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From vibrational spectroscopy and quantum
tunnelling to periodic band structures – a
self-supervised, all-purpose neural network
approach to general quantum problems†

Jakob Gamper, ‡a Florian Kluibenschedl,‡a Alexander K. H. Weissb and
Thomas S. Hofer *a

In this work, a feed-forward artificial neural network (FF-ANN) design capable of locating eigensolutions to

Schrödinger’s equation via self-supervised learning is outlined. Based on the input potential determining the

nature of the quantum problem, the presented FF-ANN strategy identifies valid solutions solely by minimizing

Schrödinger’s equation encoded in a suitably designed global loss function. In addition to benchmark

calculations of prototype systems with known analytical solutions, the outlined methodology was also applied

to experimentally accessible quantum systems, such as the vibrational states of molecular hydrogen H2 and

its isotopologues HD and D2 as well as the torsional tunnel splitting in the phenol molecule. It is shown that

in conjunction with the use of SIREN activation functions a high accuracy in the energy eigenvalues and

wavefunctions is achieved without the requirement to adjust the implementation to the vastly different range

of input potentials, thereby even considering problems under periodic boundary conditions.

1 Introduction

Ever since the emergence of quantum mechanics in the early
1900s, a large number of approaches providing analytical or at
the very least numerical solutions to Schrödinger’s equation1

have been proposed. The Schrödinger picture enables inter alia
a holistic representation of electrons in the non-relativistic
limit. For this reason, solutions to the Schrödinger equation
are of critical importance in many fields of physical and
chemical sciences. Knowledge of the associated eigenfunctions
provides a unique and unified approach to calculate the proper-
ties of virtually any molecular system as well as periodic solid-
state structures. However, as a consequence of the inherent
complexity associated to the subatomic interactions, no analy-
tical solutions beyond those reported for one-electron systems
are known to date. Recently, it has even been argued that no
such solutions may be formulated for comparably simple
systems such as the He atom.2 While routine applications in
quantum chemistry rely on numerical frameworks such as

Hartree–Fock (HF)3–6 and post-HF6,7 approaches as well as vari-
ous implementations of density functional theory (DFT),8–10 the
pursuit of alternative routes to provide more efficient as well as
more accurate solutions to electronic structure problems is
still a highly active field of research.11–16 Typically, simplified
one-dimensional prototype systems such as harmonic and
anharmonic oscillators, various instances of the particle-in-a-
box system and multi-well potentials act as starting points to
formulate alternative strategies to solve Schrödinger’s equation.
Following these initial model applications, the methodology
can then be extended to more general frameworks involving an
increased number of quantum particles, higher dimensionality
and even antisymmetric constraints enabling the treatment of
fermionic systems. However, despite the dimensional simplifi-
cation, there is still a plethora of systems in quantum chemistry
which are essentially 1D in nature. Typical examples are the
stretch vibrations of diatomic molecules like H2, HD and D2,17

which due to their low effective mass represent highly sensitive
quantum systems. Similarly, isolated stretch vibrations of
carbon–halogen and oxygen–hydrogen bonds in organic com-
pounds can be considered as 1D oscillators.18,19 Furthermore, a
broad range of systems can be described by 1D double- and
multi-well potentials. Prominent examples are the rotation
of the hydroxy group in phenol20,21 and aliphatic alcohols like
ethanol,22,23 described by periodic double- and triple-well
potentials, as well as the transposition of atoms around the
ideal bond axis in amorphous solids such as glasses.24,25
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Recently, instances of heavy atom (i.e. carbon, nitrogen, oxygen)
tunneling have been reported, greatly extending the importance
of quantum mechanical tunnel effects for the understanding of
chemical reactions.26,27 When turning to 1D periodic systems a
frequent example encountered is the rectangular Kronig–Penney
potential,28,29 which is a simplified model system corresponding
to the periodic generalization of a prototype quantum particle
bound to a finite square-well potential.30 Despite its simplicity this
system already gives rise to an analytic dispersion relation, similar
to band structures known from solid-state physics. Addition-
ally, many 1D systems are analytically solvable, which makes
them ideal candidates to assess the performance and applic-
ability of newly formulated numerical techniques to solve the
Schrödinger equation. Established numerical methods to solve
the 1D Schrödinger equation for a given potential energy surface
(PES) of general form, are the grid-based Numerov method,17,20,31,32

discrete variable representation (DVR) techniques,33,34 the
Chebychev collocation approach35,36 as well as other finite-
difference methods.37 However, recent developments in the
theory and implementation of neural networks (NNs) paved
the way for a new research area, focused on solving partial
differential equations (PDEs) with NNs.38,39 Among others,
neural networks have been successfully constructed to solve
PDEs describing cosmological phase transitions40 and pro-
cesses in fluid dynamics,41,42 both of which are known to be
highly challenging problems in physical sciences. The innova-
tion in these approaches is to regard the NN as a universal
function approximator43–45 acting as test function for the
solution of a given PDE. Network parameters are obtained in
a self-supervised learning process aimed at solving the PDE
within the constraints of preset boundary conditions.

