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ation and yield prediction using
the differential reaction fingerprint DRFP

Daniel Probst, *a Philippe Schwaller b and Jean-Louis Reymond *a

Predicting the nature and outcome of reactions using computational methods is a crucial tool to accelerate

chemical research. The recent application of deep learning-based learned fingerprints to reaction

classification and reaction yield prediction has shown an impressive increase in performance compared

to previous methods such as DFT- and structure-based fingerprints. However, learned fingerprints

require large training data sets, are inherently biased, and are based on complex deep learning

architectures. Here we present the differential reaction fingerprint DRFP. The DRFP algorithm takes

a reaction SMILES as an input and creates a binary fingerprint based on the symmetric difference of two

sets containing the circular molecular n-grams generated from the molecules listed left and right from

the reaction arrow, respectively, without the need for distinguishing between reactants and reagents. We

show that DRFP performs better than DFT-based fingerprints in reaction yield prediction and other

structure-based fingerprints in reaction classification, reaching the performance of state-of-the-art

learned fingerprints in both tasks while being data-independent.
1 Introduction

Computational methods to predict the nature and outcome of
reactions are important tools to accelerate chemical
research.1–11 The nature of a reaction is well-described by its
name and class, where a reaction class is dened by the general
reaction-type and the participating chemical entities.12–14 Auto-
mating the classication of reactions provides a tool for
chemists to search databases and to quickly evaluate and opti-
mise a novel reaction based on the nature of similar reactions.
However, commercially available reaction classiers are based
on static expert-curated transformation rules, which makes
them prone to misclassications on noisy data sets, such as
reactions mined from literature.15,16 With the availability of ever
larger reaction data sets, the use of data-driven reaction clas-
sication schemes became feasible. Data-driven reaction clas-
sication consists of two parts: the embedding of reactions as
a vector, oen called a ngerprint, into a metric space; and the
training of machine-learning classiers on these reaction
ngerprints under the assumption they cluster according to
their classes. Among the drawbacks of this generation of data-
driven methods are the need to separate reactants from
reagents, requiring a mapping of atoms across the two sides of
a reaction equation, and a xed number of reaction participants
in order to embed the reactions in a meaningful way.17–19
, University of Bern, Freiestrasse 3, 3012

cb.unibe.ch; jean-louis.reymond@unibe.
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the Royal Society of Chemistry
Recently, these limitations were overcome by applying a natural
language processing-inspired transformer architecture as
a means to learn the vector-embedding of reactions.11 However,
this approach comes with several drawbacks as well: training
such a learned ngerprint requires large amounts of data of
acceptable quality, the trained model must be retrained when
new data becomes available, and the training and evaluation of
the model requires specialised hard- and soware to become
computationally tractable—posing a challenge to accessibility
and reproducibility. Due to the nature of articial neural
networks (ANNs), learned ngerprints are also challenging to
interpret. In the case of the transformer-based model intro-
duced by Schwaller et al., a careful analysis of attention weights
is required.11

An important outcome of a chemical reaction is its yield, the
percentage of successfully converted reactants into the desired
product. Computational methods for predicting such yields are
highly valuable in synthesis-planning, where high yields are of
paramount importance-especially in multi-step reactions.
Earlier work used physics-based descriptors or structure-based
molecular ngerprints to classify chemical reactions or
predict reaction yields.6,17,19 While physics-based descriptors
require compute-intensive calculations that involve the
approximation of the N-body wave function of molecules,
structure-based descriptors that are calculated from the
molecular graph fail to generalize between data sets.11 Similar to
the problem of reaction classication, the recent availability of
large data sets and the resurgence of ANNs, deep learning-based
learned ngerprints have been introduced as an alternative to
earlier methods, outperforming them by considerable
Digital Discovery, 2022, 1, 91–97 | 91
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Fig. 1 Encoding a Favorskii rearrangement as a DRFP fingerprint. (a)
The input reaction where the reactant is written to the left, the reagent
above, and the product to the right of the arrow. The respective
SMILES representation, which is used as the input is written below. (b)
DRFP does not separate reactants and reagents, a distinction which is
often ambiguous. This is reflected in the reaction drawing and the
associated SMILES, where the reagents have been moved to the
reactants. (c) The algorithm extracts all circular substructures with radii
of 0, 1, 2, and 3, as well as all rings from the reactants and products, and
stores them as two SMILES-encoded sets of molecular n-grams (d).
Next, the symmetric difference of the two sets is calculated and stored
as the final set. (e) This final set of molecular n-grams is then hashed to
a vector of 32-bit integers and (f) folded into a fixed-length binary
vector using a modulo operation.
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margins.10 However, these methods also suffer the same draw-
backs as their counterparts used for reaction classication.

