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BRD4: quantum mechanical protein–ligand
binding free energies using the full-protein
DFT-based QM-PBSA method†

Lennart Gundelach, a Thomas Fox, b Christofer S. Tautermann b and
Chris-Kriton Skylaris *a

Fully quantum mechanical approaches to calculating protein–ligand free energies of binding have the

potential to reduce empiricism and explicitly account for all physical interactions responsible for pro-

tein–ligand binding. In this study, we show a realistic test of the linear-scaling DFT-based QM-PBSA

method to estimate quantum mechanical protein–ligand binding free energies for a set of ligands bind-

ing to the pharmaceutical drug-target bromodomain containing protein 4 (BRD4). We show that

quantum mechanical QM-PBSA is a significant improvement over traditional MM-PBSA in terms of

accuracy against experiment and ligand rank ordering and that the quantum and classical binding

energies are converged to a similar degree. We test the interaction entropy and normal mode entropy

correction terms to QM- and MM-PBSA.

1 Introduction

The binding of a small molecule, or ligand, to a protein target is
one of the main pharmaceutical mechanisms through which
we can interact with the complex systems of the body in a
targeted and effective manner. In-silico approaches to protein–
ligand binding allow atomistic level insight into the mechanisms
of binding and can estimate ligand binding affinity. Computa-
tional techniques like molecular dynamics (MD), docking, and
binding energy estimations are playing an increasingly important
role in modern drug discovery and design.

In the vast majority of all computational approaches used in
the context of large biomolecular systems, like protein–ligand
complexes, the system is described by the laws of classical
mechanics. Consequently, key physical interactions that are
governed by the laws of quantum mechanics are not (at least
directly) accounted for. This includes polarization, charge
transfer, halogen bonding and quantum mechanical many-
body effects.1,2

In classical mechanical methods, some quantum mechanical
effects are included indirectly through severe approximations
and/or highly empirical correction terms. These corrections,
aimed at accounting for some of the quantum behavior of
biomolecules, rely on empirical parameters fitted against
experimental data or high-level quantum mechanical simula-
tions and often benefit from fortuitous error compensation.
An example are force fields that incorporate an approximate
term for the polarization which in turn relies on fitted
parameters.3,4

In principle, if biomolecular simulations were performed at
a quantum mechanical level of theory, all the known physical
interactions in the system should be explicitly accounted for.
This would reduce or eliminate the need for fitting parameters
and correction terms, resulting in more accurate and trans-
ferable models.

However, the fundamental problem of simulating bio-
molecular systems of hundreds, thousands or even millions
of atoms using quantum mechanical techniques is the intract-
able computational cost of solving the equations of quantum
mechanics for such large systems. Traditional quantum chem-
istry models provide at best cubic scaling of computation cost
with system size. However, in recent years, high accuracy quan-
tum mechanical methods whose computational cost scales line-
arly with system size have been developed,5,6 opening the path for
the quantum mechanical study of large biomolecules.

In this paper, we present a quantum mechanical protein–
ligand binding energy study using the QM-PBSA method7–9

based on full-protein linear-scaling density functional theory (DFT)
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calculations with the ONETEP5 program. We calculate binding
energies for 9 ligands binding to the clinically relevant
bromodomain-containing protein 4 (BRD4) and compare quan-
tum mechanical QM-PBSA with traditional classical mechanical
MM-PBSA and MM-GBSA. We compute entropy correction
terms using normal mode analysis (Nmode) and Interaction
Entropy (IE).10 Finally, we compare the results in BRD4 with our
previous QM-PBSA study of the much simpler T4-lysozyme7

protein binding with 7 ligands.

2 The BRD4(1) system

Bromodomains are small protein domains of about 110 amino
acids which are responsible for recognizing acetyl-lysine resi-
dues on proteins. There are a wide variety of bromodomain-
containing proteins. BRD4 is a member of the well studied BET
family of bromodomain-containing proteins.11 In this study we
focus on the first bromodomain of the BRD4 protein commonly
referred to as BRD4(1) which is pictured in Fig. 1. For conve-
nience, the ‘(1)’ nomenclature is dropped in the remainder
of the text. This bromodomain contains 121 amino acids and
2035 atoms. Its binding site has clear access to the solvent and
is located between two hydrophobic loop structures called the
ZA- and BC-loops which connect the four anti-parallel alpha
helices that make up the body of the structure.