In this work, a feed-forward artificial neural network (FF-ANN)46

with 1 input, 1 output and a single hidden layer with 2n units
was successfully implemented to solve the 1D Schrödinger
equation given as

Ĥcm xð Þ ¼ ��h2

2m
@2

@x2
þ V̂

� �
cm xð Þ

¼ Emcm xð Þ;
(1)

where Em and cm(x) denote the eigenenergy and corresponding
eigenstate, given in position space representation and labelled
by the quantum number m A {0, 1,. . .k}. The respective Hamil-
tonian Ĥ consists of the potential operator V̂ and the operator of
the kinetic energy, with h being the reduced Planck constant and
m the (effective) mass of the quantum system. The output of the
proposed FF-ANN implementation cm(x) is a continuous func-
tion over the input domain, enabling inter- and extrapolation
from any set of grid points employed in the learning process.
This feature represents a distinct advantage of the introduced
FF-ANN approach and distinguishes the method from the
above mentioned grid-based frameworks, providing only output
information at the employed grid points. Notable work in this
direction already exists in ref. 47 and 48, however so far the
discussion is restricted to relatively simple analytic systems,
without any application to complex quantum mechanical systems

characterized via experimental measurements. Furthermore, the
presented approach differs in a significantly improved version of
the network structure, which is considered to be more flexible
and even permits the modelling of complex wave functions, a
feature not discussed in existing NN-based approaches to solve
Schrödinger’s equation. In addition, the approach is applied to
non-analytic PES, the solutions of which can be directly related to
experimental data.

2 Methods
Network architecture and loss function

The target of the present approach is to locate the lowest k
eigenenergies Em and their associated eigenstates cm(x) of the
spatial one-dimensional stationary Schrödinger equation
as given in eqn (1). A feed-forward artificial neural network
(FF-ANN) with 1 input, 1 output and a single hidden layer with
2n units (i.e. neurons) and special internal structure, as sche-
matically depicted in Fig. 1, is considered as test function for
every eigenstate cm(x). In order to also enable the modeling of
complex-numbered eigenfunctions, required for instance in the
treatment of periodic systems based on Bloch’s theorem,30,49

the hidden layer is grouped into sub-layers R and I, comprised
of real and imaginary neurons, which enables the FF-ANN to
access the complex plane.

The input of the FF-ANN is a set of N tuples (xi,Vi), where xi is
the discretized input coordinate ranging from xmin to xmax and
Vi = V(xi) is the respective value for the potential. Notably, this
structure enables the use of various sources to generate the input
potential, either via analytical potential energy functions such as
harmonic or Morse oscillators or alternatively, input data obtained
for instance via a point-wise potential energy scan from quantum
chemical calculations.17,20 In contrast to the majority of grid-based
formalisms such as the Numerov approach and DVR this potential
input does not have to be provided on an equispaced grid. The
output of the FF-ANN is denoted by cm(x), given as

cm xð Þ ¼
Xn
l¼1

Rl þ i
Xn
l¼1

Il

¼
Xn
l¼1

aRl g wR
l xþ bRl

� �

þ i
Xn
l¼1

aIl ~g wI
l xþ bIl

� �
;

(2)

with g,g̃: R - R denoting the respective activation functions. For
the sake of generality, the latter can also be chosen differently for
individual neurons. Unless otherwise specified, the activation
function of choice in this work is the periodic function g(x) =
g̃(x) = sin(x), also referred to as SIREN (sinusoidal representation
networks) activation function presented by Sitzmann et al. in
2020.50 Another approach realized for the presented FF-ANN is
the use of Gaussian activation functions.51,52 A detailed compar-
ison between these functions is provided in a separate section.

To obtain approximate solutions of the Schrödinger equa-
tion for Em and cm, the output of the FF-ANN is set equal to the
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wave function. From this the corresponding value for Em is then
calculated according to

Em ¼
Ð
dxc�m xð ÞĤcm xð ÞÐ
dxc�m xð Þcm xð Þ ; (3)

reducing the problem to the determination of optimal values
for the parameter set {al,ol,bl}

R,I. This can be achieved by
minimizing the respective loss function Lm given as

Lm = g1Em + g2f
diff
m + g3f

b
m + f (fo

m), (4)

with real weighting factors gi and a non-linear continuous
function f (fo

m) depending on a suitable measure of orthogon-
ality fo

m. This non-linearity is in contrast to the contributions
arising from the boundary conditions, fb

m, and the differential
equation, fdiff

m , which are contributing linearly to Lm. The
explicit form for f is included below.

