsion between the PAH domain and the corannulene unit,
leading to the formation of [4] helicene and [7] helicene sub-
units for 1 and 2 (labelled in blue in Fig. 2a and c), respect-
ively. The dihedral angles of the [4] helicene subunit in 1 and
the [7] helicene subunit in 2 calculated from the four inner
carbon atoms are 37° and 41° (Fig. S10 and 11†), respectively.
Meanwhile, for the [7] helicene subunit in 2, the centroid–cen-
troid distance of the overlapping terminal rings is 4.10 Å,
which is longer than that of the pristine [7] carbohelicene
(3.80 Å),12 presumably due to the convex π-surface of the coran-
nulene unit in 2. In the corannulene unit, the bowl depths of 1
and 2 are 0.87 Å (Fig. S2c and S3c†), which is the same as that
of the parent corannulene (0.87 Å).13 This observation indi-

Scheme 1 Synthetic routes of 1 (a) and 2 (b).

Fig. 2 X-ray crystal structures of the obtained molecules. 1 (a) and 2 (c)
from the top and side views. Molecular packing of 1 (b) and 2 (d).
Hydrogen atoms are omitted for clarity.
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cates that the fusion of PAH and corannulene has no effect on
the bowl-depth of the corannulene unit. Importantly, in the
case of 1, two nanographenes display a dimer-like stacking of
an antiparallel orientation, which leads to a plane-convex π–π
interaction between the planar PAH domain and the corannu-
lene unit with a distance of 3.40 Å (Fig. 2b and Fig. S5†). The
propagation of such an antiparallel dimer-like stacking along
the crystallographic a axis leads to the formation of a double-
layer, in which the corannulene units are arranged in a head-to-
end layered fashion and display uniform directions. However,
the propagation of the double-layer along the crystallographic b
axis results in bowl-openings to bowl-opening stackings with a
distance of 5.1 Å (Fig. 2b and Fig. S5†). In the case of 2, the
nanographenes also adopt a head-to-end layered orientation
along the crystallographic c axis. However, the bowl-openings of
the corannulene units display an alternate upside-down orien-
tation along the crystallographic c axis (Fig. 2d). Additionally, in
the adjacent layers along the crystallographic b axis, two mole-
cules display stackings of antiparallel orientation in which the
bowl-openings of the corannulene units show a uniform direc-
tion. The average distances (6.6 Å) of the adjacent layers of 2 are
the same and completely different from those of 1. Such obser-
vations are ascribed to different steric hindrances that originate
from the different lengths of the sub-helical units in the nano-
graphenes 1 and 2 (Fig. 2d).

Thanks to the unique bowl shape of corannulene, one
expects that the terminal ring of helicene would face either the
convex or concave π-surface of the bowl if the helical subunit is
long enough. In fact, only the convex conformation was
observed in the solid phase of 2 as demonstrated by X-ray crys-
tallography (Fig. 2). To further shed light on the dynamic beha-
viours of 1 and 2, DFT calculations at the B3LYP/6-31G(d) level
were performed on both the convex and concave forms of 1 and
2. DFT calculations displayed substantial disparities between
the thermodynamic stabilities of the convex and concave confor-
mations (Fig. S19 and 20†). Compared with concave-1 and
concave-2, convex-1 and convex-2 are more stable by 3.2 kcal
mol−1 (Fig. 3a) and 6.2 kcal mol−1 (Fig. 3b), respectively, clearly
demonstrating that the convex form is the more stable confor-
mation. For 1 and 2, these results indicate that the concave con-
formations are subjected to larger steric congestion than the
convex conformations. Furthermore, barriers for bowl-to-bowl
inversions from the convex to concave conformation were esti-
mated to be 11.2 (Fig. S19†) and 11.8 (Fig. S20†) kcal mol−1 for
1 and 2, respectively. These values are very close to that for the
pristine corannulene (11.5 kcal mol−1),13,14 and these results
further confirm the negligible steric influence of the bowl-to-
bowl inversions. They also suggest that fast interconversions
between the convex and concave conformations can occur in
solution but the convex conformations predominate as demon-
strated in the solid state. A similar phenomenon has been
reported by Scott and co-workers.4c

Next, the photophysical properties of compounds 1 and 2,
which were determined by UV-vis absorption and fluorescence
emission spectroscopy, are shown in Fig. 4, and the data are
summarized in Table 1. As shown in Fig. 4, 1 and 2 display

similar absorption and emission contours. For 1, obvious
absorption bands were observed in a range of 300–490 nm, with
the sharpest absorption peak observed at 350 nm, and two mod-
erate absorption peaks observed at 420 and 442 nm. Notably,
the absorption bands of 2 display redshifts, with the sharpest
absorption at 398 nm and two shoulder peaks at 452 and
479 nm. These redshifts could be ascribed to the expanded
π-conjugation of 2. On the other hand, the emission spectra of
1 and 2 display the maximum peaks located at 487 and 508 nm,
respectively. In detail, the emission of 2 shows a redshift of
21 nm, as compared with that of 1. This observation is in line
with the absorption result and further confirms the expansion
of the conjugated π-system nature in 2. Additionally, the photo-
luminescence quantum yields (ΦF) of 1 and 2 were determined
to be 34% and 22%, respectively. The fluorescence lifetimes (τ)
of 1 and 2 were determined to be 12.63 ns and 9.77 ns by
single-exponential decay fitting (Fig. S15†), respectively.

