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rotective hole hopping in
metalloenzymes

Harry B. Gray and Jay R. Winkler

Electrons can tunnel through proteins in microseconds with a modest release of free energy over distances

in the 15 to 20 Å range. To span greater distances, or to move faster, multiple charge transfers (hops) are

required. When one of the reactants is a strong oxidant, it is convenient to consider the movement of

a positively charged “hole” in a direction opposite to that of the electron. Hole hopping along chains of

tryptophan (Trp) and tyrosine (Tyr) residues is a critical function in several metalloenzymes that generate

high-potential intermediates by reactions with O2 or H2O2, or by activation with visible light. Examination

of the protein structural database revealed that Tyr/Trp chains are common protein structural elements,

particularly among enzymes that react with O2 and H2O2. In many cases these chains may serve

a protective role in metalloenzymes by deactivating high-potential reactive intermediates formed in

uncoupled catalytic turnover.
Introduction

Life on our planet changed dramatically aer oxygenic photo-
synthesis began remaking the atmosphere about 3 billion years
ago. Over the next 2.5 billion years, as the atmospheric O2

concentration increased to the current level of 21%,1 the
anaerobic respiratory chains of some microorganisms evolved
to take advantage of this newly available oxidant.2 The oxidizing
power of O2 also stimulated the evolution of new enzymatic
transformations involving high-potential intermediates. During
this period, living organisms had to learn how to live with the
dark side of oxygen – toxic reactive oxygen species (ROS).3

The last six of the canonical amino acids introduced into the
genetic code are thought to be (in order of appearance) cysteine
(Cys), histidine (His), phenylalanine (Phe), methionine (Met),
tyrosine (Tyr), and tryptophan (Trp).4,5 The introduction of Cys
and His into the genetic code allowed the incorporation of
metals, particularly Fe, into protein structures, creating new
opportunities for catalysis of redox processes. As the property
that distinguishes Met, Tyr, and Trp from all other amino acids
(except Cys) is susceptibility to oxidation, it is plausible that
their introduction into the genetic code was a response to the
oxygenation of our atmosphere.6–8 Tyr and Trp radicals have
been found to participate in many enzymatic processes
involving oxygen and hydrogen peroxide.9 Of special interest is
that we and others have suggested that an additional critical
role for Met, Tyr, and Trp is to protect enzymes from damage by
serving as endogenous antioxidants.10–15
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Single-step electron tunneling through
proteins

The understanding of biological electron ow transformed
from rudimentary to rened in the second half of the 20th

century. In the 1940s, researchers knew that electrons owed
down the aerobic respiratory chain through a series of immo-
bilized (membrane bound) proteins, ultimately reducing
molecular oxygen, but the mechanism by which electrons
“wander directly from enzyme to enzyme” in this chain
remained a mystery.16 At the same time, abiological electron
transfer research was stimulated by the availability of radioac-
tive isotopes aer the Second World War. Experimental inves-
tigations of electron exchange kinetics of transition metal
complexes revealed rate constants differing by more than 15
orders of magnitude.17–20 These empirical studies provided the
foundation for the development of electron transfer (ET) theory
in the 1950s.21 The semiclassical formulation of this theory (eqn
(1)) revealed that ET rates depend on three critical reaction
parameters: (1) the standard free-energy change (DG�); (2) the
degree of structural and solvent reorganization that accom-
panies the electron transfer (l); and (3) the strength of the
electronic interaction between the electron donor and acceptor
(HAB).22–25

kET ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p3

h2lkBT

s
HAB

2 exp

"
� ðDG� þ lÞ2

4lkBT

#
(1)

Beginning in the 1970s, rapid progress in structural biology
provided keen insights into the arrangements of atoms in
metalloproteins.26 Electron transfer protein structures created
© 2021 The Author(s). Published by the Royal Society of Chemistry
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a new puzzle: redox cofactors are typically buried inside glob-
ular polypeptide matrices. How could electrons exchange if the
cofactors did not come into contact? In the context of the
semiclassical theory, is HAB large enough to support biological
ET when redox centers are 15 Å apart? A series of investigations
of electron-transfer kinetics in metalloproteins covalently
labeled with ruthenium redox reagents demonstrated that
superexchange mediated electronic coupling between redox
sites could indeed sustain electron tunneling through protein
matrices.27–31 In the superexchange model, donor–acceptor
coupling is mediated by excess electron or hole states of the
intervening medium.30 In proteins, the structure and composi-
tion of the polypeptide matrix determines the magnitude of the
superexchange coupling between donor and acceptor but, as
a rough approximation, HAB decays exponentially with the
separation distance and rates decrease by a factor of 6 � 104 for
every 10 Å increase in tunneling distance (exponential decay
constant b ¼ 1.1 Å�1).27 Electron tunneling timetables (Fig. 1)
illustrate that, when driving force (�DG�) and reorganization
energy are balanced, electrons can tunnel through as much as
25 Å of protein in a millisecond. It is important to remember
that tunneling timetables show driving-force optimized times;
when the free-energy change does not match the reorganization
energy, electron transfer is slower (Fig. 1B).
Multistep electron tunneling (hopping)
through proteins