The general notion of the presented loss function was moti-
vated from earlier works focusing on the application of NNs to
find solutions to differential eigenvalue problems42,53 as for
instance cosmological phase transitions presented by Piscopo
et al. in 2019.40 In this work, these approaches are extended to
account for the outlined non-linear contribution and associated
choice of weighting factors, which is discussed in more detail
below. In the following, the individual contributions that appear
in eqn (4) are highlighted. The first term, g1Em, corresponds to a
linear eigenenergy penalty implying that the loss function is

minimized for the lowest sensible eigenvalue. The second term

fdiff
m ¼

Ð
dxc�m xð Þ Ĥ � Em

� �
cm xð ÞÐ

dxc�m xð Þcm xð Þ (5)

quantifies to what extend the FF-ANN output satisfies the under-
lying differential equation. In fact, this term should not result in
any contribution once the FF-ANN output cm and its respective
eigenvalue Em correspond to a valid eigensolution of the investi-
gated Hamiltonian Ĥ. As a distinct feature, fdiff

m inherently
represents a direct measure for the quality of the solution, that
can be monitored in real-time as the optimization of the FF-ANN
is progressing.

The behavior of the wave function at the boundaries of the
spatial region is encoded in fb

m. All systems considered in this
study can be categorized into (a) finite PES with localized
solutions (e - 0) corresponding to Dirichlet boundary condi-
tions on the input domain ranging from xmin to xmax, given as

fb
m = |cm(xmin) � e| + |cm(xmax) � e|, (6)

and (b) periodic PES with period L and periodic boundary
conditions according to

2fb
m ¼ cm xminð Þ � cm xmin þ Lð Þj j

þ @

@x
cm xminð Þ � @

@x
cm xmin þ Lð Þ

����
����

þ @2

@x2
cm xminð Þ � @2

@x2
cm xmin þ Lð Þ

����
����:

(7)

Fig. 1 Schematic illustration of the FF-ANN consisting of 1 input, 1 output and a single hidden layer containing 2n individual neurons. The hidden layer is
further structured into a real and optional imaginary sub-layer, denoted by R and I, each containing a total of n neurons. Multiplication of I with the
imaginary unit i enables the FF-ANN to access the complex plane. The input is a set of N tuples of spatial coordinates xi with corresponding potential
point Vi. In contrast to the majority of grid-based approaches this potential does not have to be provided on an equispaced grid. The FF-ANN output
corresponds to an eigenstate cm(x) represented as function over the entire input domain, while simultaneously providing an estimate for the eigenvalue Em.
To determine the optimal network parameters, an appropriately designed loss function is minimized via self-supervised learning.
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Another key property to be considered is the mutual ortho-
gonality of different eigensolutions to the same Hamiltonian,
which is encoded in f (fo

m). For the m-th state fo
m is written in

the form

fo
m ¼

Xm�1
l¼0

ð
dxc�m xð Þcl xð Þ; (8)

which is the sum over all projections of the currently opti-
mized state cm onto all previously found states cl for m 4
l Z 0.

Following these definitions, the contribution of the eigen-
energy is the only term that effectively contributes to the loss
function Lm once a converged solution has been identified,
i.e. the contributions fdiff

m , fb
m and f (fo

m) are expected to be
zero. In other words, any deviation from the correct eigenstate
results in positive penalties to Lm. Since the goal is to
minimize Lm, the first obtained solution is the one with the
smallest eigenenergy corresponding to the quantum mechan-
ical ground state. For all subsequent states the orthogonality
condition applies, ensuring that the next minimum of the loss
function corresponds to an excited eigenstate. Thus, the
spectrum of the Hamiltonian can be found iteratively by
minimizing Lm, always taking into account all previously
identified states for the given Hamiltonian. Schematically,
this procedure for the training of the FF-ANN is illustrated
in Algorithm 1.

Algorithm 1 Training of the FF-ANN

LOSS(m,cm,cl,lom):

Em ’ ENERGY (cm,Ĥ) \\ eqn (3)

fdiff
m ’ DIFF_EQ(cm,Ĥ,Em) \\ eqn (5)

if periodic_boundaries = false:
fb

m ’ DIRICHLET_BOUND (cm) \\ eqn (6)

else periodic_boundaries = true:
fb

m ’ PERIODIC_BOUND (cm) \\ eqn (7)

end if
fo

m ’ ORTHOGONAL (m,cm,cl,lom) \\ eqn (8)

Lm ’ g1Em + g2f
diff
m + g3f

b
m + f (fo

m)

return Lm

end LOSS

CALC_SPECTRUM (Ĥ,number_of_states):
spectrum ’ { }
for m ’ 0 to NUMBER_OF_STATES � 1 do:
cm ’ INIT_NETWORK_PARAMS ( )
cm ’ NORMALIZE_NEURONS ( )
cm ’ OPT_LOSS (LOSS)
Em ’ ENERGY (cm,Ĥ) \\ eqn (3)

spectrum ’ spectrum,{(cm,Em)}
end for

return spectrum

end CALC_SPECTRUM

Activation functions

In the following the different aspects in the design of the FF-
ANN approach are outlined in detail. The SIREN activation
function50 and its second derivative are given as

g xð Þ ¼ sinðwxþ bÞ

d2g xð Þ
dx2

¼ � w2 sinðwxþ bÞ;
(9)

while the Gaussian activation function and the corresponding
second derivative evolve to

g xð Þ ¼ eð�wx
2�bÞ

d2g xð Þ
dx2

¼ 2weð�wx
2�bÞ 2wx2 � 1
� �

:

(10)

The latter approach is motivated by the most widely used
basis functions in quantum mechanical electronic structure
calculation schemes, which are based on minimizing a basis set
consisting of pre-parametrized Gaussian type orbitals (GTOs).54

When comparing the Gaussian ansatz with the SIREN activa-
tion method, which was routinely applied within this work,
both methods seem to be a valid option, with the SIREN
approach featuring some distinct advantages. It is shown in
Table 1, that the SIREN activation function performs slightly
better regarding the determination of the eigenvalues for H2

and its isotopologues HD and D2. The main reason to choose
the SIREN ansatz as state-of-the-art was to obtain an FF-ANN
applicable for a diverse set of potentials. For the description of
the torsional tunnel splitting in phenol as well as the band
structure calculation in case of the Kronig–Penney potential,
the solutions of the Schrödinger equation follow the same
periodicity as the underlying periodic potential. Hence, the
inherently periodic nature of the SIREN activation func-
tion provides an adequate approach compared to the Gaussian
ansatz.

For the construction of the loss function only analytic
derivatives for both activation functions are considered, while
all integrations were performed using the Simpsons method.55

Here, the SIREN activation function shows one further advan-
tage over its Gaussian counterpart: The integral to calculate the
scalar product between two eigenstates can be performed
analytically for the SIREN type via eqn (S1) and (S2) given in
the ESI.† However, this is in general not possible for the

Table 1 Wave numbers of the fundamental and first overtone excitation,
�n01 and �n02, in cm�1 for three different isotopologues of the hydrogen
molecule: H2, HD and D2 at Full-CI/cc-pVQZ level obtained via the
FF-ANN approach using 40 neurons compared to the associated Numerov
results and experimental reference data

FF-ANN (SIREN) FF-ANN (Gauss) Numerov17 Exp.

�n01 �n02 �n01 �n02 �n01 �n02 �n01 �n02

H2 4162.2 8089.5 4162.4 8090.0 4162.2 8089.5 4161.1a 8087b

HD 3632.7 7088.3 3632.8 7088.4 3632.7 7088.3 3632.3a 7087b

D2 2993.7 5868.6 2993.7 5868.6 2993.7 5868.6 2993.6a 5868.5b

a Ref. 77. b Ref. 78.
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Gaussian ansatz, which is explicitly shown in eqn (S3) of the
ESI.†

Orthogonality contribution

In the following the choice for the orthogonality contribution
f (fo

m), with fo
m as given in eqn (8) is discussed. Empirically,

it was found that an expression according to

f (fo
m) = 100�fo

m(|fo
m � 0.5| + 0.5) (11)

yields efficient results. In the limit fo
m - 0 this contribution

vanishes, f - 0, as expected. The motivation for choosing this
fo dependence is the behaviour of f in the limit fo - 1, which
is steeper than the more convenient linear choice, as illustrated
in Fig. S1 (ESI†). Hence, the formulation in eqn (11) helps to
ensure that the excited states are pushed away from all known
lower lying states during training. This choice for f was moti-
vated by the observation that for problems in which the energy
difference between neighboring states is larger than 1 caused
the network to optimize to the same state as before, at the
cost of a penalty in the loss function from the orthogonality
contribution. Notably, this result can be still obtained, however
it is more unlikely since the steeper slope for fo - 1 can be
interpreted as a repulsion in this minimum of the multi-
dimensional parameter space which was found to be highly
effective in the initial steps of the training process.

Choice of weighting factors ci

The loss function as defined in eqn (4) contains the real
weighting factors g1, g2 and g3. Ideally, these are set in such a
way that no term in eqn (4) outweighs the other contribution by
orders of magnitude. Otherwise the optimizer is steered to
adjust the parameters in such a way that the FF-ANN output
mainly minimizes the contribution associated to the highest
weighted contribution, while poorly satisfying all other terms.
While it can be argued that given a sufficient number of
training periods the optimization algorithm might escape local
minima, this is certainly not considered to be good practice.
Choosing the weighting factors according to

g1 ¼ E�10

�� �� and g2 ¼ g3 ¼
E�10

�� �� E0 o 1

E0j j E0 4 1

(
(12)

proofed to be effective during training for all systems consi-
dered in this study. With this choice the order of magnitude for
the first contribution in eqn (4), g1Em, is of order 1 for systems
where the spacing between different energy levels is of order E0.
This rescaling is especially important for eigenenergies which
are smaller than any sensibly achievable value for fdiff

m and fb
m.

