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Xenobiotic metabolism has evolved as a key protective system of organisms against potentially harmful

chemicals or compounds typically not present in a particular organism. The system's primary purpose is

to chemically transform xenobiotics into metabolites that can be excreted via renal or biliary routes.

However, in a minority of cases, the metabolites formed are toxic, sometimes even more toxic than the

parent compound. Therefore, the consideration of xenobiotic metabolism clearly is of importance to the

understanding of the toxicity of a compound. Nevertheless, most of the existing computational

approaches for toxicity prediction do not explicitly take metabolism into account and it is currently not

known to what extent the consideration of (predicted) metabolites could lead to an improvement of

toxicity prediction. In order to study how predictive metabolism could help to enhance toxicity

prediction, we explored a number of different strategies to integrate predictions from a state-of-the-art

metabolite structure predictor and from modern machine learning approaches for toxicity prediction.

We tested the integrated models on five toxicological endpoints and assays, including in vitro and in vivo

genotoxicity assays (AMES and MNT), two organ toxicity endpoints (DILI and DICC) and a skin

sensitization assay (LLNA). Overall, the improvements in model performance achieved by including

metabolism data were minor (up to +0.04 in the F1 scores and up to +0.06 in MCCs). In general, the

best performance was obtained by averaging the probability of toxicity predicted for the parent

compound and the maximum probability of toxicity predicted for any metabolite. Moreover, including

metabolite structures as further input molecules for model training slightly improved the toxicity

predictions obtained by this averaging approach. However, the high complexity of the metabolic system

and associated uncertainty about the likely metabolites apparently limits the benefit of considering

predicted metabolites in toxicity prediction.
Introduction

The metabolic system has evolved as the primary defense
system against xenobiotic, potentially toxic substances. Its
protective function is based on the biotransformation of xeno-
biotics into more hydrophilic and, hence, more rapidly excret-
able compounds (metabolites). However, a minority of
metabolites produced by the metabolic system are more active
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than their parent compound (which is exploited by the prodrug
concept) or even toxic.1

The important role of metabolism in the toxicity of small
organic molecules highlights the need for the consideration of
metabolic pathways also in the computational prediction of
toxicity. However, so far only a few in silico models for toxicity
prediction have integrated metabolism information. For
example, Dmitriev et al.2 built linear models for the prediction
of rat acute toxicity using self-consistent regression, thereby
considering parent compounds and measured metabolites.
More specically, they trained a model on about 3000 parent
compounds and used it to predict the LD50 value of 37 test
parent compounds and their measured metabolites (around
200 known metabolites). To calculate the nal LD50 value,
different strategies for averaging the LD50 values predicted for
the parent compounds and their metabolites were investigated.
However, only minor improvements in the overall performance
of the model were achieved compared to using only the pre-
dicted probability of the parent compounds (R2 increased from
0.78 to 0.81 and RMSE remained at 0.49). In a more recent study
© 2022 The Author(s). Published by the Royal Society of Chemistry
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from the same research group,3 classication models based on
a Bayesian approach were trained on parent compounds with
annotated bioactivity data for a variety of endpoints. The
bioactivity of a compound was then calculated as the maximum
probability predicted among the parent compound and its
measured metabolites. For the 28 endpoints in the “toxic and
adverse effects” category (with data sets ranging from 15 to 5583
toxic and non-toxic compounds), an increase of up to 0.14 in the
precision and 0.16 in the recall during leave-one-out cross-
validation (CV) was obtained on average (compared to taking
the predicted probability of the parent compound only). These
results show that the consideration of metabolism in prediction
models can substantially improve the identication of poten-
tially toxic compounds.

Data on measured metabolites can be valuable for esti-
mating the toxicity of compounds but such approaches rely on
the availability of experimental data. For this reason, in silico
approaches to predict the likely metabolites of substances
based on molecular structures are in high demand. Several
predictors of this kind are available today, including Bio-
Transformer,4 CyProduct,5 GloryX,6 Meteor Nexus,7 SyGMA,8