The BRD4 bromodomain and a set of 10 ligands, labeled
1–10 in order of ascending binding energy with a potency range
of 5 kcal mol�1, have been proposed by Mobley et al.12 as a
potential binding free energy benchmarking system and
recently used in an absolute binding energy study by
Huggins.13 High-quality co-crystal structures are available for
most ligands along with experimental binding energies. The
ligands are uncharged, chemically diverse and span a binding
range of about 5 kcal mol�1. The binding site is solvent
accessible and many of the ligands form hydrogen bonds with
the Asp96 residue inside the binding site.14 A full table includ-
ing structures, SMILES, experimental energies and PDB codes
is presented in12 and an abridged version in the ESI† of this

paper. The binding energies and PDB structures originate from
the following papers.15–21

The experimental binding energies of 4/10 ligands were
obtained using Alphascreen technology with reported average
estimated experimental errors of 0.20 kcal mol�1 and a maxi-
mum estimated experimental error of 0.23 kcal mol�1.15,18,20

Among the Alphascreen ligands is a confirmed non-binder,
ligand 1, which was found to be inactive at a concentration
of 250 mM and a weak binder, ligand 2, with 32% inhibition at
250 mM. The experimental binding energies of the other
6 ligands, all binders, were measured using isothermal titra-
tion calorimetry with reported mean experimental error of
0.05 kcal mol�1 and a maximum experimental error of
0.07 kcal mol�1.16,17,19,21

Due to the pharmaceutical relevance of bromodomain-
containing proteins, BRD4 has been the subject of extensive
computational research with a noticeable increase in interest in
the past 4 years. A variety of binding energy studies on BRD4
have been performed using MD,22 QM/MM,23,24 absolute
binding free energy (ABFE) methods,13,25,26 MM-PBSA25,27,28

and MM-GBSA.24,29–32

3 Methods
3.1 MM-PBSA and MM-GBSA

The MM-PBSA method, introduced by Kollman et al. in 2000,33

is a popular end-point method for estimating relative free
energies of binding. The method reduces computational cost
by making two key simplifications: (1) sampling only at the
endpoints of the binding process, and (2) treating the solvent
implicitly. In the single-trajectory approach employed here,
only the protein–ligand complex is simulated by MD and
structures for the unbound ligand and host are extracted by
deleting either the host or ligand from the complex trajectory
respectively. A representative ensemble of snapshots is extracted to
estimate binding free energies. The binding free energy of a ligand
B to a receptor protein A is the difference between the average free
energy of the complex and its constituents,

DGbind = hGABi � hGAi � hGBi (1)

where each free energy term is composed of,

hGi = hEi + hGsolvationi (2)

hEi is the gas-phase energy calculated using a classical mechan-
ical force field and hGsolvationi is the mean free energy of
solvation calculated using an implicit solvent model. The
solvation term is composed of a polar and non-polar term,
hGsolvationi = hGpoli + hGnon–poli, where the polar term is the
electrostatic energy upon transfer of a molecule from the gas-
phase to the solvent calculated with the PBSA33 or GBSA34

implicit solvent models. The non-polar term gives the free
energy of cavity formation for the solute to be placed into the
solvent. An optional entropy correction term, �ThSi, can be
included in eqn (2) and represents the configurational entropy

Fig. 1 Sticks and ribbons representation of the BRD4(1) protein structure.
Ligand 4, represented as a space-filling model,is also shown in its binding
site.
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of the solute, usually estimated using normal mode analysis35

or the Interaction Entropy term by Duan et al.10

3.2 QM-PBSA

Methodologically QM-PBSA7–9 is a straightforward modification
of MM-PBSA in which the gas phase energy hEi and solvation
energy hGsolvationi, calculated using the MM force field and
PBSA implicit solvation scheme, are replaced by quantum
mechanical gas phase and solvation energies from full-
protein linear-scaling ab initio density functional theory calcu-
lations in ONETEP.5 The solvation energy is also estimated
from an implicit solvent model which is implemented self-
consistently with minimal parameters in the DFT single-point
energy evaluation and contains dispersion–repulsion effects
in addition to cavitation energy.36 The implicit solvation
term uses the QM electron density to define the solute cavity
and the solvation in turn changes the electron density during
the self-consistent iterative DFT calculation. By extension,
QM-GBSA using the simpler Generalized Born model cannot
be formulated in the same manner. The optional entropy
correction term can be added to the QM- or MM-PBSA energy
using either normal mode analysis or the Interaction Entropy
method.10

3.3 Design of computational study

Three repeats of 300 ns of MD for each ligand binding to BRD4
are run based on the same equilibrated structure. From the
combined 900 ns trajectory for each ligand 4500 snapshots are
extracted and binding energies evaluated using MM-PBSA and
MM-GBSA. A subset of 50 snapshots, equally-spaced in time,
is taken from the 4500 and QM-PBSA binding energies are
calculated for all ligands. Normal mode entropy estimates
are calculated as well for the subset of 50 snapshots only.
Interaction Entropy terms are calculated for MM-PBSA and
MM-GBSA across all 4500 snapshots. For the QM-PBSA, MM-PBSA,
and MM-GBSA results over 50 snapshots, the interaction entropy
from only those 50 snapshots is considered.