Fig. 3 The terminal rings of the helicene subunits face the convex and
concave π-surfaces of the bowl in theory and their relative free energies
were calculated by DFT calculations at the B3LYP/6-31G(d) level of the
theory in the gas phase. Free energy is thermally corrected and
expressed in kcal mol−1. t-Bu groups are omitted for clarity.

Fig. 4 UV-vis and emission spectra of 1 and 2 were recorded in chloro-
form solution at room temperature. (All spectra were collected in 1.0 ×
10−5 M chloroform.)
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To better investigate the spectroscopic properties of 1 and
2, a time-dependent density functional theory (TD-DFT) study
was performed at the B3LYP/6-31G(d)/PCM level based on the
crystal structures of 1 and 2. As shown in the top panel of
Fig. 5, in the case of 1, the frontier-molecular-orbital result
indicates that the LUMO is localized at all molecules, while
the LUMO for 2 is much more localized at the PAH domain.
However, the HOMO plots of 1 and 2 are strongly delocalized
on the PAH domain. Basically, the energy of the HOMO in 2
increased but the energy of the LUMO decreased, as compared
with those of 1, leading to a decrease of the HOMO–LUMO
gap. Additionally, the calculated HOMO–LUMO gaps for 1 and
2 are 3.04 eV and 2.85 eV, respectively, matching with the
experimental values of 2.53 eV for 1 and 2.36 eV for 2. These
calculations are in agreement with the experimental batho-
chromic shift of absorption for 2 with respect to 1.

The energy diagrams of the dominant excitation are shown
in the bottom panel of Fig. 5. TD-DFT calculations confirm the
origin of the spectral shifts of 1 and 2, respectively. In the case
of 1, the absorption band at 442 nm is characterized by the
pure HOMO → LUMO transition ( f = 0.2402, λcalc = 462 nm),

and the absorption band at 420 nm is assigned to a large con-
tribution of the HOMO → LUMO+1 transition and a small con-
tribution of the HOMO−1 → LUMO transition ( f = 0.2109, λcalc
= 431 nm) (Table S4†). For 2, the absorption band at 479 nm is
attributed to the pure HOMO → LUMO transition ( f = 0.3014,
λcalc = 499 nm). On the other hand, the absorption band at
452 nm comes from two degenerate excited states from a large
contribution of the HOMO → LUMO+1 transition and a small
contribution of the HOMO → LUMO+2 transition ( f = 0.1055,
λcalc = 438 nm) (Table S5†). Furthermore, the HOMO and
LUMO also can be considered as a pair of π and π*-molecular
orbitals.4i Therefore, the absorption appearing at 442 nm for 1
and 479 nm for 2 can be attributed to the π–π* transition,
which further reflects the expanded π-conjugation in these
nanographenes.

Subsequently, on the basis of the crystal structures, the
local aromaticity of the individual rings in 1 and 2 was ana-
lysed using the average nucleus-independent chemical shift
(NICS(1)ZZ)

15 (Fig. 6 and Tables S7, 8†). For the corannulene
unit, the NICS(1)ZZ values for the central five-membered ring
are positive (13.35 for 1 and 13.45 for 2, green numbers),
whereas those for all the benzene rings are negative. These
values strongly suggested that the five-membered ring pos-
sesses substantial antiaromatic characteristics, whereas the
benzene rings are all aromatic. For the PAH domains, the
central benzene rings have small NICS(1)ZZ values of −1.76 for
1 and −1.61 for 2 (blue numbers), indicating the nonaromati-
city of the central benzene rings, similar to our previous obser-
vations for corannulene based dibenzocoronene.9

Furthermore, three benzene rings in 1 exhibit medium
NICS(1)ZZ values (−5.72, −4.41 and −6.54, red numbers) and
four benzene rings in 2 show medium NICS(1)ZZ values (−2.65,
−4.20, −3.08 and −3.76, red numbers), revealing that these
benzene rings in 1 and 2 show low aromaticity, while other
benzene rings have large NICS(1)ZZ values, suggesting the aro-
maticity of these benzene rings. Moreover, the plots of an-
isotropy of the induced current density (ACID)16 reveal the
clockwise (diamagnetic) ring currents at the peripheries of cor-
annulene and PAH domains (Fig. S21†), which is an indicator

Table 1 Absorption and emission data for 1 and 2

λabs
a,b [nm] Eg(opt)

c [eV] λem
a,d [nm] Stokes shift [nm]

1 350 2.53 487 137
2 398 2.36 508 110

a λabs and fluorescence were measured in chloroform (1.0 × 10−5 M) at
room temperature. b Absorption maximum at the longest wavelength.
c Estimated from absorption onset, Eg(opt) = 1240/λonest.

d Emission
maximum (λex = 360 nm for 1 and 408 nm for 2).