Reorganization energies in biological ET reactions tend to be in
the 0.5–1.0 eV range. Consequently, these reactions are rarely
driving-force optimized, limiting tunneling distances to 10–15
Å. Moving electrons across large protein complexes or
membranes, then, requires multiple tunneling steps. Multistep
ET along a continuously decreasing free-energy gradient
Fig. 1 (A) Driving-force optimized (�DG� ¼ l) electron tunneling time
cytochrome c-b562 (cyan); myoglobin (magenta); high-potential iron pr
center-to-center distance with decay factor b ¼ 1.1 Å�1. (B) When �DG�

(smin). The solid curve illustrates the tunneling-distance change (Dr) that in
from l (calculated with l ¼ 0.8 eV and b ¼ 1.1 Å�1). Equivalently, Dr is the
optimized tunneling time.

© 2021 The Author(s). Published by the Royal Society of Chemistry
overcomes the single-step distance limit at the price of some-
what reduced chemical potential in the reaction products. Even
in the absence of a DG� gradient, and with modestly endergonic
intervening steps, multistep tunneling can move charges over
several nanometers in under a millisecond. The key to rapid,
long range movement of electrons through proteins, then, is the
strategic placement of electron or hole waystations between the
origin and destination of the transferring charge.32–34

The polypeptide matrix plays a critical role in mediating
electronic coupling in both single- and multistep ET reac-
tions.35–38 When biological redox processes generate powerful
oxidants or reductants, the polypeptide can, in principle,
participate directly in electron transfer. Reducing amides or the
side chains of aromatic amino acids requires potentials more
negative than�2 V vs. NHE. An example of this type of reactivity
is found in the quenching of the singlet excited state of tryp-
tophan (Trp) indole groups by electron transfer to the proximal
amide.39 On the oxidative side, there are several targets for
reaction. The indole group of Trp has a formal potential for
radical cation formation of 1.3 V vs. NHE.40,41 Formation of the
neutral phenol radical of tyrosine (Tyr) occurs with a formal
potential of 1.0 V.41,42 The sulfur amino acids cysteine (Cys) and
methionine (Met) have potentials near 1.0 and 1.5 V, respec-
tively.43,44 Oxidations of these residues also involve proton
transfer processes that can modulate or limit overall reaction
rates.45 Many redox enzymes, particularly those that react with
dioxygen or hydrogen peroxide generate high-potential reactive
intermediates (formal potentials in the 1.0–1.25 V range) that
could transfer holes to these oxidizable amino acids. Indeed,
several enzymes are known to utilize hole hopping in their
natural catalytic cycles. The question arises, then, how do
enzymes whose function requires high-potential intermediates
keep oxidizing power at the active site and prevent holes from
diffusing (hopping) through the protein until they reach the
lowest potential site, oen at the protein surface? One strategy
table for Ru-modified proteins: azurin (black); cytochrome c (blue);
otein (red). The solid line shows an exponential dependence on metal
s l electron tunneling times (set) increase above their minimum values
creases the tunneling time by the same factor as the deviation of�DG�

reduction in tunneling distance necessary to maintain a driving-force-

Chem. Sci., 2021, 12, 13988–14003 | 13989
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Fig. 2 Structural model of the functional radical transfer pathway (Y122-W48-Y356-Y731-Y730-C439) in E. coli RNR (PDB ID 6W4X).59

Surrounding Trp and Tyr residues within 10 Å of pathway residues are shown along with shortest edge–edge distances (Å, blue numbers).

Fig. 3 Network of Tyr and Trp residues in branched chains (10 Å maximum contact distance) connected to the E. coli RNR radical transfer
pathway residues (bTyr122-bTrp48-bTyr356-aTyr731-aTyr730-aCys439, red). Distances (Å, blue numbers) are from the cryo-EM structure of the
holo-enzyme (PDB ID 6W4X).59 Residue bTYR122 was 2,3,5-trifluoro-tyrosine in the structure.

13990 | Chem. Sci., 2021, 12, 13988–14003 © 2021 The Author(s). Published by the Royal Society of Chemistry
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would involve designs in which oxidizable amino acids are kept
far (>10 Å) from the active site, but many oxygenases, oxidases,
and peroxidases seem to have eschewed that option. Instead, we
have found that chains of closely spaced Trp and Tyr residues
oen extend from active sites to protein surfaces, creating
a conduit for hole migration.11–15,46–49 We have suggested that
these conduits serve as protection for the enzymes under
conditions where normal catalysis has gone awry.
Functional hole hopping through
metalloenzymes
Ribonucleotide reductase