3.4 Metrics, non-binders and errors

The QM-PBSA, MM-PBSA, and MM-GBSA methods are suitable
only for the prediction of relative, rather than absolute, binding
free energies. The root mean squared deviation after removal
of the systematic error (mean signed error), called RMSDtr, is a
convenient metric for assessing the accuracy of predicted
against experimental relative binding energies. First, the mean
signed error of the calculated absolute binding energies from
the experimental energies is calculated for the entire ligand set.
The mean signed error, or systematic error, is then subtracted
from the absolute binding free energy of each ligand. Lastly, the
root mean squared deviation of the binding free energy, after
the removal of the systematic error, is calculated with respect
to the experimental binding energies. The resulting RMSDtr
indicates how far the calculated relative binding energies
deviate from the experimental energies across the ligand set.
While the RMSDtr metric assesses the closeness of predicted
and experimental relative binding energies, Spearman’s rank

correlation factor rs quantifies the predictive power of the
relative binding energy rank ordering of the calculated binding
energies. A value of 1 corresponds to a calculated rank order
equivalent to that in the experimental binding energies.
Because Spearman’s rs describes the rank ordering of binding
energies, it can be applied directly to the calculated binding
energies.

The chosen ligand set of 10 ligands contains one confirmed
non-binder, ligand 1, and one ligand of very low binding
affinity, ligand 2 (32% inhibition at 250 mM). As the actual
binding energies of these ligands are not known, they are
excluded from the RMSDtr calculations throughout. The non-
binders are however naturally included in the rank orderings as
quantified by the Spearman’s rs with ‘experimental’ binding
energies of 0 kcal mol�1.

Estimates of the statistical error due to finite sampling in
the computed metrics are obtained using the block averaged
standard error (BASE) method.37 In this approach, the trajec-
tory is split into M segments of length n and the metric of
interest, for example Spearman’s rs, is calculated for each of the
M segments. The standard deviation in rs among the block
averages, sn, is then used to estimate the overall standard error

at block size n using BSEðnÞ ¼ snffiffiffiffiffi
M
p . At n = 1 the BASE is equal

to the analytic standard error (SE) of the metric across the
whole trajectory. As n is increased to up to one fifth of the total
trajectory length, the estimated BASE increases until it reaches
a plateau. The value at which the BASE plateaus is a reliable
estimator for the true standard error. In this paper, we use the
maximum BASE value obtained as the upper bound on the
uncertainty in the RMSDtr and rs. In addition to the BASE, to
provide a second estimate of statistical error, the standard error
in the computed metrics is calculated using bootstrapping
(with replacement) over 1000 iterations.

3.5 Computational details

3.5.1 System preparation. The initial structures for
BRD4 in complex with the 10 ligands are taken from
the published benchmarking data set of Mobley et al.12

Co-crystal structures are available for 9/10 of the ligands.
Hydrogen atoms were added to the ligands using Open
Babel38 and the AM1-BCC charge model as implemented in
AMBERS’s antechamber was used by Mobley et al. to assign
ligand atom partial charges. Mol2 and sdf files are provided in
the benchmarking dataset for each ligand. The ligand for
which no experimental structure is available, named ligand
1 in the Mobley set, was docked, by Mobley et al., into BRD4
using AutoDock Vina.39

Parameter files are generated by the authors of this paper
for the protein using the AMBER’s ff19SB force field.40 For the
ligands, the AMBER General Force Field 2 (GAFF2) is used.
In the solvation step, 11 000 OPC3 waters41 and 32 Na+ and
35 Cl� ions (0.15 M NaCl) are added to neutralize the net charge
of the protein. Joung and Cheatham’s TIP3P ion parameters
are used.42 Our extensive equilibration protocol is applied and
described in detail in the ESI.†
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3.5.2 Molecular dynamics. All production calculations
are performed in AMBER2043 with the same settings in an
NPT ensemble. The SHAKE algorithm is used to constrain bonds
involving hydrogen and the time step is 2 fs. Temperature regula-
tion is achieved using Langevin dynamics with a collision fre-
quency of 2.0 ps�1 at 300 K. The Berendsen barostat with isotropic
position scaling at atmospheric pressure and pressure relaxation
time of 2 ps regulates the pressure. A cutoff of 8.0 Å ngstrom is
used for non-bonded interactions.