TIssue MEtabolic Simulator (TIMES)9 and XenoSite.10

In previous works, researchers from the Laboratory of
Mathematical Chemistry (LMC) have combined in silicomodels
for toxicity prediction with their TIMES metabolite predictor.
The rst model from LMC taking into account the parent
compound and its metabolites (predicted with the S-9 metab-
olism simulator of TIMES) was developed for the prediction of
in vitro mutagenicity (i.e. outcomes of the AMES assay).11,12 This
AMES model was based on decision trees trained on the reac-
tivity prole of compounds and labeled a compound as toxic if
any of its predicted metabolites were predicted as toxic. The
evaluation of the model on the training data showed that the
metabolism-aware approach resulted in lower sensitivity (0.77)
and specicity (0.74) compared to the performance of the model
considering only the parent compound (sensitivity 0.82; speci-
city 0.94). The lower sensitivity obtained by this approach may
be related to the fact that compounds without any predicted
metabolites were automatically classied as inactive. Another
drawback of this approach is the decrease in specicity due to
false positive predictions derived from non-mutagenic parents
with metabolites predicted as mutagenic. In addition to the
training data, the model was evaluated on a test set of 36
mutagenic compounds, obtaining a sensitivity of 0.58 (corre-
sponding to 21 correctly classied compounds). Despite the
overall drop in performance, the metabolism-aware approach
correctly identied compounds of which their mutagenicity is
related to the metabolites formed.

Two further decision tree models from LMC targeting skin
and respiratory sensitization, respectively,13,14 also included the
evaluation of several properties of predicted metabolites (e.g.
reactivity prole or ability to cross-link proteins) to classify the
parent compounds as non-sensitizers or sensitizers (further
distinguished between strong or weak sensitizers in the case of
the skin). The evaluation of this skin sensitization model on the
training data yielded 80% correct predictions for strong sensi-
tizers, 34% for weak sensitizers and 72% for non-sensitizers,
© 2022 The Author(s). Published by the Royal Society of Chemistry
while the respiratory sensitization model obtained a sensi-
tivity of 0.89 and a specicity of 0.52.

A further model of this kind from LMC was reported for the
in vivo micronucleus test (MNT).15 By comparing the assay
outcomes of the (in vitro) AMES assay with a liver genotoxicity
and an MNT in vivo assays, bioactivated compounds and “bio-
exhausted” compounds (i.e. highly reactive compounds inter-
acting with off-targets before reaching the target) were analyzed
to establish in vitro–in vivo relationships. Based on this analysis,
an in vivo rat liver metabolism predictor reproducing phase II
conjugation reactions and detoxication pathways was devel-
oped. The toxicity prediction model of MNT applied on the
predicted metabolites (derived with the in vivo metabolite
predictor) reached a sensitivity of 0.82 and a specicity of 0.61
on the training data.

The performance of this MNT model, as well as the skin and
respiratory sensitization models, was not compared to the
performance of models not considering predicted metabolites.
Therefore it is not possible to conclude on the benets or
drawbacks of these metabolism-aware models compared to
models considering only parent compounds.

Overall, these recent reports on efforts to enhance toxicity
prediction of small organic molecules by the consideration of
their biotransformation provide valuable insights and starting
points for the further development of methods for computa-
tional toxicology. Although metabolism is key to understanding
the pharmacokinetics and toxicity of compounds, the inherent
uncertainty of the complex metabolic data could also hinder the
improvement of models integrating this information. So far, the
existing works on this topic are either based on only a few
parent compounds and their measured metabolites, or focused
on a single endpoint, making it therefore difficult to derive
more general conclusions.

With this work, we aim to provide a systematic study on how,
and to what extent, the consideration of metabolism can help
the in silico prediction of toxicity. In order to cover a wide
chemical space and make models applicable to new, untested
compounds, we referred to the use of predicted metabolites.
Five relevant toxicological endpoints and assays were selected
for investigation: the in vitro AMES assay (consideringmetabolic
activation with S-9 liver extract), the in vivo micronucleus test
(MNT), a skin sensitization assay (the murine local lymph node
assay, LLNA), and the drug-induced liver injury (DILI) and
cardiological complications (DICC) endpoints.16–18 All selected
endpoints and assays have in common that their outcome is
known to be related, to some extent, to the biological activity of
metabolites. Positive outcomes of the genotoxicity assays (AMES
and MNT) and the skin sensitization assay (LLNA) can be
produced by reactive metabolites that bind to DNA or skin
proteins. The in vitro AMES assay (considering metabolic acti-
vation) was specically chosen to evaluate the impact of adding
metabolism information to a less complex endpoint (that is less
dependent on pharmacokinetic variables than other in vivo
endpoints). Moreover, reactive metabolites are also known to be
a recurrent trigger of idiosyncratic adverse effects of drugs (i.e.
unpredictable and infrequent adverse reactions oen unrelated
to dose).16 The role of metabolites in the two organ toxicity
Digital Discovery, 2022, 1, 158–172 | 159
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Table 1 Sizes of the data sets used in this work