Class Ia ribonucleotide reductases (RNRs) catalyze the reduc-
tion of nucleotides to deoxynucleotides.50–52 The active holo-
enzyme from E. coli, with an a2b2 structure, has been the
subject of intense study for more than 50 years. The discovery in
1972 of a stable Tyr122c radical in the b2 subunit of the enzyme
stimulated research to understand its role in catalysis.53–56 Until
recently no structure of the intact a2b2 enzyme was available,
although structures of both the a2 and b2 subunits had been
determined.57,58 A docking model of the holo-enzyme con-
structed from the two subunits suggested that the distance from
Tyr122c in b2 to the Cys439 in residue a2 that initiates nucleo-
tide reduction could be as long as 35 Å.57 A recent cryo-EM
structure of the holo-enzyme conrmed that estimate (PDB ID
6W4X).59 Decades of biochemical and biophysical study have
elucidated a radical transfer pathway composed of: bTyr122-
bTrp48-bTyr356-aTyr731-aTyr730-aCys439.57,60–62 The cryo-EM
structure indicates that the rst three radical transfers involve
8–9 Å hops. The nal two transfers span distances of just 3.5
and 2.8 Å. The two E. coli RNR subunits have relatively high
Fig. 4 Structural model (PDB ID 1DNP)68 of the functional hole tran
Surrounding Trp (magenta) and Tyr (red) residues within 7.5 Å of pathwa
and off-pathway (red) hole transfers.66

© 2021 The Author(s). Published by the Royal Society of Chemistry
proportions of Tyr residues (a2, 5.39%; b2, 4.27%; UniProtKB
average, 2.92%), whereas the number of Trp residues is on the
low side (a2, 0.66%; b2, 1.87%; UniProtKB average, 1.10%). The
long-term stability of the Tyr122c radical amid so many alter-
nate residues suggests that it has the lowest formal potential of
the Tyr and Trp residues in the enzyme. The high Tyr content,
nevertheless, raises the possibility of additional radical transfer
pathways. Yet, the delity of RNR radical transfer is maintained
even though several Tyr residues are near the key pathway
residues (Fig. 2). Indeed, the Trp/Tyr branched chains con-
nected to residues in the radical transfer pathway at distances
less than 10 Å contain 37 residues (Fig. 3). That holes from
Tyr122c do not diffuse off-path to nonproductive Tyr residues
demonstrates that hole-hopping distance alone does not dene
a functional radical transfer pathway. Fine tuning of reaction
driving forces by local environments and the availability of
proton exchange partners are key factors for maintaining the
delity of the functional radical transfer pathway.62–64
Photolyase and cryptochromes

Whereas the radical transfer pathway in RNR is comprised
largely of Tyr residues, those pathways in DNA photolyases and
the related cryptochromes primarily involve Trp residues.65

Photoactivation of DNA photolyase involves hole transfer from
an electronically excited avin (*Fla) in a avin adenine dinu-
cleotide (FAD) cofactor to a nearby Trp residue. Transfer
through two more Trp residues brings the hole to the enzyme
surface where it is scavenged by solution reductants. Because
hole transfer is initiated by photoexcitation, this system is
ideally suited to time-resolved laser spectroscopic investiga-
tions.66,67 Ultrafast measurements on the E. coli enzyme revealed
that hole transfer across the 15 Å from the *Fla to surface-
sfer pathway (*Fla-W382-W359-W306) in E. coli DNA photolyase.
y residues are shown along with time constants for on-pathway (blue)

Chem. Sci., 2021, 12, 13988–14003 | 13991
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exposed Trp306 is complete in about 0.5 ns. The rate constants
for the individual ET steps in the pathway have been deter-
mined for on-pathway hopping steps and, through the use of
site-directed mutants, for some off-pathway and charge-
recombination steps as well (Fig. 4).66,67 Driving-force esti-
mates indicate that the formal potentials for Trpc+ formation
decrease as the distance from *Fla increases. Although the Trp
and Tyr content is only slightly greater than the UniProtKB
database averages (Trp, 1.49%; Tyr, 3.40%), the branched Trp/
Tyr chains (7.5 Å maximum contact distance) connected to
the FAD-Trp382-Trp359-Trp306 pathway contain 9 members.
The Trp/Tyr network connectivity (PDB ID 1DNP, Fig. 5)68

highlights the potential for off-pathway hole transfers yet the
overall quantum efficiency of Trp306c formation is estimated to
be about 40% (Fig. 4). Detailed kinetics and driving-force data
revealed that unfavorable driving forces for off-pathway trans-
fers contribute substantially to the bias toward on-pathway
charge ow.66
Peroxidases