3.5.3 MM-PBSA and MM-GBSA. MM-PBSA and MM-GBSA
are performed using AMBER20’s MMPBSA.py utility.43 For
MM-GBSA, default settings in AMBER20 with a modified GB
model (igb = 5) developed by A. Onufriev, D. Bashford and D.A.
Case are used and parameters a, b, g set to 1.0, 0.8, and 4.85,
respectively. For MM-PBSA, the two-term non-polar solvation
term is used in which the cavity and dispersion term are treated
separately. The recommended values are used for the cavity
offset (�0.5692) and cavity surface tension (0.0378). An ionic
strength of 0, fill ratio of 4.0 and AMBER’s pre-calculated
atomic radii are used.

3.5.4 QM-PBSA, DFT. QM energy evaluations are carried
out by the linear-scaling DFT code ONETEP.5 The general
purpose exchange correlation functional PBE44 and D3 disper-
sion correction45 were found to be the most promising in our
previous study on the T4-lysozyme.7 A kinetic energy cutoff of
800 eV is used. 4 non-orthogonal generalized Wannier func-
tions (NGWFs) are used for carbon, nitrogen and oxygen and 1
NGWF is used for hydrogen. For sulfur and fluorine 9 NGWFs
are used. An NGWF radius of 8.0a0 is used throughout. ONETEP
default parameters for water at room temperature are used.
QM-PBSA input and output files are included in the ESI.†

3.5.5 Normal mode analysis. Normal mode analysis is
performed in AMBER20 using MMPBSA.py and default settings.

3.5.6 Interaction entropy. The interaction entropy method
by Duan et al.10 is a post-processing method that estimates the
entropic term in MM-PBSA, �TDS, directly from the MD
simulation. The protein–ligand interaction energy, Eint

pl , is
defined as the difference in the gas-phase energy of the
protein–ligand complex and its constituents, i.e, the separate
host and ligand. This energy is defined analogously in the
context of MM- and QM-PBSA. The fluctuation of the inter-
action energy of each snapshot around the ensemble averaged
interaction energy, hEint

pl i, is calculated, DEint
pl = Eint

pl � hEint
pl i. The

interaction entropy is an exponential average of the fluctuation
in interaction energy around the ensemble average,

�TDS ¼ KT ln e
bDEint

pl

D E
(3)

where,

hebDE
int
pl i ¼ 1

N

XN
i¼1

e
bDEint

pl
ðtiÞ; (4)

where N is the number of snapshots and is DEint
pl (ti) calculated

for each snapshot i.

4 Results
4.1 Convergence of energy terms

The standard error of the mean (SEM) is a measure of how far
the mean of a sample is likely to deviate from the true popula-
tion mean. Both the MM-PBSA and QM-PBSA methods average
each energy term across the ensemble of snapshots, i.e., the
population sample. Table 1 shows the SEM, averaged over the
ligand set, for the absolute binding energies, net gas phase
energies and net solvation energies for QM-PBSA and MM-
PBSA. Net energies are the difference between the complex and
its constituents. The SEM of the absolute binding energies
and net gas phase energies over 50 snapshots of QM-PBSA
and MM-PBSA are almost identical. For the net solvation energy,
QM-PBSA actually has a slightly larger SEM by 0.2 kcal mol�1.
Fig. 2 shows the absolute deviation of the computed absolute
binding energies at increasing numbers of snapshots from the
‘converged’ value at 50 snapshots with QM-PBSA and MM-PBSA.
The convergence behaviour is comparable between MM and
QM and beyond 30 snapshots the absolute deviations are below
0.5 kcal mol�1 for most ligands. The mean absolute difference in
absolute binding energies across the ligand set between MM-PBSA
at 50 and 4500 snapshots is 0.36 kcal mol�1. This means that on
average, if all 4500 snapshots are included, the calculated binding
energies differ by 0.36 kcal mol�1 from those calculated over only
50 snapshots.

4.2 Predictive power

Ligand 4 (structure in ESI†) is a clear outlier and is excluded
from the RMSDtr and Spearman’s rs analysis. The absolute
binding energy of ligand 4 without entropy is 16 kcal mol�1

more positive (weaker) than the average across the rest of the
ligand set and 8 kcal mol�1 weaker than the known non-binder,
ligand 1. A full discussion of ligand 4 is presented in Section 5.2
of the discussion.