Here we report a molecular ngerprint for chemical reac-
tions called differential reaction ngerprint (DRFP), which is
computed from circular substructures in the reaction SMILES
without the need for a training data set. Compared to the
approach introduced by Schneider et al.,17 DRFP does not apply
weights based on atom-mapping to differentiate between reac-
tants and reagents, does not require the calculation of molec-
ular properties for the reagents, and does not apply arithmetic
operations on individual molecular ngerprints, such as the
atom pair ngerprint. We show that DRFP performs as well as
learned ngerprints for the tasks of reaction classication and
yield prediction.

2 Results and discussion
2.1 Fingerprint design

Here we present the differential reaction ngerprint (DRFP) for
reaction search and categorization as well as yield prediction.
The reaction ngerprint DRFP borrows the creation of circular
substructures from a molecule and the subsequent hashing of
their SMILES representations from the chemical ngerprints
ECFP and MHFP, respectively (see Fig. 1 and molecular n-
grams), where circular substructures for a molecule are created
by extracting the neighbourhoods of a given radius r from the
molecular graph for each atom in the molecule.20,21 However, as
reaction SMILES consist of multiple molecules in the form
REACTANTS > REAGENTS > PRODUCTS (Fig. 1a), three addi-
tional steps have to be introduced: (I) the reagents are added to
the reactants, resulting in the representation REACTANTS +
REAGENTS [ PRODUCTS (Fig. 1b); (II) circular substructures
are extracted from each molecule (Fig. 1c), resulting in two sets
of molecular n-grams R and P (Fig. 1d, red and blue circles); (III)
the symmetric difference of the two sets S ¼ RDP is taken
(Fig. 1d, shaded areas of circles), hashed using an arbitrary hash
function with a sufficiently low collision probability (Fig. 1e),
and then folded into a x-length binary vector using the hash
function h(k) ¼ k mod d, where k ˛ S, and d is the desired
dimensionality of the ngerprint (Fig. 1f). Hashing and folding
are required to transform the set of SMILES, which can differ in
cardinality given different input reactions, into a binary vector
of predened dimensionality d that is independent from the
input reaction. Binary vectors require little space in memory
and can be processed by most machine learning methods.

Similar to the transformer-based learned ngerprint, DRFP
does not distinguish between reactants and reagents, and
accepts an arbitrary number of molecules on both sides of the
chemical equation. Given this conceptually simple ngerprint,
we show that its performance, when applied to tasks mentioned
in the introduction, rivals or even surpasses that of state-of-the-
art methods while using minimal non-specialised computa-
tional resources and no specialised hard- or soware (see
Computational resources). The ngerprint requires an unan-
notated, non-atom-mapped reaction SMILES as input and
embeds this molecular representation from reaction SMILES
space into an arbitrary low dimensional binary metric space
92 | Digital Discovery, 2022, 1, 91–97
through set operations and subsequent hashing and folding.
We show that a k-NN classier trained with DRFP outperforms
those trained on existing, non-learned ngerprints and rivals or
surpasses the performance of learned ngerprints without the
need for supervised learning pre-classication. Furthermore,
the ngerprint can act as an unbiased benchmark for new
methods. Finally, we show that this method, based on a simple
set operation and hashing scheme, can perform better than
both deep learning-based learned ngerprints and physics-
based descriptors in yield prediction tasks. We make the
ngerprint creation algorithm available as a pypi package
(drfp). The source code, data, and documentation are available
on GitHub (https://github.com/reymond-group/drfp).
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Reaction classification accuracy on the USPTO 1k TPL data set

USPTO 1k TPL Classier Accuracy CEN MCC

rxnfp 5-NN 0.989 0.006 0.989
AP3 256 5-NN 0.295 0.242 0.292
DRFP (subtraction) 5-NN 0.851 0.850 0.074
DRFP 5-NN 0.917 0.041 0.917
AP3 256 MLP 0.809 0.101 0.808
DRFP MLP 0.977 0.011 0.977
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2.2 Reaction classication

As a reaction classication task, we investigated the open-
source USPTO 1k TPL data set, which we previously intro-
duced.11 In USPTO 1k TPL, the reaction classes were generated
by extracting the 1000most common templates from the USPTO
data set.22 Atom-maps that are required to extract templates
were predicted using RXNMapper.23 The task is to predict the
corresponding template class given a chemical reaction.