Peroxidases catalyze the oxidation of a wide variety of substrates
by hydrogen peroxide. The reaction of H2O2 with heme peroxi-
dases produces a potent oxidant known as Compound I (CI),69

a ferryl porphyrin and a protein radical. One-electron reduction
of CI usually proceeds at the radical, producing ferryl porphyrin
Compound II (CII).69,70 The location of the radical in CI varies
with the enzyme. In horseradish peroxidase, the prototypal
heme peroxidase, the radical is located on the porphyrin. The
radical in CI of Saccharomyces cerevisiae cytochrome c peroxi-
dase (CCP) is one of the rst reported examples of a stable
protein amino acid radical (Trp191c).71,72 It is likely that the
reaction between Fe3+-CCP and H2O2 rst generates a porphyrin
Fig. 5 Network of Tyr and Trp residues in branched chains (7.5 Å
maximum contact distance) connected to the E. coli DNA photolyase
radical transfer pathway residues (FAD472-Trp382-Trp359-Trp306,
red). Distances (Å, blue numbers) are from the X-ray crystal structure of
the enzyme (PDB ID 1DNP).68

13992 | Chem. Sci., 2021, 12, 13988–14003
radical that subsequently migrates to Trp191c by intraprotein
hole transfer.73,74

The CCP Trp191c radical plays a critical functional role in the
reaction with its prime substrate, cytochrome c (cyt c). At high
ionic strength (310 mM), yeast iso-1 Fe2+-cyt c reduces CCP CI at
Trp191c with a rate constant of 2.5 � 108 M�1 s�1.75 The rate
constant for delivery of the second electron is 5� 107 M�1 s�1.75

Following decades of study, a consensus has emerged that
reduction of both CCP CI and CII proceeds via Trp191c; that is to
say, reduction of CII involves hole hopping from the ferryl
center to Trp191 and then to Fe2+-cyt c. Direct (single step) hole
transfer from the CCP ferryl to Fe2+-cyt c is at least 100 times
slower than the 2-step process. In CCP, diffusion of a hole from
its original site on the porphyrin to Trp191 is a functional
adaption that leads to enhanced substrate oxidation.

Although CCP peroxidase activity has been exhaustively
investigated in vitro, recent in vivo evidence points to an
important H2O2 sensing role for the enzyme in yeast.76 Yeast
CCP has unusually high Trp (2.38%) and Tyr (4.76%) content
(compared to UniProtKB/Swiss-Prot database averages), form-
ing an extensive network (contact distance < 10 Å) connected to
the heme (PDB ID 2CYP, Fig. 6).77 Exposure of CCP to excess
H2O2 in the absence of Fe2+-cyt c leads to extensive oxidation of
Trp and Met residues, as well as Tyr crosslinking to form
dityrosine.78,79 Glutathione (GSH) inhibits oxidation at most of
these residues, consistent with the presence of protective chains
that direct holes away from the heme toward surface residues
for scavenging by GSH.79 Respiring yeast produce high levels of
mitochondrial H2O2 and holo-CCP recovered from mitochon-
dria aer 7 days exhibits extensive oxidation of Trp, Tyr, and
Met residues.79 Aer 7 days of respiration signicant levels of
extramitochondrial apo-CCP are present with different patterns
of amino acid oxidation. The in vivo data demonstrate that H2O2

is produced faster than it can be reduced by Fe2+-cyt c. Under
these circumstances, CCP itself becomes a sacricial antioxi-
dant, delivering reducing equivalents from its own oxidizable
amino acids.

Several other peroxidases exploit amino acid radicals for
substrate oxidations, typically those enzymes in which the
substrate cannot access the heme. The extracellular lignin
peroxidase (LiP) from Phanerochaete chrysosporium requires
surface exposed Trp171 to oxidize veratryl alcohol (VA), thought
to serve as a redox mediator for lignin oxidation.80 The radical in
LiP CI is localized on the porphyrin, suggesting that substrate
oxidation requires endergonic hole transfer to Trp171. Transfer
across the 11.5 Å distance from the heme to Trp171 might be
facilitated by hopping through the intervening Met172 residue.
In contrast to CCP, P. chrysosporium LiP has relatively few
oxidizable residues (Trp, 0.87%; Tyr, 0%; Met, 2.33%). The
surface Trp164 in the Pleurotus eryngii ligninolytic peroxidase
known as versatile peroxidase (VP) is required for VA oxida-
tion.81,82 EPR and ENDORmeasurements conrmed that, unlike
P. chrysosporium LiP, the radical in VP CI is located on the
surface Trp164 residue.82

The LiP from Trametopsis cervina has one Tyr and two Trp
residues. Reaction with H2O2 generates a radical on Tyr181 that
forms an adduct with VA.83 Interestingly, CI in the VA-LiP
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Network of Tyr and Trp residues in branched chains (10 Å maximum contact distance) connected to the yeast CCP hole transfer pathway
residues (HEME-Trp191, red). Distances (Å, blue numbers) are from the X-ray crystal structure of the enzyme (PDB ID 2CYP).77 Residueswith >20%
sidechain solvent exposure are indicated with an asterisk.
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adduct is somewhat less reactive toward VA, but the specic rate
of CII reduction by VA in the adduct is 100 times greater than in
pristine LiP.