The RMSDtr and Spearman’s rs are used to quantify the
closeness of calculated to experimental relative binding ener-
gies and rank ordering of ligands by binding energy. Table 2
shows the RMSDtr and Spearman’s rs values for QM-PBSA,
MM-PBSA, and MM-GBSA. Results are shown over the ensemble
subset of 50 snapshots evaluated using QM-PBSA and MM
results are additionally shown across the entire ensemble
of 4500 snapshots. Metrics are calculated without entropy,
with normal mode entropy and with the Interaction Entropy
term. As normal mode calculations for only 50 snapshots
were performed, no results for MM-PBSA/GBSA over 4500
snapshots with normal mode correction are shown. BASE and

Table 1 Standard error of the mean (SEM) in kcal mol�1 for the absolute
binding energy (G_bind), net gas phase energy (Gas-phase) and net
solvation energy (G_solv) averaged across the ligand set for QM-PBSA
and MM-PBSA over 50 snapshots

Method/SEM (kcal mol�1) QM-PBSA MM-PBSA

G_bind 0.44 0.47
Gas-phase 0.64 0.65
G_solv 0.40 0.63
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bootstrapped SE for each metric are shown in Table S2 and S3
of the ESI.†

Consider first the results without entropy correction.
QM-PBSA has an RMSDtr of 1.77 kcal mol�1 and rs of 0.83. This
is 1.22 kcal mol�1 lower than MM-PBSA and 0.89 kcal mol�1

lower than MM-GBSA, over the same 50 snapshots, and thus a
statistically significant improvement with respect to the esti-
mated statistical error of less than 0.2 kcal mol�1. MM-PBSA
has no predictive power in terms of rank ordering the ligands
(rs = 0.01). The ligand rank order produced by MM-GBSA
is comparable with that of QM-PBSA. Considering the full
4500 snapshots, MM-PBSA does not change significantly in
terms of RMSDtr or rs. MM-GBSA on the other hand shows an
improved RMSDtr of 2.07 kcal mol�1 which is 0.3 kcal mol�1

larger than that of QM-PBSA over 50 snapshots.
Overall, the inclusion of the normal mode entropy correc-

tion term improves the performance of QM-PBSA, reducing the
RMSDtr by 0.17 kcal mol�1 and increasing rs by 0.02. However,
both these changes are within the estimated uncertainties of
the two metrics. This is in part due to the fact that the inclusion
of normal mode entropy increases the BASE and bootsrapped
SE for both RMSDtr and rs. MM-PBSA is further deteriorated by

the inclusion of normal mode entropy. MM-GBSA shows a signifi-
cant drop in rs of 0.26 while improving RMSDtr by 0.49 kcal mol�1

which is however of comparable magnitude as the BASE of
0.47 kcal mol�1.

The inclusion of the Interaction Entropy correction consis-
tently increases RMSDtr significantly and reduces rs across the
board. The increase in error against experiment caused by the
interaction entropy term is much larger in the set of 4500
snapshots than in the set of only 50 snapshots ESI.† The BASE
in RMSDtr also increase significantly from 50 to 4500 snap-
shots when the IE term is included ESI.†

5 Discussion
5.1 QM-PBSA

In the context of this set of ligands in BRD4, QM-PBSA produces
relative binding free energies that are closer to experiment and
have better rank ordering than MM-PBSA binding energies.
MM-GBSA performs better than MM-PBSA but is still inferior to
QM-PBSA in terms of RMSDtr and rank ordering. Normal mode
entropies improve QM-PBSA results slightly but deteriorate
MM-PBSA results significantly. In our hands, interaction
entropy corrections reduce quality of estimated binding ener-
gies across the board and are difficult to converge, mirroring
observations by other authors,46–48 as discussed in the ESI.†

The ligand rank orderings produced by QM-PBSA are very
good with rs = 0.85 when normal mode entropy is included and
BASE and bootsrapped SE of 0.08 and 0.06, respectively. Fig. 3
shows plots of the experimental against computed binding
energies where the computed energies have been shifted by
the mean signed error as in the calculation of the RMSDtr. Plots
are shown with and without normal mode entropy and for the

Fig. 2 Absolute deviation of computed absolute binding energies at
different numbers of snapshots from the computed energies at 50 snap-
shots for QM-PBSA (top) and MM-PBSA (bottom) in kcal mol�1 for all
ligands.

Table 2 Root mean squared deviation of calculated binding energies
shifted by the mean signed error (RMSDtr) against the experimental
binding energies of 7 binders in BRD4 in kcal mol�1. Spearman’s rank
order coefficient, rs, of calculated binding energies against the experi-
mental binding energies of 9 ligands (binders and non-binders) in BRD4.
Metrics shown for QM-PBSA, MM-PBSA, and MM-GBSA without entropy
and with normal mode and Interaction Entropy term. Metrics for MM are
shown over 50 and over the complete set of 4500 snapshots. Block
average standard errors and bootstrapped standard errors provided in
ESI\dag. Normal mode entropies only calculated for 50 snapshots

Snapshots Method Entropy
RMSDtr
(kcal mol�1)