The reaction classication was carried out using the k-
nearest neighbor classier based on faiss24 as dened by
Schwaller et al.11 Initially, different versions of DRFP were eval-
uated on the USPTO 1k TPL set using a number of different
congurations, namely for radius r ˛ {2, 3, 4} and dimension-
ality d ˛ {16, 32, 64, 128, 256, 512, 1024, 2048}. For all chosen
radii, the accuracy increases strongly between d¼ 16 to d¼ 128,
while only increasing slightly from d ¼ 256 to d ¼ 2048. The r ¼
2 variant performs better than r ˛ {3, 4} for d ˛ {16, 32} (Fig. 2a).
This is due to fewer collisions during mod hashing resulting
from fewer extracted sub-structures. Starting with d ¼ 256, the r
¼ 3 variant performs better than both the other variants.

Reducing the training set to 10 and 1% of its original size,
aside from a general reduction in accuracy, also leads to a better
relative performance of the r ¼ 2 variant across all dimensions
d (Fig. 2b and c). These results suggest that choosing the r ¼ 2
variant might be advantageous in low data settings, and there is
no value in choosing r¼ 4 over r ¼ 2 or r ¼ 3, independent from
d and the amount of available training data. However, as the r¼
3 variant performed best in the case of the complete training set
for high d, the r ¼ 3 and d ¼ 2048 variant is chosen for all
further benchmarks, including reaction yield predictions.

Table 1 shows the classication accuracy of DRFP on the
USPTO 1k TPL data set compared to the structure-based nger-
print AP3 256 and the learned ngerprint rxnfp.11,17 Evaluating
the k-nearest neighbour classication benchmark on the TPL
data set, DRFP outperforms the structure-based ngerprint AP3
256 by a factor of 3.1 and reaches 93% of the performance of the
learned ngerprint rxnfp. In addition, a variant of DRFP that
Fig. 2 Accuracy of the k-nearest neighbor classification on (a) the
entire TPL data set, (b) 10% of the data set, and (c) 1% of the data set
using DRFP fingerprints for dimensionality d ˛ {16, 32, 64, 128, 256,
512, 1024, 2048} and r ˛ {2, 3, 4}. The accuracy starts to plateau with
d ¼ 128 independently from the amount of training data. However,
a lower r increases the accuracy in low data settings and when a low
dimensionality d is chosen due to increased generality and fewer
collisions, respectively.

© 2022 The Author(s). Published by the Royal Society of Chemistry
mimics the subtraction method of AP3 256 is evaluated, per-
forming better than AP3 256 but not reaching the performance of
the symmetric difference-based variant of DRFP. Replacing the k-
nearest neighbour classier with a simple multilayer perceptron
(MLP) for DRFP and AP3 256, DRFP reaches 99% of the perfor-
mance of rxnfp, while AP3 256 only reaches 82%. This result
suggests that conceptual complexity, including learning, can be
factored out of ngerprint creation, moving it instead to the
classication task with a minor impact on classication perfor-
mance. A non-learned ngerprint has the advantages of reducing
bias and increasing the interpretability of results as each feature
can be mapped to one or more molecular substructures.

Inspired by the rxnfp-based reaction atlas from our previous
work, we created a similar TMAP25 for the Schneider 50k data set
using DRFP.11,17 The Schneider data set contains 50 000 reactions
that are distributed evenly over 50 reaction classes, as annotated
by the NameRxn tool.16 To analyse the performance of DRFP on
the data set, we ran a classication task using the architecture
and hyperparameters from theMLP used to classify the USPTO 1k
TPL data set. Aer training on 10 000 reactions and evaluating on
the remaining 40 000, the model reached an average classica-
tion accuracy of 0.956 (CEN ¼ 0.053, MCC ¼ 0.955). A confusion
matrix across the 50 reaction classes in the data set shows that the
high classication accuracy holds across the majority of the
classes (Fig. 3a). Similar to the rxnfp-based classier, our model
reaches the lowest accuracy for the methylation reaction class, as
methylation reactants oen cause misclassications.11 An
example standing out in Fig. 3a are methylations involving
iodomethane as a reagent with nitrogen-containing products
being classied as iodo N-alkylations. Indeed, Schneider et al.
also identied these classes as a source of misclassication and
attributed them to the fact that some of the ground truth class
assignments are ambiguous.17 The clustering of reactions by their
super-classes in the TMAP (Fig. 3b) further shows that DRFP is
well-suited for reaction classication tasks.
2.3 Reaction yield prediction