Enzymes known as dye-decolorizing peroxidases (DyPs) also
utilize protein radicals for substrate reactions.84 Although the
natural substrates are difficult to identify, DyPs can oxidize high
potential substrates and are of interest for their role in lignin
degradation. Both bacterial and fungal enzymes contain much
higher levels of Trp and Tyr in their amino acid sequences than
LP and VP. Multiple proteins radicals (both Trp and Tyr) have
been detected in these enzymes following treatment with H2O2,
and mutagenesis studies indicated their involvement in
substrate oxidation.85–87 In the enzyme from Thermomonospora
curvata, an initially formed CI porphyrin radical decays with
a 0.5 s time constant to a ferryl heme with a radical distributed
among a Tyr and two Trp residues.86 It is not clear why DyPs
employ multiple Trp and Tyr radicals, while LiP and VP have far
fewer options available for radical formation.
Catalase-peroxidases

Heme enzymes known as KatGs exhibit both peroxidase and
catalase activity. KatGs possess a methionine-tyrosine-
tryptophan cross-linked triad that hosts a radical necessary
for catalase activity. In the KatG from Mycobacterium tubercu-
losis (MtKatG), this radical is generated by hole transfer from
a porphyrin radical formed in the reaction of the ferric enzyme
with H2O2.88 In the absence of peroxidase substrates, MtKatG
loses its catalase activity aer about 20 000 turnovers, owing to
formation of off-pathway protein radicals, with Trp321 foremost
among them. Peroxidase substrates can reduce these off-
pathway radicals as well as the resulting CII species to restore
catalase activity. MtKatG, like CCP and DyPs, is rich in oxidiz-
able amino acids (Trp, 4.2%; Tyr, 3.7%; Met, 3.2%; Cys, 0.5%).88

In the absence of peroxidase substrates, these residues serve as
© 2021 The Author(s). Published by the Royal Society of Chemistry
sacricial electron donors to extend enzyme survival and cata-
lase activity.88
Metalloenzyme protection
Cytochrome P450

The cytochromes P450 are members of a superfamily of
dioxygen-utilizing enzymes that are found in virtually every
living species.89 These heme monooxygenases use CI and CII
intermediates to insert an oxygen atom from O2 into C–H bonds
of organic substrates. Whereas CI formation in peroxidases
involves the direct reaction between H2O2 and the ferric
enzyme, CI generation in P450 involves a multistep reductive
pathway. Substrate binding to the resting Fe3+ enzyme increases
its formal potential, permitting reduction to the Fe2+ level by
a reductase.90 Dioxygen binding to the Fe2+-heme produces
a ferric-superoxide species (Fe3+–O2

�), and delivery of a second
electron produces a peroxy adduct (Fe3+–O2

2�). Heterolytic
cleavage of the peroxide generates CI. Reaction of CI with
substrate involves H-atom abstraction, generating intermediate
CII and a substrate radical, followed by hydroxyl radical
rebound to the organic radical forming the hydroxylated
product. P450 CII lacks the thermodynamic driving force
required to hydroxylate a typical C–H bond, nor is it competent
to abstract a substrate H-atom, owing to protonation of the P450
CII ferryl at neutral pH. Consequently, if the radical in P450 CI
were to diffuse away from the heme, it would likely be unreac-
tive toward organic substrates.

Although P450 CI has yet to be observed directly in the
multistep reductive pathway, this intermediate has been
detected using peracids in a peroxide shunt reaction. In
P450cam from Pseudomonas putida, UV-visible spectroscopic
measurements provided a glimpse of CI when the substrate-free
ferric enzyme was rapidly mixed with a large excess of m-
chloroperbenzoic acid (mCPBA).91,92 The rst intermediate
Chem. Sci., 2021, 12, 13988–14003 | 13993
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Fig. 7 Network of Tyr and Trp residues in branched chains (10 Å maximum contact distance) connected to the hemes in (A) P450cam (PDB ID
1PHC),95 (B) CYP119 (1F4U),98 (C) CYP158 (1S1F),101 and (D) P450BM3 (2IJ2).102 Distances (Å) between residues appear as blue numbers. Solvent-
exposed residues are labeled with an asterisk.
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formed in the reaction survived just 50 ms, but its UV-visible
spectrum closely resembled that of the stable CI species in
chloroperoxidase, another Cys-ligated heme enzyme. Freeze-
quench EPR measurements on highly puried P450cam
samples frozen 2 ms aer mixing with mCPBA revealed a spec-
trum consistent with an S ¼ 1 Fe4+ unit exchange-coupled with
an S ¼ 1/2 ligand (porphyrin) radical.93 Longer reaction times
(40 ms) produce EPR spectra characteristic of Tyr radicals.94

Measurements on mutant enzymes provided compelling
evidence for the involvement of radical formation on Tyr96 and
Tyr75. Both residues are within 8 Å of the P450cam heme edge
(Tyr 96, 7.4 Å; Tyr75, 7.6 Å; PDB ID 1PHC)95 and have basic
groups near the phenol hydroxyl that can accept a proton upon
Tyr oxidation (Fig. 7A). The high mCPBA concentrations
required to ensure that CI forms more rapidly than it decays
also induce rapid heme bleaching that competes with Tyr
radical formation.