Spearman’s
rs

50 QM-PBSA No Entropy 1.77 0.83
Normal mode 1.60 0.85
Interaction entropy 2.30 0.76

MM-PBSA No entropy 2.99 0.01
Normal mode 3.05 �0.30
Interaction entropy 3.84 �0.13

MM-GBSA No entropy 2.66 0.79
Normal mode 2.17 0.53
Interaction entropy 3.22 0.48

4500 MM-PBSA No entropy 2.89 �0.03
Normal mode NA NA
Interaction entropy 6.18 0.03

MM-GBSA No entropy 2.07 0.78
Normal mode NA NA
Interaction entropy 5.54 0.53
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whole ligand set (excluding ligand 4). Visual comparison of
QM-PBSA with MM-PBSA also clearly shows an improvement in
predictive power.

Comparing the results of this BRD4 study to our previous
QM-PBSA study in T4-lysozyme we see similar results. In T4-
lysozyme RMSDtr values of 1.84 kcal mol�1 were obtained using
the PBE exchange-correlation functional and D3 dispersion
and normal mode entropy as compared to an RMSDtr of
1.60 kcal mol�1 in BRD4. Interestingly, the standard error
values for the absolute binding energies and net solvation
energies are slightly lower, by about 0.3 kcal mol�1, in BRD4
than in T4-lysozyme at 50 snapshots of sampling. This is
because BRD4 has a solvent exposed binding site and does
not require a cavity-correction term to account for the buried
cavity binding site in the T4-lysozyme.7,8 The cavity-correction
term was the largest source of SE in the T4-lysozyme system.
Both in BRD4 and T4-lysozyme, the QM energies converge at
the same rate as the MM energies indicating that, for these
systems, evaluating structures generated using classical
mechanical force fields with a quantum mechanical energy
Hamiltonian is viable. If this observation is shown to hold for
more protein–ligand systems, the QM-PBSA or similar appro-
aches can provide a realistic and accessible method of exploring
protein–ligand binding at a quantum mechanical level of theory.
While 50 snapshots of sampling appear sufficient in T4-lysozyme
and BRD4, protein–ligand systems with higher flexibility may
require more sampling. As in Fig. 2, convergent plots can be
used to assess if additional snapshots should be included when
new protein–ligand systems are investigated.

The application of classical mechanical normal mode entro-
pies to the quantum mechanical enthalpies from QM-PBSA
represents a methodological shortcoming. However, the calcu-
lation of QM harmonic entropy terms using DFT is not tractable

as the computation of the QM Hessian matrix is extremely
expensive. Furthermore, a geometry optimization is performed
before the normal mode calculation, which is also extremely
expensive at QM level. Additionally, the authors stipulate that
the main source of error in the normal mode entropies arises
from the harmonic approximation and not from the mismatch
of MM and QM. Normal mode entropies derived from the
SEQM method GFN2-XTB49 could be used instead of force field
based normal mode entropies. However, in our study of
T4-lysozyme, this SEQM method performed quite poorly.
Because only relative binding free energies are calculated in
MM- and QM-PBSA, some entropic effects may also cancel.

In 2017, Aldeghi et al.25 studied 11 ligands in BRD4(1) using
both MM-PBSA and an absolute alchemical binding free energy
method. The single-trajectory MM-PBSA approach achieved
Spearman’s rs = 0.72 without entropy and 0.61 with an entropy
correction term. Absolute alchemical energies improved upon
this with rs = 0.85. Also in 2017, Heinzelmann et al.22 applied
the attach-pull-release method to 7 ligands binding to BRD4(1)
achieving Kendall t between 0.33 and 0.50 and RMSE of
1.14–3.21 kcal mol�1 depending on the details of the method.
In 2022 Guest et al.26 applied FEP and multi-site lambda
dynamics (MSlD) in BRD4 and reported Spearman’s rs of
0.7 and 0.8, respectively, for 14 compounds. Average accuracy
against experiment for FEP was reported as 1.0� 1.3 kcal mol�1

and 0.7 � 0.5 kcal mol�1 after exclusion of one outlier. Also in
2022, Huggins et al.13 applied an alchemical binding free
energy method to the 8 binders from the Mobley BRD4 bench-
mark set also used in this study. Using the ff14SB protein force
field, the previous iteration of the ff19SB force field used in this
study, they reported RMSE of 1.44–3.36 kcal mol�1 and Kendall
t of 0.31–0.56 depending on the choice of water model (TIP3P,
TIP4P-Ewald, SPCE/E) and ligand charge model (AM1-BCC and

Fig. 3 Plots of computed binding energies (shifted by mean signed error) against experimental binding energies for 9 ligands in BRD4 for QM-PBSA,
MM-PBSA and MM-GBSA.
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RESP). Notably, ligand 4, which was excluded from our ligand
set as an outlier for the QM-PBSA method, was not an outlier for
the alchemical method employed by Huggins et al.13

In comparison, in this study the QM-PBSA method achieves
RMSDtr of 1.6 kcal mol�1 across 7 binders and an rs of 0.85
across the 9 ligands (binders and non-binders) in BRD4. These
results are in line with those of more thermodynamically
rigorous classical mechanical methods however, as summar-
ized in Section 5.3, the computational cost of QM-PBSA is
orders of magnitude larger.