As a reaction regression task, we investigated yield prediction,
where, given a chemical reaction, the percentage of the product
that is formed compared to the theoretical maximum has to be
predicted. One of the best studied yield data sets comes from
a high-throughput experimentation study by Ahneman et al.,6

which contains the yields of 4608 palladium-catalysed Buch-
wald–Hartwig reactions with a xed reactant and varying
reagents. Numerous studies have previously used this data set
model to evaluate the different machine learning models and
Digital Discovery, 2022, 1, 91–97 | 93

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1dd00006c


Fig. 3 (a) An analysis of the per-class classification accuracy of an MLP model trained on DRFP shows that the high accuracy holds across most
reaction classes (correctly predicted percentage per class in parentheses). (b) A TMAP created from DRFP fingerprints shows reactions being
clustered by their respective super-class.

94 | Digital Discovery, 2022, 1, 91–97 © 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 2 R2 of yield prediction on Buchwald Hartwig reactions

R2 DFT6 Yield-BERT10 Yield-BERT (aug.)27 DRFP (xgboost)

Rand 70/30 0.92 0.95 � 0.005 0.97 � 0.003 0.95 � 0.005
Rand 50/50 0.9 0.92 � 0.01 0.95 � 0.01 0.93 � 0.01
Rand 30/70 0.85 0.88 � 0.01 0.92 � 0.01 0.89 � 0.01
Rand 20/80 0.81 0.86 � 0.01 0.89 � 0.01 0.87 � 0.01
Rand 10/90 0.77 0.79 � 0.02 0.81 � 0.02 0.81 � 0.01
Rand 5/95 0.68 0.61 � 0.04 0.74 � 0.03 0.73 � 0.02
Rand 2.5/97.5 0.59 0.45 � 0.05 0.61 � 0.04 0.62 � 0.04
Test 1 0.8 0.84 � 0.01 0.8 � 0.01 0.81 � 0.01
Test 2 0.77 0.84 � 0.03 0.88 � 0.02 0.83 � 0.003
Test 3 0.64 0.75 � 0.04 0.56 � 0.08 0.71 � 0.001
Test 4 0.54 0.49 � 0.05 0.43 � 0.04 0.49 � 0.004
Avg. 1–4 0.69 0.73 0.58 � 0.33 0.71 � 0.16
Avg. overall 0.75 � 0.12 0.76 � 0.17 0.778 � 0.18 0.786 � 0.14

Table 3 R2 of yield prediction on Suzuki Miyaura reactions and on the
USPTO data set that has been divided into gram scale and sub-gram
scale yield subsets

R2 Yield-BERT DRFP (gradient boost)

Suzuki Miyaura 0.81 (�0.01) 0.85 (�0.01)
USPTO (gram scale) 0.117 0.13
USPTO (sub-gram scale) 0.195 0.197

Fig. 4 Regression plots for both the random split (a–g) and the out-
of-sample (i–l) experiments. With few training data, the model
generally predicts yields that are too high for low-yield reactions and
yields that are too low for high-yield reactions (a–c). Further increase
in the size of the training data yields diminishing increases in accuracy
while the variance of accuracy between test sets decreases (d–h). In
the out-of-sample-tests where the splits are defined by the isoxazole
additives, performance varies heavily (i–l).
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representations (one-hot,26 physical,6 molecular19 and
learned10,11 descriptors). The data set contains 10 random splits
and 4 out-of-distribution test sets. In the out-of-distribution test
sets, the split is made on the additives, which strongly inuence
the reactivity. Hence, the models have to extrapolate to unseen
additives to perform well.

Comparing the yield prediction performance of DRFP to that
of learned and physical descriptor-based ngerprints shows
that this simple ngerprint is competitive, as it demonstrates
consistent performance on all test sets. Averaging the 11 tests
shown in Table 2, DRFP performs better than Yield-BERT, an
augmented version of Yield-BERT, as well as a DFT-based
method, in a yield prediction task on a data set of Buchwald
Hartwig reactions. It also performs better than rxnfp in yield
prediction of USPTO reaction data and a data set of Suzuki
Miyaura reactions (Table 3).

