Effects of protecting groups on luminescent metal nanoclusters: spectroscopic signatures and applications
Abstract
Luminescent metal nanoclusters (NCs) have been established as next-generation fluorophores. Their biocompatible and non-toxic nature, along with excellent chemical- and photo-stability, enables them to find applications in multi-disciplinary areas. However, preparing NCs which are stable is always challenging, primarily owing to their small size and propensity to self-aggregate. In this review, we highlight a holistic approach as to how ligands and templates can monitor the stability of NCs, tune their spectroscopic signatures, and alter their applications. The role of small molecules of a large ligand in the preparation of NCs and their associated limitations are also discussed. We have summarized how these NCs can be utilized in sensing several metal ions, pH, viscosity and temperature of many systems which have biological relevance. Additionally, these luminescent metal NCs find usage in cell-imaging, discriminating between cancerous and non-cancerous cell lines and also targeting specific organelles within the cellular environment.