Generation of the cytochrome P450 from the thermophilic
archaeon Sulfolobus acidocaldarius (CYP119) allowed detailed
study of the CI intermediate.96,97 Reaction of highly puried
Fe3+-CYP119 with mCPBA produces a CI intermediate that lives
several hundred milliseconds at 4 �C, enabling characterization
by UV-visible, EPR, and Mössbauer spectroscopies.97 Moreover,
13994 | Chem. Sci., 2021, 12, 13988–14003
the CI yield and stability were great enough to permit kinetics
measurements of its hydroxylation reactions. One reason for the
greater CYP119 CI stability may be that the closest Tyr residue
(Tyr202) is 8.5 Å from the heme edge and no proton-accepting
groups are within hydrogen-bonding distance (PDB ID 1F4U)
(Fig. 7B).98

Analogous investigations of bacterial P450s from Strepto-
myces coelicolor (CYP158) and Bacillus megaterium (P450BM3)
have shown that the porphyrin radical in CI rapidly diffuses into
the protein matrix to form Tyr and Trp radicals.99,100 The Trp/Tyr
network connectivity maps for these bacterial P450s (Fig. 7)
indicate that P450cam, CYP158, and P450BM3 have short 2-hop
paths from the heme to a surface residue (PDB ID 1S1F,
2IJ2).101,102 A hole in the heme of CYP119, however, would have
to traverse 4 Tyr and 1 Trp before reaching the modestly surface
exposed (18%) Tyr174 residue. CYP119 adopts the typical P450
fold, albeit with a relatively short polypeptide (CYP119, 368
residues; P450cam, 414), but the closest oxidizable residue to
the heme is Tyr202 (8.5 Å away).98 Placing oxidizable residues
near the heme seems to guarantee CI short-circuiting. We have
suggested that these chains provide an antioxidant protection
mechanism for the enzyme. If CI does not react with substrate,
a nearby Trp or Tyr residue is available to direct holes to the
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 The Tyr/Trp hole migration pathway (10 Å contact distance) from the CYP3A4 (PDB ID 1TQN)107 heme to the enzyme surface is composed
of just two residues: Trp126, Tyr99. The colormap illustrates the driving-force dependence of the kinetics modeling for this pathway. If formation
of Trp126c+ is endergonic by 100 meV and subsequent hole transfer to Tyr99 is exergonic by 200 meV, the CI survival time (shop) is estimated to
be 0.3 ms. shop is given by the integral of the normalized CI decay curve.
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enzyme surface where they can be scavenged by cellular
reductants. The CI survival time then depends primarily on the
position of the rst residue in the chain. Indeed, the longest-
lived CI species is in CYP119, the enzyme with the longest
link between the heme and a six-residue linear path to a surface
Tyr174 residue. The measurements on these bacterial P450s
demonstrate that hole hopping from CI along Trp/Tyr chains
operates in opposition to productive substrate oxidation. Hole-
hopping deactivation of CI is a plausible explanation for high
levels of uncoupled turnover observed in many of these heme
monooxygenases.

Human P450s catalyze critical oxidative transformations and
their disruption is associated with a vast array of disease condi-
tions.89,103 A critically important role for these oxygen-utilizing
enzymes is in drug metabolism.104 The human CYP3A4 enzyme
represents 14–24% of the microsomal P450 pool,104 and is
responsible for metabolism of roughly half of all therapeutic
drugs.105 This substrate diversity is likely a contributing factor to
the poor coupling between O2 consumption and substrate oxida-
tion reported for this enzyme;106 an antioxidant rescue pathway
could provide a mechanism to increase enzyme survival. A Trp126
residue is located 7.5 Å from the heme, and 3.6 Å from surface
exposed Tyr99 (PDB ID 1TQN)107 in CYP3A4. This pathway is
analogous to that found in P450BM3. Kinetics simulations suggest
that this hole-escape pathway could deactivate CI within 1 ms if
substrate reaction is unsuccessful (Fig. 8).13

Lytic polysaccharide monooxygenases (LPMO)

LPMOs are redox active copper enzymes that oxidatively
degrade polysaccharides (cellulose and chitin).108–110 The single
© 2021 The Author(s). Published by the Royal Society of Chemistry
type 2 Cu center is coordinated to two His imidazole groups, the
N-terminal amino group, and an exogenous ligand, usually
H2O, in a conguration known as a histidine brace.109 A Tyr
residue in the second coordination sphere of Cu is found in
many LPMOs. Early work implicated O2 as the source of
oxidizing equivalents for substrate oxidation, leading to the
characterization of the enzyme as a monooxygenase.111 Subse-
quent investigations, however, cast doubt on this interpretation
and raised the possibility that H2O2 is the primary oxidant,
characterizing the enzyme as a peroxygenase.112 The identity of
the “natural” oxidant is still a matter of debate and studies have
shown that LPMOs will degrade polysaccharides using either
oxidant.113 In the presence of a reductant and O2, but in the
absence of polysaccharide substrate, LPMOs will produce
H2O2.111,113 Given that the targets of LPMO activity are insoluble
polysaccharides, it is plausible that uncoupled reduction of O2

to H2O2 occurs in parallel with coupled substrate oxidation. It
remains to be resolved whether the two oxidants produce
identical reactive intermediates, as is believed to be the case for
P450.