In order to predict reaction yields using DRFP, gradient
boosting with early stopping was chosen as a machine learning
technique. 10% of each training split was set aside and used to
evaluate for early stopping. Hyperparameter optimisation was
performed on ve random splits (70/30). The resulting perfor-
mance (R2) is then compared to the density functional theory
(DFT) based ngerprint with a random forest regressor by
Ahneman et al.,6 Yield-BERT, an extension of the learned rxnfp
ngerprint with a regression layer, and an augmented variant of
the latter (Table 2). The data set used is a collection of 3955 Pd-
catalysed Buchwald–Hartwig C–N cross-coupling reactions from
a high throughput experiment by Ahneman et al.6 For this data
set, 11 splits were dened; seven splits where the relative size of
the training set was decreased from 70 to 2.5% and four out-of-
sample splits based on isoxazole additives. DRFP performs
© 2022 The Author(s). Published by the Royal Society of Chemistry
better on the random splits than the DFT-based ngerprint with
random forests and Yield-BERT but is outperformed by the
augmented Yield-BERT by a narrow margin. In the out-of-
sample splits, DRFP performs better than the augmented
version of Yield-BERT and the DFT-based method, yet the non-
augmented Yield-BERT performs slightly better. When aver-
aging over all 11 tests, DRFP performs best. Fig. 4 shows the
regression plots for both the random split (a–g) and the out-of-
sample (i–l) experiments. Under a low data regime, the xgboost
model trained on DRFP tends to overestimate low-yield reac-
tions and underestimate high-yield reactions (Fig. 4a–c), while
the augmented Yield-BERT model generally predicts yields that
are too low for low-yield reactions and too high for high-yield
reactions.27 A similar tendency can be seen for the out-of-
sample splits (Fig. 4a–c).
Digital Discovery, 2022, 1, 91–97 | 95
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Box 1: Generating molecular n-grams

1: shingling ) empty set
2: for atom in molecule do
3: for radius ¼ 0, ., r do
4: Add substructure with radius rooted at atom to shingling as SMILES
5: end for
6: end for
7: for ring in sssr (molecule) do
8: Add substructure of ring to shingling as SMILES
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The performance of DRFP was further tested on a data set
containing the yields of Suzuki–Miyaura reactions from a high-
throughput experiment, and on reactions with associated yields
from the USPTO reaction data set. The USPTO yield data set was
split into a sub-gram and gram set to account for the different
distributions of yields in the two subsets, as described by
Schwaller et al.10 On both data sets, DRFP performed better than
Yield-BERT (Table 3). Similar to the Buchwald–Hartwig reaction
data, the difference between the two approaches is relatively
small. In the case of the USPTO data set, both methods perform
better on reactions with a sub-gram scale yield. A current limi-
tation of DRFP is that it fails to distinguish between a reaction
and its reverse, e.g. A + B/ C + D and C + D/ A + B. However,
as the direction of the reaction is usually implied by the pres-
ence and absence of reactants, we consider this to be an edge-
case that, if necessary, could be addressed in a specialised
variant of the ngerprint.

Overall, DRFP reaches a compelling performance in yield
prediction using a gradient boosting regressor that does not
require hyperparameter tuning between different sets.
9: end for
3 Conclusion

We have introduced a reaction ngerprint encoding scheme,
DRFP, based on a simple 4-step process comprised of extracting
circular n-grams, XORing, hashing, and folding. DRFP is
capable of reaching state-of-the-art performance without
extending the use of machine learning models from classica-
tion or regression tasks to the ngerprint creation task. Our
results show that SMILES-encoded molecular graphs contain
information that is sufficient for yield prediction by simple
machine learning models, and that the explicit calculation of
physics-based descriptors from the molecular graph as carried
out by Ahnemann et al. is not necessary for this prediction task.
While our method only slightly improves on the classication
and prediction accuracies of other state-of-the-art methods, its
value lies within its conceptual simplicity, low use of compu-
tational resources, and reproducibility. The ngerprint creation
algorithm is available as a pypi package (drfp). Source code and
documentation are available on GitHub (https://github.com/
reymond-group/drfp).
4 Methods
4.1 Computational resources

We ran all of the training runs as well as the evaluations of the
models on a DELL XPS Laptop with 16 GB of main memory, no
dedicated GPU, and an 11th Gen Intel(R) Core(TM) i7-1165G7@
2.80 GHz CPU.
4.2 Molecular n-grams