Fig. 5 LUMO (top) and HOMO (middle) energy density and energy dia-
grams (bottom) of 1 (a) and 2 (b) were calculated by TD-DFT at the
B3LYP/6-31G(d)/PCM level. The values of f represent the oscillator
strengths.

Fig. 6 The average of NICS(1)ZZ values of 1 (a) and 2 (b) were calculated
at the GIAO-B3LYP/6-311+G(2d,p)/PCM level based on the crystal struc-
tures of 1 and 2. Hydrogen atoms and t-Bu groups are omitted for
clarity.
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of aromaticity. The anticlockwise (paramagnetic) ring currents
at the five-membered rings suggested the antiaromaticity. The
plots of ACID are in agreement with NICS(1)ZZ calculations.

The presence of enantiomers in 1 and 2 motivated us to
separate their stereoisomers. However, according to DFT calcu-
lations, the helix inversion barrier of 1 (4.7 kcal mol−1)
(Fig. S19†) is similar to that of pristine [4] helicene (4.1 kcal
mol−1),17 and is small enough for inversion at ambient temp-
erature, suggesting that full chiral resolution of 1 would be
unfeasible. For 2, the helix inversion barrier should be higher
than that of pristine [7] helicene (42.0 kcal mol−1),18 implying

that the racemization process is more difficult. So, the chiral
resolution of 2 was achieved using an HPLC system equipped
with a COSMOSIL Cholester column (eluent : DCM/methanol =
70/30, 2.0 mL min−1). Two distinct peaks were detected
(Fig. S14†), corresponding to the two enantiomers of 2, and
they existed at a ratio of 50 : 50. The CD spectra of the two iso-
lated fractions displayed mirror symmetry, indicating that they
are enantiomers with opposite helicity (Fig. 7a). The simulated
CD spectra of P-2 and M-2 were in good agreement with the
experimental results (Fig. 7a and b). Accordingly, the first peak
and the second peak are assigned to P-2 and M-2, respectively
(Fig. S14†). Moreover, P-2 and M-2 exhibit circularly polarized
luminescence (CPL) activities. The CPL spectra of P-2 and M-2
are mirror images. The value of the luminescence dissymmetry
factor (|glum|) was about 4.3 × 10−4 (Fig. 7c), which is typically
of an order of 10−5 to 10−3 for small organic molecules.19

Conclusions

In conclusion, we have achieved the concise bottom-up syn-
thesis of π-conjugated distorted corannulene-PAH hybrids 1
and 2 containing helical motifs and uncovered their structural
features. X-ray crystallographic analyses revealed that 1 and 2
are in a convex conformation and they adopt a head-to-end
layered orientation. Particularly, in the case of 1, the antiparal-
lel dimer stacking leads to a double-layer and the corannulene
units display uniform directions along the crystallographic a
axis, while the propagation of the double-layer reveals face-to-
face stackings along the crystallographic b axis. For 2, the cor-
annulene units display an alternate upside-down orientation
along the crystallographic c axis and two molecules adopt
stackings of antiparallel orientation, in which the bowl-open-
ings of the corannulene units show a uniform direction along
the crystallographic b axis. Furthermore, the theoretical calcu-
lations showed that convex-1 and convex-2 are more stable by
3.2 kcal mol−1 and 6.2 kcal mol−1, in comparison with concave-
1 and concave-2, respectively. The enantiomers of 2 were separ-
ated by chiral HPLC, and the chirality of thus obtained two
fractions of 2 was identified on the basis of their CD spectra
supported by TD-DFT calculations. Furthermore, challenges in
terms of synthesizing large π-extended corannulene-based
chirality materials and developing their practical opto-
electronic applications are the topics of ongoing work in our
laboratory.
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Fig. 7 (a) Experimental CD spectra of P-2 (black solid line) and M-2 (red
solid line). (b) Simulated CD spectra of P-2 (black solid line) and M-2 (red
solid line) were conducted by TD-DFT at the B3LYP/6-31G(d)/PCM level.
(c) CPL spectra of P-2 and M-2. (All spectra were collected at 1.0 × 10−5

M in chloroform.)
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