In the absence of a polysaccharide substrate, many LPMOs
suffer oxidative damage when H2O2 is used as a co-
substrate.112,114,115 When exposed to H2O2 in the absence of
substrate, the fungal LPMO from Lentis similis (LsAA9) is con-
verted into a catalytically inactive purple variant characterized
by an antiferromagnetically coupled Cu2+-Tyr164c pair in the
active site. Mass spectrometric analysis of the purple enzyme
revealed several sites of protein oxidation, including residues
identied in a hole-hopping pathway from Tyr164 to a surface
Trp5 residue.47,115 It is noteworthy that the presence of
Chem. Sci., 2021, 12, 13988–14003 | 13995
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polysaccharide substrates inhibits formation of the purple
species and suppresses protein oxidation.112,115 As was the case
with the four bacterial P450s, a hole-hopping pathway in LsAA9
LPMO is available to direct holes away from the metal active site
in opposition to substrate reaction. Particularly in the case of
enzymes acting on insoluble refractory substrates, incorpora-
tion of a route for hole escape from a powerfully oxidizing active
site would prolong enzyme activity.
Multicopper oxidases (MCOs)

MCOs catalyze the oxidation of organic substrates and metal
ions by O2. They are constructed from 2 or 3 cupredoxin
domains (2dMCO, 3dMCO), one of which retains a type 1
copper. The locus of O2 reduction to H2O is a trinuclear Cu
active site (TNC) comprised of one type 2 Cu center and a type 3
Cu dimer inserted into the interface between two cupredoxin
domains.116 Closely coupled Tyr/Trp chains are not common
structural elements in single-domain cupredoxin ET proteins,12

but they do appear clustered around the TNC in 2dMCOs and
3dMCOs.12,13

The homotrimeric 2dMCO from Streptomyces coelicolor
(SLAC)117,118 has a Tyr108 residue 4.3 Å (PDB ID 3KW8)119 from
the type 2 Cu of the TNC. During catalysis of substrate oxida-
tion, a Tyr108c radical ferromagnetically coupled to the TNC
Cu2+ center develops.120,121 Replacement of Tyr108 with Phe or
Fig. 9 Network of Tyr and Trp residues in branched chains (7.5 Å maxim
(red) in the FDP fromMethanothermobacter marburgensis. Distances (Å,
ID 2OHH).130 Previously identified chains are highlighted in green.126 Solv

13996 | Chem. Sci., 2021, 12, 13988–14003
Ala reduces the catalytic rate constant (kcat) by a factor of 2–3,
but has only a minor impact on second-order rate constants
(kcat/KM) for reaction with O2 and substrate (N,N,N0N0-tetra-
methyl-p-phenylenediamine).121 The accepted mechanism for
MCO catalysis involves O2 binding to the fully reduced (4� Cu+)
enzyme, reduction of O2 by 2 electrons to a peroxy intermediate
(PI), followed by delivery of two more electrons to produce the
native intermediate (NI).122With just three electrons available in
the TNC for O2 reduction, the possibility of hydroxyl radical
formation arises if the fourth electron is not delivered rapidly
from the type 1 Cu center. The Tyr108 residue may serve as an
obligatory intermediate formed in the reduction of PI to NI, or
as a safety valve to deliver electrons when they are not available
from the type 1 Cu.

Ceruloplasmin (Cp) is a mammalian ferroxidase enzyme that
is structurally similar to SLAC, but comprised of a single poly-
peptide chain folded into six cupredoxin domains containing
three type 1 Cu centers and a single TNC (PDB ID 2J5W).123 Early
Cp work indicated that an intermediate with an absorption
maximum at 420 nm formed following oxidation of the reduced
enzyme by O2.124 More recent investigations have revealed UV-
visible absorption signatures of a Tyrc radical following O2

oxidation of the 3- and 4-electron reduced enzyme.125 Cp Tyr107
was suggested to be the likely candidate for radical formation;
this residue 4.6 Å from the type 2 Cu is in a position analogous
um contact distance) connected to the FMN-Fe2 ET pathway residues
blue numbers) are from the X-ray crystal structure of the enzyme (PDB
ent-exposed residues are labeled with an asterisk.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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to that of Tyr108 in SLAC. A hole escape pathway from Tyr107 to
Tyr108 was identied in Cp. Substrate (Fe2+) is limiting for Cp in
vivo, and the dissolved O2 concentration is high so partially
reduced enzyme will be the norm. It is likely that Tyr107 radical
formation protects the enzyme from damage under these low-
substrate conditions.
Flavordiiron proteins (FDPs)