The choice for g2 and g3 ensures that deviations in fdiff
m and fb

m

from their ideal values are always strongly penalized, which is
especially important in the early stages of the training process.
Of course, the choice for the weighting factors as given in
eqn (12) is not sensible when training the ground state, which
is why g1,2,3 are set to 1 in this case.

Initialization and training of the network

The parameters of the FF-ANN employing SIREN activation
functions are initialized based on (a) a random uniform dis-
tribution or (b) a Fourier-transformation of an approximate
harmonic oscillator state. For (a) the initial parameter values
aR,I

i , bR,I
i and wR,I

i are randomly chosen from the intervals
[0,2], [0,2p] and w0 �

ffiffiffi
c
p
;
ffiffiffi
c
p

½ �ðw0 ¼ 30; c ¼ 6Þ, respectively.
Sitzmann et al. have shown that this random initialization
provides an effective strategy for a large class of problems.50

For (b) a harmonic approximation of the potential in each
minimum is generated. The eigenstates of the corresponding
quantum harmonic oscillator Hamiltonian are well-known
and serve as an initial guess for the desired network output.
To obtain the parameter values for aR,I

i , bR,I
i and wR,I

i a
fast Fourier-transformation of the harmonic oscillator states
is performed. This approach was motivated from the resem-
blance of the network output with a truncated Fourier-series
in the case of SIREN activation functions. The basin-hopping
algorithm56–59 was employed for the training of the FF-ANN due
to its capability to locate global minima in high-dimensional
parameter spaces. The algorithm works by randomly perturb-
ing the network parameters followed by local minimization.
Parameters are accepted based on a Metropolis criterion simi-
lar to Monte-Carlo algorithms,60,61 providing also the possibi-
lity of simulated annealing as the optimization is progressing.
This procedure is repeated several times and outputs parameter
values that minimize the loss function Lm. In this work local
minimization is performed with the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm.62–65 For the implementa-
tion of the basin-hopping algorithm in conjunction with local
BFGS minimization the scipy library66 was utilized. Conver-
gence criteria of the local minimizer were set such that the
change of the loss function is less than 10�12 for 5000 con-
secutive minimization steps.

3 Results
Analytically solvable systems

To demonstrate the efficiency of the method and benchmark the
achievable accuracy, a number of analytically solvable systems
has been analyzed. All FF-ANN calculations in this section have
been performed excluding the I layer containing the imaginary
functions in eqn (2), since the wave functions are exclusively real in
these cases. Network parameters were initialized based on a
Fourier-transform of a test eigenstate solving the harmonic approxi-
mation of the potential in each minimum. For convenience all
calculations in this section were carried out employing atomic
units, setting h� = 1 and m = 1. This implies that all energies and
distances are given in units of hartree and bohr, respectively. First,
the analytically solvable single-well potentials of the harmonic and
Morse oscillators are considered, which are both widely employed
to represent bonded vibrational states in simple molecules.67 The
Hamiltonian for the harmonic oscillator is defined according to

Ĥharm ¼ �
�h2

2m
@2

@x2
þ 1

2
mo2x2; (13)
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with o being the angular frequency. Similarly, the Hamiltonian
of the Morse oscillator is given as

HMorse xð Þ ¼ ��h2

2m
@2

@x2
þDe 1� e�a x�x0ð Þ


 �2
; (14)

with De corresponding to the dissociation energy, a being a
measure for the width of the potential-well and x0 denoting the
respective equilibrium distance.68 Analytic solutions for both
systems can be found in the literature.30,68 The wave functions
for the harmonic and Morse oscillator, obtained using 40 and
65 neurons are depicted in Fig. 2. A quantitative comparison of
the respective ground and 3rd excited states with the corres-
ponding analytic wave functions shows that the largest spatial
difference on the considered solution domain is of order
10�5 to 10�2, for the two systems. Additional examples of
associated wave functions together with their analytic counter-
parts are depicted in the ESI,† Fig. S2 and S3 to provide further
support for the efficiency of the presented neural network
strategy. The corresponding FF-ANN and analytic eigenenergies

are summarized in Table S1 of the ESI.† To establish a lower
bound for the number of neurons required to obtain sensible
results for the harmonic oscillator, the FF-ANN has been succes-
sively trained employing neuron numbers ranging from 1 to 50.
The respective differences to the analytic eigenenergies are
depicted in Fig. S4 of the ESI.† A high accuracy, up to eigenenergy
differences below 10�4 hartree, can already be obtained with as
few as 20 neurons. On the contrary, an increase in the number of
neurons does not significantly improve the eigenenergies but may
increase the computation time significantly.