5.2 The outlier

The computed QM-PBSA binding energies of ligand 4, the
outlier, are 16 kcal mol�1 more positive than the average
binding energy across the ligand set while the experimental
binding energy for ligand 4 is essentially in the middle of the
binding set. We discuss here the attempts made to explain and
correct this outlier.

Ligand 4, pictured in ESI,† is the smallest ligand in the
ligand set and undergoes the most motion during the MD
simulation as measured by the ligand RMSD. During the 900 ns
of MD, a number of similar binding poses are sampled
by ligand 4. We re-ran the 900 ns MD for ligand 4 with a
2 kcal mol�1 Å�2 harmonic restraint imposed on the ligand, in
an attempt to sample only the binding mode closest to the
initial configuration. 10 restrained snapshots were evaluated
by QM-PBSA but the resulting absolute binding energies for
ligand 4 differed only by 0.5 kcal mol�1 from those of the
un-restrained trajectory. Thus we concluded that the sampling
of multiple related binding modes in itself is not the cause of
ligand 4’s significantly underestimated QM binding energies.

Since ligand 4 has the only bromine atom in the test set,
we examined if the DFT calculations might be treating the
bromine incorrectly. We replaced the bromine in ligand 4 with
a hydrogen and re-equilibrated and re-ran 900 ns of MD. This
altered ligand, ligand 4H, is a real binder with similar binding
energy as the bromine variant.20 After evaluating three snap-
shots of ligand 4H with QM-PBSA we found that the net
difference in absolute binding energies by changing the bro-
mine to a hydrogen was only �0.52 kcal mol�1 and thus we
abandoned this hypothesis.

It is well established that the BRD4 binding site features a
number of structural waters which are observed both in crystal
structures and simulation.50 Using AMBER20’s cpptraj we
analysed the bridging waters between the ligands and BRD4
protein. We observed that for ligand 4 the bridging water
between the ligand and the protein residue Tyr97 is highly
conserved and present in more than 70% of snapshots with the
same water molecule being conserved over many nanoseconds
of MD. While bridging waters are present in the trajectories for
the other ligands, the average occupation is less than 30% with
no single ligand,except ligand 4, having an occupation of more
than 50% for the Tyr97 water bridge. We hypothesized that the
small and loosely bound ligand 4 requires the bridging water
interactions with the protein to bind and that the explicit
inclusion of these bridging waters in the QM-PBSA calculation

may ’fix’ the underestimated QM binding energies. We per-
formed QM-PBSA over 50 snapshots for ligand 4 in which any
bridging waters between the ligand and protein were explicitly
included as part of the protein in the DFT calculations. This
approach is analogous to explicit water MM-PBSA, which has
successfully been applied in a number of studies.14,25,51–55

While the net gas-phase energy did become 10 kcal mol�1 more
favourable to binding, the solvation and normal mode entropy
became less favourable for binding. As a result, the entropy
corrected calculated binding energy of ligand 4 with explicit
bridging waters was only about 1 kcal mol�1 stronger than the
original estimate. Thus the inclusion of the highly conserved
bridging water in ligand 4 did not bring its outlier energy into
line with the rest of the ligand set. There are two reported X-ray
structures of ligand 4 in BRD4 (PDB:4HBV) and the highly
conserved CREBBP bromodomain (PDB:4NYV) which shows
subtle differences in the binding modes of the ligand and
changes in the structure and number of waters in the binding
site. A potential issue is, that our dynamics simulation does not
sufficiently sample the different arrangements of structural
waters in the binding site.