The avodiiron proteins are a group of enzymes that catalyze
the reduction of O2 to H2O and NO to N2O. The FDPs, found in
many obligate and facultative anaerobic microorganisms, have
modular multidomain structures with a minimal requirement
of a catalytic diiron center in a metallo-b-lactamase domain
linked to a C-terminal avodoxin domain containing a avin
mononucleotide (FMN).126 These enzymes were originally
believed to be O2 reductases that protect anaerobes from oxygen
toxicity,127 although subsequent work demonstrated that the E.
coli FDP is an NO reductase.128 Two of the four electrons
required for O2 reduction are delivered by two Fe2+ centers in
the active site; the remaining two are delivered by the reduced
avin positioned about 6 Å away. The formal potentials for
reduction of the diiron core tend to be 50–200 mVmore positive
than those of the avin,126 admitting the possibility of forming
a partially reduced enzyme. Electrons originating in NAD(P)H
move through the FMN domain into the diiron domain, making
it likely that O2 would react with a partially reduced enzyme. In
a partially reduced FDP, nearby Trp and Tyr residues are avail-
able to provide the additional reducing equivalents required for
H2O production. The structures of ve FDPs reveal at least two
Trp/Tyr chains in each protein extending from the diiron center
to the enzyme surface.126 The closest Trp or Tyr residues in these
chains are 4–6 Å from the diiron core. One of these chains is
conserved among the ve enzymes, extending from the diiron
site to the surface near the FMN cofactor.126,129 The FDP enzyme
from Methanothermobacter marburgensis has an extensive
network of interconnected Trp and Tyr residues (PDB ID 2OHH,
Fig. 9).130 The Trp/Tyr chains provide the means to avoid ROS
formation and protect against oxygen toxicity in the FDPs of
anaerobic microorganisms.
Biological implications

Many enzymes risk damage or deactivation as a consequence of
the reactions they catalyze. Enzymes that catalyze higher risk
reactions are likely to be characterized by fewer catalytic cycles
performed before failure (i.e., total turnover number, TTN). TTN
values range from 1 (for suicide “enzymes”131) to >107.132 No
accepted scale of risk factors for enzyme reactivity has been
established, although an early study suggested that reactions
with O2 or H2O2 increased the risk of enzyme deactivation.133 A
more recent attempt to classify enzyme reaction risks suggested
that radical mechanisms and those involving highly reactive
intermediates increased the likelihood of enzyme deactiva-
tion.132 Consistent with this expectation, analysis of catalytic
cycles until replacement (CCR, the in vivo analogue of TTN)
among 97 Lactococcus lactis and 182 yeast enzymes revealed that
© 2021 The Author(s). Published by the Royal Society of Chemistry
CCR correlates inversely with the risk of the reaction catalyzed.
A case in point is the radical enzyme RNR, which exhibited
among the lowest CCR values (L. lactis RNR, CCR ¼ 1732, rank
¼ 12; yeast RNR, CCR ¼ 53, rank ¼ 1).132 Signicant energetic
costs are associated with low CCR. A proteomic analysis of L.
lactis revealed that protein turnover is a major ATP sink in the
cell.134 It is reasonable, then, that increasing enzyme CCR values
would be advantageous for the organism.

The wealth of structures in the protein data bank provides
convincing evidence for aromatic–aromatic, cation–p, and
anion–p interactions in folded polypeptides.135–137 But Trp and
Tyr do more than simply stabilize protein folds. Indeed, in this
perspective we have highlighted several examples of functional
and protective redox activities for these two aromatic amino
acids. Our analysis of hopping pathways in metalloenzymes is
based on structural considerations and knowledge of the factors
that regulate electron-transfer rates in proteins. The question
that remains is whether these pathways have any biological
signicance. If enzyme misfunction is rare, then evidence for
protective pathways is unlikely to appear in studies of enzyme
kinetics, since the protective reaction is a minor contribution to
the overall ux. That said, a protective hole-hopping pathway in
an enzyme should serve to increase the TTN for an enzyme.
Comparisons of TTN values in wild type and mutant enzymes
could provide insights into protective capabilities of hole-
hopping pathways. We are currently pursuing investigations of
this type with various cytochromes P450 and multicopper
oxidases. Evaluating the biological signicance of protective hole-
hopping chains will require in vivo determinations of CCR values
for wild type and mutant enzymes. No oxidases, oxygenases, or
peroxidases were included among the L. lactis and yeast enzymes
in the recent report of in vivo enzyme survival data, but these
clearly would be interesting targets of opportunity.132
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