Molecular n-grams are generated from SMILES, text-based
encodings of the molecular graph, using the RDKit library.
Given a radius r, we iterate over the heavy atoms in an input
molecule and extract substructures centred on each atom with
radii 0 to r, where a radius of 0 is the single central atom. These
96 | Digital Discovery, 2022, 1, 91–97
extracted substructures are then encoded as SMILES. A visual
representation of this process for one atom in a molecule and r
¼ 3 is shown in Fig. 1c. We denote the SMILES encodings of
extracted substructures molecular n-grams in reference to n-
grams found in bioinformatics.28 In addition, rings from the
SSSR (smallest set of smallest rings) are extracted as n-grams as
well. Compared to the atom pair-based approach by Schneider
et al.,17 the n-grams-based ngerprint also captures stereo-
chemistry, which can be dened using the SMILES notation.
The pseudo-code for this process is shown in Box 1.
4.3 Gradient boosting

For regression by gradient boosting, we used the Python library
xgboost. Hyperparameter tuning was carried out on the rand 70/
30 set of the Buchwald–Hartwig reaction data set. We applied
the same hyperparameter values (n_estimators ¼ 999 999,
learning_rate ¼ 0.01, max_depth ¼ 15, min_child_weight ¼ 8,
colsample_bytree ¼ 0.2125, subsample ¼ 1) in all uses of
xgboost. For each test, 10% of the training data were randomly
selected as the validation set an removed from the training set.
The validation data sets were used as evaluation sets for early
stopping (20 rounds for all data sets with the exception of the
USPTO, data for which 10 rounds were used to speed up the
calculation).
4.4 k-Nearest neighbours classier

The k-nearest neighbour classier was implemented according
to Schwaller et al.11 using faiss with k ¼ 5.
4.5 Multilayer perceptron classier

In addition to DRFP + 5-NN classier, DRFP + multilayer per-
ceptron (MLP) classier was applied to the USPTO 1k TPL data
set. The MLP was implemented using Tensorow 2.4.1 and
consists of an input layer the size of the input vector (2,048),
a dense hidden layer of size 1664 and a tanh activation function,
and a dense output layer with a somax activation function. The
loss function was sparse categorical cross-entropy. Adam was
used as an optimiser. The model was trained over 10 epochs
with a batch size of 64 on a CPU.

For the evaluation of AP3 256, the number of units in the
hidden layer was changed to 1024, and the model was trained
for 100 epochs.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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4.6 Visualisations

All plots were created using the Python library matplotlib,29 the
confusion matrix for the Schneider 50k classication task
(Fig. 3a) was generated using the Python package pycm,30 and
the TMAP coordinates for the Schneider 50k classication task
(Fig. 3b) was created using the TMAP Python library.25

Data availability

The source code, data and processing scripts for this paper,
including the scripts to generate the ngerptins and the models
are available at https://github.com/reymond-group/drfp. An
release associated with the manuscript has been uploaded to
Zenodo under the record https://zenodo.org/record/
5268144#.YSeDXFuxWAk with DOI: 10.5281/zenodo.5268144.
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Biomed., 2006, 81, 137–153.

29 J. D. Hunter, Comput. Sci. Eng., 2007, 9, 90–95.
30 S. Haghighi, M. Jasemi, S. Hessabi and A. Zolanvari, PyCM:

Multiclass confusion matrix library in Python, Open J.,
2018, 3, 729–729.
Digital Discovery, 2022, 1, 91–97 | 97

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1dd00006c

	Reaction classification and yield prediction using the differential reaction fingerprint DRFP
	Reaction classification and yield prediction using the differential reaction fingerprint DRFP
	Reaction classification and yield prediction using the differential reaction fingerprint DRFP
	Reaction classification and yield prediction using the differential reaction fingerprint DRFP
	Reaction classification and yield prediction using the differential reaction fingerprint DRFP
	Reaction classification and yield prediction using the differential reaction fingerprint DRFP

	Reaction classification and yield prediction using the differential reaction fingerprint DRFP
	Reaction classification and yield prediction using the differential reaction fingerprint DRFP
	Reaction classification and yield prediction using the differential reaction fingerprint DRFP
	Reaction classification and yield prediction using the differential reaction fingerprint DRFP
	Reaction classification and yield prediction using the differential reaction fingerprint DRFP
	Reaction classification and yield prediction using the differential reaction fingerprint DRFP
	Reaction classification and yield prediction using the differential reaction fingerprint DRFP
	Reaction classification and yield prediction using the differential reaction fingerprint DRFP

	Reaction classification and yield prediction using the differential reaction fingerprint DRFP
	Reaction classification and yield prediction using the differential reaction fingerprint DRFP
	Reaction classification and yield prediction using the differential reaction fingerprint DRFP
	Reaction classification and yield prediction using the differential reaction fingerprint DRFP