Endpoint

Number of

RatioToxic compounds
Non-toxic
compounds

AMES 1908 3153 1 : 2
MNT 315 1460 1 : 5
DILI 435 226 2 : 1
DICC 965 2243 1 : 2
LLNA 521 749 1 : 1
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endpoints (DILI and DICC), oen triggered by idiosyncratic
adverse reactions, was hence also investigated.17,18

Materials and methods
Data sets

AMES. AMES assay data were collected from the Chemical
Carcinogenesis Research Information System (CCRIS),19 the
Genetic Toxicology Data Bank (GENE-TOX)20 and the U.S.
National Toxicology Program (NTP; Table S1†).21 These data
sources were selected because they provide information about
the consideration of metabolic activation in the assay setup.
Since the inuence of the metabolites on the toxic effect was
investigated in this study, only results obtained from the AMES
assay accounting for metabolic activation were considered.

More specically, the CCRIS database (stored in XML le
format) was queried for mutagenicity studies based on the
AMES assay, resulting in 67 907 study results (i.e. experimental
assay outcomes on a set of compounds). For extracting these
studies, the word “ames” was queried in the test system eld
(“mstu/tsstm”) of the XML le. The retrieved AMES data were
further ltered for experiments that test for metabolic activa-
tion, by querying the data for the words “liver”, “hepatocytes”,
“s9” and “s-9” in the “matvm” eld. The resulting data (38 267
study results) were further curated by removing any inconclu-
sive or potentially ambiguous results. This was achieved by
removing studies with results labeled as “weak” or as both
“positive” and “negative” (e.g. “positive (retest was negative)”).
Also inconclusive results caused by precipitating compounds
were removed from the data set by querying the labels “nega-
tive” and “precipitation” (e.g. “negative, precipitation at 3
highest doses.”).

The remaining data (38 200 study results) were labeled as
“toxic” if the results eld matched the word “positive”, or “non-
toxic” if the results eld matched the word “negative”. To obtain
only one result per compound, the data were deduplicated
based on the CAS number and any compounds with conicting
class labels were removed from the data set. This resulted in
4721 compounds with AMES data.

The GENE-TOX database was obtained from PubChem.22 The
different genotoxicity study types contained in this database
were queried to select only those studies belonging to the AMES
assay (i.e.matching the “Histidine reverse gene mutation, Ames
assay” assay type). From the 1057 compounds with AMES data
only the 238 results considering metabolic activation (i.e.
matching “with metabolic activation” in the “activation” eld)
were conserved. The activity labels were used as is.

The NTP AMES data set contains 64 246 study results.
Results from assay setups without S-9 activation and from
assays with microsome-activating conditions of less than 5%
were removed from the data set. Results without an activity label
reported in the study conclusion and results labeled as
“equivocal” were removed from the data set. These ltering
steps resulted in 40 859 study results. Study outcomes with
a “positive” or “weakly positive” study conclusion label were
annotated as “toxic”, and study outcomes with the “negative”
conclusion label as “non-toxic”. Compounds were deduplicated
160 | Digital Discovery, 2022, 1, 158–172
based on the CAS number, and duplicate compounds with
conicting labels were removed from the data set. In contrast to
the above data sets, the NTP set did not include SMILES strings
for the tested compounds. The SMILES strings were obtained by
querying PubChem via the PUG REST interface23 using the CAS
numbers provided with the NTP data set. This resulted in 1959
compounds annotated with AMES results.

The data from the three databases were merged based on the
canonical SMILES (see section Structure preparation for
details). Compounds with identical canonical SMILES but
differing AMES activity labels (72 compounds) were removed
from the data set. This resulted in a total of 5061 compounds
(1908 toxic and 3153 non-toxic compounds; Table 1).

Micronucleus test. MNT data was collected, as described by
Garcia de Lomana et al.,24 from (i) the European Chemicals
Agency (ECHA; available at the eChemPortal),25 (ii) the Euro-
pean Food Safety Authority (EFSA), curated by Benigni et al.,26

and (iii) the work of Yoo et al.27 The nal, processed and
deduplicated MNT data set consists of a total of 1775
compounds (315 toxic and 1460 non-toxic compounds; Table
1).