In general, the vibrational states of diatomic chemical species
show relatively large spacings between the different excitations
compared to those associated to molecular rotation. The rotational
Hamiltonian Hrot in absence of any vibrational coupling about a
single axis has a much simpler form compared to the vibrational
Hamiltonians by not including any external potential, i.e.:

Ĥrot ¼ �
�h2

2I

@2

@f2
(15)

Fig. 2 Quantum mechanical wave functions obtained from the FF-ANN with 40 and 65 neurons for the harmonic oscillator with m and o set to 1 (left)
and the Morse oscillator with De = 20, a = 1.5 and x0 = 0 (right) defined through the associated potentials (top, orange), employing 40 neurons. The
depiction of the output function cm (black) reveals excellent agreement with the analytical wave functions (red dashed), with very small absolute
deviations (blue).
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with I being the molecular moment of inertia. The Laplacian is
given in terms of polar coordinates including only the rotation
angle f. To represent the rotation of a chemical species a HCl35

molecule was treated as a linear rigid rotator and its rotational
eigensolutions were calculated using the FF-ANN approach
employing 40 neurons. The deviation of the lowest three transition
wavenumbers to the analytical solutions is below 10�12 cm�1 and
does not rise above 10�8 cm�1 for the first 10 transitions.
All calculated transition wavenumbers are listed in Table S2 and
shown in Fig. S5 of the ESI.†

Even more challenging, yet highly relevant benchmark
systems for the neural network are applications to double-
well potentials. This way the adaptability of the FF-ANN to
model wave functions of increasing complexity in terms of
curvature in conjunction with small differences in values for
the eigenenergy between ground and first excited state, an
effect known as tunnel splitting, can be assessed.69,70 The first
double-well potential under consideration is the Razavy
potential,71,72 which is parameterized according to

V(x) = [x cosh(2x) � M]2, (16)

with parameters x and M. Double-well structures were reported
to appear for M 4 x along with exact solutions for positive
integer values of M.73 Another analytically solvable potential
with double-well character is the hyperbolic potential reported
by Dong et al.,74 which is given as

V(x) = a2 sinh2(x) � k tanh2(x), (17)

with parameters a and k. The results for the two considered
double-well potentials, obtained using the FF-ANN with 55 and
65 neurons, are depicted in Fig. S6 and S7 of the ESI.† The
expected tunnel splitting was successfully reproduced with
high accuracy as can be seen in Table S3 (ESI†).

Analytically solvable periodic system

In the following, the FF-ANN was used to solve a challenging
periodic quantum system, namely the rectangular Kronig–
Penney potential introduced already in 1931.28 It represents
the periodic extension of the particle in a finite square-well
potential, and despite its simplicity already leads to an analy-
tically solvable dispersion relation associated to band struc-
tures known from solid-state physics.29 According to Bloch’s
theorem the wave function of a system subject to a periodic
potential can be described by cm

k (x) = eikxum
k (x), with crystal

momentum k, band index m and the lattice periodic function
um

k .49 In order to obtain um
k the following equation has to

be solved

�h2

2m
k� irð Þ2þV̂

� 

umk ¼ Em

k u
m
k ; (18)

which is obtained after insertion of cm
k into the Schrödinger

equation. Here, Em
k denotes the dispersion relation for the

m-th band. The associated band structure can thus be obtained
by computing the lowest m eigenstates um

k and eigenenergies
Em

k of eqn (18) for different values in k, as is illustrated in
Algorithm 2.

Algorithm 2 Band structure calculations

import CALC_SPECTRUM from Algorithm 1
a ’ length_1D_unit_cell

first brillouin zone 0;
p
a

h i
ENABLE_IMAGINARY_NEURONS ( )
disp ’ { } \\ set to store dispersion relation
for all k A first_brillouin_zone do:

{(um
k , Em

k )} ’ CALC_SPECTRUM (Ĥ,n_bands)

disp ’ disp,{(k, Em
k )|0 r m o n_bands � 1}

end for

Since cm
k is unique up to a reciprocal lattice vector it is

sufficient to only consider crystal momenta in the first Brillouin
zone, i.e. k A [0,p/a] with a being the size of the 1D unit cell.30,49

To enable a correct treatment of the Hamiltonian shown in
eqn (18), the neurons permitting the inclusion of imaginary
activation functions of sub-layer I have to be activated. In the
following, a Kronig–Penney potential as depicted in Fig. 3a is
considered. Energy values of the first and second band for
selected values of the crystal momentum obtained using the
FF-ANN with 70 neurons are compared with the corresponding
analytical dispersion relation E(k)28,29 in Fig. 3b.

Probability densities for selected values of the crystal
momentum are shown in Fig. 3c. The successful reproduction
of the band structure demonstrates the capability to properly
describe periodic PDEs with complex eigensolutions, a feature
rarely encountered in the literature.50 A special characteristic of
the presented FF-ANN is the possibility to determine the
periodic function um

k (x) at any given k-point, an analysis of
which can be related to the finding that the tunnelling prob-
ability decreases with an increase in crystal momentum. To the
best of knowledge the real-space wave functions um

k (x) for
general values of k have not yet been reported in the literature,
since typically the solutions only provide the dispersion
relation Em

k .