5.3 Computational cost

To calculate quantum mechanical protein–ligand binding ener-
gies using the QM-PBSA method on a total of 10 ligands
binding to BRD4 using 50 snapshots per ligand required about
7.3 million core-hours on AMD EPYC 7742 62-core processors
on the ARCHER2 supercomputer. A single solvated DFT single-
point energy evaluation on the BRD4 protein (2035 atoms) has
a wall-time of about 5 hours on 8 nodes with 128 cores each
(dual socket AMD EPYC). Given access to the whole ARCHER2
supercomputer, the entire QM-PBSA BRD4 study could have
been completed in less than 10 hours due to the trivially
parallel nature of QM-PBSA. Including additional calculations
and initial testing, we estimate a total usage of 10 million core-
hours on ARCHER2 and IRIDIS5 (University of Southampton
supercomputer). BRD4 is a small protein, but due to the linear-
scaling of DFT calculations in ONETEP, larger proteins can, in
principle, be investigated. Calculations of a 50 000 atom lipid
bilayer and 14 000 atom amyloid fibril segment have already
been performed in ONETEP.5

5.4 Recent quantum mechanical studies

The volume of research in the field of quantum mechanical
protein–ligand free energy of binding prediction is still very
limited. In the year 2022, excluding the author’s own work,
we could find only four publications on quantum mechanical
protein–ligand binding energies. Vennelakanti et al.56 publi-
shed an opinion piece about the future of large-scale QM and
QM/MMM for predictive modeling in enzymes and proteins.
Maier et al.57 benchmarked a QM molecule-in-molecules (MIM)
approach, which partitions the protein system into small,
overlapping fragments on which independent QM calculations
are performed. The energies of the fragments are then recom-
bined to recover the total energy. They reported improve-
ments over traditional MM-PBSA/GBSA and Pearson correlation
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coefficients between 0.81 and 0.97. However, no errors against
experiment were given, and the method is only applicable to
sets of structurally similar ligands. Additionally, no sampling
is performed in the MIM approach. Instead, single energy-
minimized crystal structures are used to compute binding
energy estimates. This eliminates the possibility of capturing
multiple binding modes, binding site flexibility, and ligand
flexibility. Chen et al.58 applied the GFN-FF force field and the
family of GFN-xTB SEQM methods to 90 protein–ligand com-
plexes. They truncated the protein for the SEQM calculations
and tested different truncation radii. GFN2-xTB was the best
performing SEQM method tested with mean absolute errors
after the removal of the systematic error of 7 kcal mol�1 for
charged systems and 5 kcal mol�1 for neutral systems. The
correlations of the SEQM approach and traditional MM-PBSA
were comparable. Lastly, Kirsopp et al.59 computed quantum
mechanical protein–ligand interactions natively on a quantum
computer. They studied 12 inhibitors to the BACE1 protein on
different quantum computers and a simulated quantum com-
puter. They obtained coefficients of determinants, R2, of 0.55,
0.77, and 0.56, depending on the QM hardware. In comparison,
a DFT-based approach achieved R2 = 0.65.

6 Conclusion

This study is, to our knowledge, the first application of full-
protein DFT binding energy calculations on a real-world, phar-
maceutically relevant protein and ligand set. Building on our
QM-PBSA validation study in T4-lysozyme,7 we demonstrate the
application of QM-PBSA in BRD4. We find a significant
improvement in accuracy against experiment and ligand rank
ordering over classical mechanical MM-PBSA and the best
results are obtained by including a normal mode entropy
correction term. As in the T4-lysozyme study, the QM binding
energies appear equally converged as the MM binding energies
with SEM o 0.5 kcal mol�1 at 50 snapshots of sampling.
Exploring whole protein–ligand complexes at a quantum
mechanical level of theory is both computationally and methodo-
logically viable and opens a variety of opportunities for further
investigation like the potential applications of extracting further
information from the full-QM electronic densities for protein–
ligand systems. It is our firm belief, that if a fraction of the
scientific effort that has been invested into developing highly
advanced and complicated classical mechanical methods for
estimating protein–ligand binding over the past 60 years were
to be invested in quantum-based approaches, significant
improvements in accuracy, transferability, and domain of
applicability could be achieved given the availability of modern
high-performance computing resources.

Data and software availability

Protein and Ligand structures: the structures of the BRD4
protein and ligands were taken from Mobely’s GitHub repository

and are freely available (https://github.com/MobleyLab/bench
marksets).

Molecular dynamics simulations were prepared using the
tleap program in Amber20 and MD simulations performed
using the GPU (CUDA) implementation of Amber20, which
can be purchased at https://ambermd.org/ (Academic License
available). MD trajectories were processed before MM-PBSA/
GBSA using the cpptraj program included in Amber20.

MM-PBSA, MM-GBSA and normal mode calculations were
preformed in Amber20 using the MMPBSA.py program. This
program is freely available with the free AmberTools21 suite
(https://ambermd.org/). Inputs and generated output files for
QM-PBSA are made available as described in the ESI.†

Structures and trajectories were visualized using VMD1.9
which is freely available at https://www.ks.uiuc.edu/Research/
vmd/. Figures were generated in Python using Matplotlib and
Seaborn freely available via Pip or Anaconda.
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