Drug-induced liver injury. The data set for the DILI endpoint
was obtained from the veried DILIrank data (i.e. the revised
version of their original DILIrank data set) of the U.S. Food and
Drug Administration (FDA).28 These data were derived from the
observed hepatotoxicity of FDA-approved drugs described in
drug labeling documents as well as evidence in literature. The
drugs in this data set are classied as “most-DILI-concern”,
“less-DILI-concern”, “no-DILI-concern” and “ambiguous-DILI-
concern”. For this study, binary class labels were assigned: 182
“most-DILI-concern” and 271 “less-DILI-concern” compounds
were labeled as “toxic”, 268 “no-DILI-concern” compounds as
“non-toxic”, and 239 “ambiguous-DILI-concern” compounds
were removed from the data set. The nal, processed and
deduplicated DILI data set consists of a total of 661 compounds
(435 toxic and 226 non-toxic compounds; Table 1).

Drug-induced cardiological complications. The data set for
DICC was compiled, as described by Garcia de Lomana et al.,24

from the work of Cai et al.29 The DICC data set covers ve
cardiological complications: hypertension, arrhythmia, heart
block, cardiac failure and myocardial infarction. Compounds
were labeled as “toxic” if they were active in at least one of the
ve cardiological endpoints and labeled as “non-toxic” other-
wise. The nal, processed and deduplicated DICC data set
© 2022 The Author(s). Published by the Royal Society of Chemistry
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contains a total of 3208 compounds (965 toxic and 2243 non-
toxic compounds; Table 1).

Murine local lymph node assay. The data set for the LLNA
was obtained from the work of Wilm et al.30 The binary activity
labels from this data set were used as is, resulting, aer pro-
cessing and deduplication in a total of 1270 compounds (521
toxic and 749 non-toxic compounds; Table 1).

Structure preparation

The standardization of the molecular structures followed the
same procedure as described by Garcia de Lomana et al.24 (with
one exception, indicated below). Briey, the SMILES strings
were standardized with the ChemAxon Standardizer31 node in
KNIME32 to remove solvents and salts, annotate aromaticity,
neutralize charges andmesomerize structures (i.e. returning the
canonical resonant form of the molecule). Moreover,
compounds containing any element other than H, B, C, N, O, F,
Si, P, S, Cl, Se, Br and I as well as multi-component compounds
were removed from the data set. Lastly, compounds with fewer
than four heavy atoms or with molecular weight greater than
1000 Da (this criterion has been introduced for the current work
only) were ltered out from the respective data set.

For the remaining standardized structures, canonical
SMILES were derived with RDKit33 in KNIME. These canonical
SMILES were used for the deduplication of compounds in each
data set. Compounds with identical canonical SMILES but
conicting labels for an endpoint were removed from the
respective endpoint data set.

Descriptor calculation

Molecular structures were encoded with count-based Morgan
ngerprints with a radius of 2 bonds and a length of 2048 bytes
(computed with the “RDKit Count-Based Fingerprint” node in
KNIME) plus 119 1D and 2D physicochemical property
descriptors (computed with the “RDKit descriptor calculation”
node in KNIME). These RDKit physicochemical property
descriptors capture properties such as the number of occur-
rences of a specic atom type, bond or ring, as well as global
molecular properties such as polarity and solubility. Moreover,
up to two acidic and two basic pKa values were calculated for
each molecule with the “pKa” KNIME node from ChemAxon.34

For molecules with fewer than two acidic or basic groups, the
remaining pKa feature values were lled with the mean value of
the respective data set.

Model development and evaluation

Prior to model development, a variance lter was applied to all
input features to remove those with a variance of less than
0.001. The remaining features were scaled with the Stand-
ardScaler class of scikit-learn35 by subtracting the mean and
scaling to unit variance. Both variance ltering and scaling were
performed individually for each data set.

The models were evaluated within a 5-fold cross-validation
(CV) framework by splitting the data into 80% training and
20% test set with the StratiedShuffleSplit class of scikit-learn.
To account for data imbalance, oversampling with SMOTENC
© 2022 The Author(s). Published by the Royal Society of Chemistry
(an extension of SMOTE that handles categorical features)36 was
performed on the training set (with a ratio of samples in the
minority class with respect to the majority class of 0.8). All
molecular ngerprints and discrete RDKit descriptor features
(e.g. number of hydrogen bond donors or ring count) were
specied as categorical features in SMOTENC.