Bond vibrations of H2, HD and D2

In addition to the analytical benchmark calculations, experi-
mentally measured quantum mechanical systems were investi-
gated to provide examples for the applicability of the presented
approach beyond analytically solvable potentials. In the first
example, the binding potential of molecular H2 was determined
via accurate quantum chemical calculations and the associated
vibrational eigenstates were evaluated using the FF-ANN
approach. The bond length between the two hydrogen atoms
was varied equidistantly with a step size of 0.025 Å starting
from 0.4 Å up to 7.0 Å. For each generated configuration a
single point configuration interaction (CI)6 calculation at the
cc-pVQZ75 level using single and double excitations was per-
formed (CISD) via gaussian16.76 Since the hydrogen molecule
possesses only two electrons, the CISD approach can be consi-
dered as equivalent to Full-CI.6 According to the Born-
Oppenheimer approximation,6 the Schrödinger equation can
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be applied on the same PES for H2, HD and D2 respectively,
thereby only varying the effective mass m within the vibrational
Hamilton operator to obtain the associated eigenvalues and
eigenstates. Therefore, three calculations were performed using
the presented FF-ANN network on the described grid-based
potential using 40 neurons. The effective masses were set to
mH2

= 0.5039125 g mol�1, mHD = 0.6717112 g mol�1 and mD2
=

1.007051 g mol�1.
For the FF-ANN routine two different activation functions

were employed. In addition to the SIREN activation functions,50

their Gaussian-type analogues as described in Section 2
were used to perform the calculation for the respective isoto-
pologues.

The resulting fundamental and first overtones are summar-
ized in Table 1, while Fig. S8 of the ESI,† depicts the respective

potential along with the calculated ground state and the seven
lowest excited state wavefunctions for the three isotopologues
H2, HD and D2. In addition, a comparison between the three
lowest eigenstates of all three considered systems is shown in
Fig. S8 (ESI†).

The data obtained via the FF-ANN approach for H2 are in
excellent agreement with the experimental reference values,
with the errors for the fundamental and first overtone being
1.1 cm�1 and 2.5 cm�1 respectively, corresponding to relative
deviations of 0.026% and 0.031%. These deviations are greatly
reduced in case of HD and D2, showing a difference of only
0.1 cm�1 and 0.4 cm�1 (i.e. 0.01% and 0.003%) for the funda-
mental excitation. This systematic improvement can be
explained by the decreasing impact of rotational–vibrational
coupling upon increasing mass of the oscillator. Since the 1D

Fig. 3 (a) Rectangular Kronig–Penney potential with a = 2 Å, b = 0.5 Å and V = 1 eV, along with the probability densities ri ¼ u�ik u
i
k of the first (i = 0, blue)

and second (i = 1, red) band, depicted for two different values of the crystal momentum k = 0 and p/a, corresponding to k-points in the center and at the
border of the 1st Brillouin zone. (b) Comparison of the associated dispersion relation E(k) obtained from the FF-ANN against the analytical solution.29

(c) Probability densities for the first (blue) and second (red) band for k-values of 0;
p
2a

and
p
a

. The probability densities and band energies were obtained

using 70 neurons.
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vibrational Schrödinger equation does not take these contri-
butions into account, the largest deviations are observed in
the H2 case, which is the lightest isotopologue considered.
Furthermore, the neural network calculations including the
SIREN activation functions match exactly the results obtained
via the Numerov approach,17 which was applied to the same
input potential.

The comparison of the data obtained by treating the test sets
with the same FF-ANN settings, differing only in the choice
of activation function, shows some minor advantages in favor
of the SIREN approach, when referring to the Numerov and
experimental data. Hence, the latter where chosen as default,
which is further supported by the inherent periodicity of the
sine function. This leads to further major advantages applying
the FF-ANN on periodic potentials as already seen in case of the
Kronig–Penney potential discussed above.

Torsional tunnel splitting in phenol

As a second application a complex target system featuring
torsional tunnel splittings was investigated, namely the intra-
molecular rotation of the OH-group in the phenol molecule
depicted in Fig. 4a. This degree of freedom represents a prime
example of a quantum mechanical tunnelling phenomenon
and has been investigated in detail from both the experimental21

and theoretical perspective.20,21 The associated potential energy
along the reaction coordinate is shown in Fig. 4b and was taken
from a previous study.20 The minimum energy path was deter-
mined via constrained energy minimizations at B3LYP level,79

thereby fixing the dihedral angle of the OH-group followed by
re-calculation of the respective configurations using 2nd order
Møller–Plesset perturbation theory (MP2).80 For the determina-
tion of the eigenvalues and eigenstates, the presented neural

network approach was applied on the latter PES with a total of
20 neurons. The effective mass of 0.98868 g mol�1 20 is deter-
mined as the reduced mass of the four C–H groups in ortho- and
meta-position, since two carbon atoms and one hydrogen atom
of the phenyl molecule are located along the torsional axis and
should therefore not be considered.