For each training set, random forest (RF) models were
trained with the RandomForestClassier of scikit-learn, with
default parameters, except for num_trees ¼ 1000, min_sam-
ples_leaf ¼ 3 and class_weights ¼ “balanced”.

For evaluating the performance of the models, the precision,
recall, F1 score andMatthews Correlation Coefficient (MCC) were
calculated on the respective test set of the CV. The precision
measures the proportion of true positive predictions out of all
positive predictions, while the recall measures the proportion of
correctly predicted positive samples. The F1 score is the
harmonic mean of precision and recall. The MCC takes into
consideration all four classes of predictions (true positive, true
negative, false positive and false negative predictions) and ranges
between�1 and +1 (being +1 the perfect prediction). Both the F1
score and the MCC are robust against data imbalance.

Differences in the performance between models were eval-
uated with the nonparametric Mann–Whitney U test.37 For
comparing a pair of models, the values for a given performance
metric obtained in the different CV runs were used as input for
the “mannwhitneyu” function implemented in SciPy.38 The p-
value threshold of 0.05 was applied to consider a difference as
signicant. Due to the negligible number of signicant results,
a correction of the p-value accounting for the number of
comparisons performed was deemed to be not necessary.

Metabolite prediction with Meteor Nexus

The metabolites were predicted with Meteor Nexus,7,39 a leading
soware package for metabolism prediction that is widely
applied in the industries. Meteor Nexus covers a broad range of
approximately 500 manually curated biotransformations gath-
ered from several public sources and proprietary data sets from
member organizations of Lhasa Limited.

In this study, starting from the prepared molecular struc-
tures (canonical SMILES), four generations of metabolites were
predicted and subsequently scored with the “Site of Metabolism
(SOM) Scoring” method,40 which is the default scoring method
of Meteor Nexus. Other processing options were retained at
their default setting. The score given to eachmetabolite is based
on experimental data for compounds that are chemically related
to the query compound around the site of metabolism. The
molecular structures of the predicted metabolites were
prepared and standardized following the same procedure
described for the parent compounds (starting from the SMILES
string output by Meteor Nexus).

Predicted metabolite information as input descriptors for
parent compounds

Two different approaches for including metabolite information
as input features in machine learning were explored (Fig. 1A). In
the rst approach, the above-mentioned molecular ngerprints
Digital Discovery, 2022, 1, 158–172 | 161
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Fig. 1 Overview of the different strategies explored to integrate predicted metabolite information into the in silico models.
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and physicochemical properties for each parent compound
were concatenated with chemical descriptors calculated for the
top-5 predicted metabolites of that parent compound (if avail-
able; metabolite scoring with Meteor). The chemical descriptors
of the metabolites comprise count-based Morgan ngerprints
(radius of 2; length of 1024 bytes) and all of the 200 physico-
chemical property descriptors of RDKit listed under “rdkit.Ch-
em.Descriptors._descLis”. For parent compounds with fewer
than ve predicted metabolites, the empty values of the Morgan
ngerprint vectors from the remaining metabolites were lled
with zeros (indicating the absence of the structural feature) and
the features corresponding to RDKit descriptors were lled with
the mean value of the whole data set for that feature. Models
were trained combining the molecular descriptors of the parent
compounds with (a) Morgan ngerprints of the metabolites, (b)
RDKit physicochemical property descriptors of the metabolites
or (c) a combination of both.

In the second approach, the above-mentioned ngerprints
and physicochemical properties for each parent compound
were concatenated with a count-based “biotransformation
ngerprint”. The biotransformation ngerprint encodes the
number of occurrences of a particular biotransformation (as
labeled by Meteor Nexus) in the predicted metabolic tree. For
each endpoint data set only those biotransformation predicted
for at least one parent compound were included in the nger-
print. The feature length of the ngerprint ranges from 238 for
the LLNA data set to 330 for the AMES data set. In addition to
models based on the complete descriptor vector, models were
also built on subsets of features selected prior to model
building (in an attempt to reduce noise related to the sparsity of
the biotransformation ngerprints). The feature selection was
conducted on all descriptors (including ngerprints and phys-
icochemical descriptors) and using the LassoCV implementa-
tion from scikit-learn within a 5-fold CV. Any feature with an
output coefficient of zero was removed from the data prior to
the training of the RF models.
162 | Digital Discovery, 2022, 1, 158–172
Combination of the probabilities of toxicity predicted for
a parent compound and its predicted metabolites

Overall predicted probability of a compound's toxicity. An
overall probability for the parent compounds' toxicity was
calculated by combining the predicted probabilities for the
parent compounds and their predicted metabolites.