The results for the first four torsional tunnel splittings
obtained via the FF-ANN approach are listed in Table 2, along
with a comparison to data determined via a periodic Numerov
approach,20 quasiharmonic reaction path Hamiltonian (RPH)
calculations21 as well as experimental measurements.21

Furthermore, the deviations of the three theoretical descrip-
tions from the experimental reference are included.

The calculation results of the FF-ANN show a remarkably
good agreement with the experimental data, especially when
considering the low absolute wave numbers associated to
the first and second tunnel splitting as well as the increase
from the lowest (0.0019 cm�1) to the highest experimentally
measured wave number (1.77 cm�1), spanning three orders
of magnitude. Considering the relative deviation it can be
observed that both the Numerov and RPH method tend to
underestimate the torsional tunnel splitting. Thus, for the
30 - 31 splitting energy, for which no experimental data is
provided, the result of 17.84 cm�1 can be regarded as a very
reliable estimation.

4 Conclusion

In this work the capabilities of a feed-forward artificial neural
network designed to identify solutions to Schrödinger’s equa-
tion based on self-supervised learning were demonstrated.

Fig. 4 (a) Graphical representation of the intramolecular torsion of the OH-group in phenol. The snapshot depicts the configuration of the transition
state approximately at 2.7 Å; of the minimal energy path. (b) Potential energy surface along the respective periodic minimum energy path including the
ground state as well as the seven lowest excited states obtained via the FF-ANN approach using a total of 20 neurons.
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It has been shown that the presented strategy shows a large
flexibility despite the variety in the considered one-dimensional
quantum problems. Different classes of one-dimensional
potentials were investigated, ranging from localized to periodic
solutions with the extension to determine band structures for
the associated potential energy surface. For the latter, half of
the hidden layer neurons are set to act as imaginary units,
which highlights a unique feature of the presented FF-ANN
approach.

Furthermore, it was demonstrated that the applicability of
the FF-ANN is not limited to analytic benchmark scenarios.
The presented implementation is capable of determining the
vibrational excitation energies of the hydrogen molecule H2

and its isotopologues HD and D2 in very good agreement with
experimental reference values. Additionally, the prominent
torsional tunnel splitting of the intramolecular torsion of the
OH-group in phenol could be resolved with exceptional accu-
racy without relying on any experimental input.

A remarkable feature regarding the flexibility of the FF-ANN
is strongly related to the presented architecture. The neural
network is able to perform calculations on any number of given
input tuples (xi,Vi), without constraining the resulting eigen-
states of the solution to a pre-specified output grid. Furthermore,
the approach presented within this work is not limited to an
equidistant potential input, which is a key advantage over the
majority of grid-based approaches such as the Numerov frame-
work and related methods. Thus, for the input of the PES only
selected supporting points have to be provided, preferably in
regions where the curvature in the eigenstate can be expected to
be low. For example, a possible strategy is to provide more points
near the respective minimum, while fewer are given at larger
displacements.

In general, grid-point approaches only provide output data
at the location of the associated input points. Hence, the
eigenstate information in between these grid points can only
be accessed via approximate interpolation schemes. In con-
trast, the output of the presented FF-ANN is represented as a
function of the neurons in the hidden layer. Therefore, no
interpolations have to be performed to access the output over
the entire domain providing also the possibility of extrapolation
outside the provided input without any further computational
cost. The presented one-dimensional implementation displays a
larger computational demand compared to grid-based methods

such as DVR or Numerov approach. However, when aiming
at a generalization of the framework to problems in higher
dimensions, the computational demand as well as memory
requirements of the grid-based problems increase by orders of
magnitude even when employing a sparse matrix represen-
tation,17,81 since in this case the problem needs to be repre-
sented in terms of block matrices. This gives the FF-ANN the
potential to provide a more efficient scalability compared to
these established methodologies, in particular when combined
with the advantages of providing a non-equispaced input
potential along with a wavefunction output over the entire
domain as discussed above.

Due to the FF-ANN’s high flexibility and wide applicability,
the extension to n-dimensional problems and the subsequent
application to fermionic states by including an antisymmetric
contribution in the loss function is considered as a promising
outlook for further development of the presented FF-ANN.
Comparing the methodology of the neural network to standard
quantum mechanical calculation schemes such as Hartree
Fock,3–6 which are based on pre-defined basis sets, a major
distinction can be identified. While the commonly employed
Gaussian-type basis functions are typically pre-parametrized for
each type of element and contribute only linearly within these
schemes by applying a linear combination approach, both the
SIREN and Gaussian activation functions of the presented FF-
ANN show no inherent parameterization and are optimized
regarding all contributing parameters. This property holds
great promise to consider the outlined FF-ANN implementation
as a primer for the formulation of novel ab initio calculation
schemes aimed at the treatment of many-electron systems.
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