Two types of models were used for predicting the probability
of toxicity:

(i) Baseline model: without the consideration of metabolites
(i.e. trained only on the parent compounds).

(ii) Metabolism-aware model: with the consideration of
metabolites (i.e. trained on the parent compounds and labeled
metabolites).

The molecular descriptors dened in the “Descriptor calcu-
lation” section were used as input features for the parent
compounds and metabolites in both types of models. For the
metabolism-aware model the labels of the metabolites were
assigned according to the workow described in “Assignment of
toxicity labels to metabolites”. The predicted probabilities for
the parent compounds (with the baseline model) were used as
a baseline result to analyze whether model performance
improves when considering metabolites for the prediction of
toxicity.

In an attempt to obtain the most accurate predicted proba-
bility for the parent compounds and metabolites, two
approaches combining the baseline model and metabolism-
aware model were investigated:

(a) Baseline-approach: baseline model for the prediction of
both parent compounds and metabolites.

(b) Hybrid-approach: baseline model for the prediction of
parent compounds plus metabolism-aware model for the
prediction of metabolites.

To obtain the overall probability of toxicity of a compound (i.e.
with the consideration of its metabolites), the selected model was
applied to calculate the probability of toxicity of the parent
compound and that of the predicted metabolites (up to four
© 2022 The Author(s). Published by the Royal Society of Chemistry
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generations; Fig. 2). In addition, a number of different strategies
for ltering predicted metabolites according to their relevance to
toxicity were explored by a grid search. These lters are based on
calculated log P, the Meteor score and/or predicted phase II
metabolism, and are intended to remove any non-toxic (since
readily excretable or unlikely) metabolites. The investigated
threshold values, below which metabolites were removed, are
0 and 3 for log P, and 100, 200 and 300 for the Meteor score. When
the phase II metabolism lter was applied, metabolites formed by
phase II reactions, as well as thosemetabolites further transformed
by phase II reactions, were ltered out. A grid search over the 23
possible combinations of lters (always including the possibility of
not ltering for one or more properties) was performed.

The predicted probabilities of toxicity calculated for the
selected metabolites were then combined with the predicted
probability for the respective parent compound. For the
combination of the predicted probabilities of toxicity, four
strategies were explored (Fig. 1B):

(1) Strategy 1: mean predicted probability over all compounds
(i.e. the parent compound and all predicted metabolites).

(2) Strategy 2: median predicted probability over all
compounds (i.e. the parent compound and all predicted
metabolites).
Fig. 2 Workflow for calculating the overall probability of toxicity. The
baseline model or the metabolism-aware model are used to predict
the probability of toxicity of parent compounds and predicted
metabolites independently. The predictions for a compound and its
predicted metabolites are then combined into an overall probability to
obtain the toxicity label.

© 2022 The Author(s). Published by the Royal Society of Chemistry
(3) Strategy 3: maximum predicted probability among the
parent compound and its predicted metabolites.

(4) Strategy 4: mean between the predicted probability of the
parent compound and the maximum probability among all
predicted metabolites.

If the overall probability was above 0.5, the compound was
predicted as toxic and otherwise as non-toxic.

Assignment of toxicity labels to metabolites. In preparation
of the use of the predicted metabolites for the generation of the
metabolism-aware models, the metabolites were assigned
toxicity labels according to the following procedure, individu-
ally for each endpoint data set:

(1) All metabolites with identical canonical SMILES as
a parent compound were assigned the toxicity label of the
parent compound.

(2) All metabolites not covered by step 1 and originating from
non-toxic parent compounds were labeled as “non-toxic”.

(3) All metabolites not covered by step 1 and originating from
toxic parent compounds were compared with the already
labeled metabolites. If an identical metabolite (based on the
canonical SMILES) was labeled in one of the previous steps (as
toxic or non-toxic), the same label was assigned.

(4) The remaining unlabeled metabolites from toxic parent
compounds were labeled as “toxic” (Table 2).

Data splitting. All models were trained within a 5-fold CV
framework. In order to ensure comparability between the base-
line models and the metabolism-aware models, the same splits
(with regard to parent compounds) were used in both cases.

To ensure that no data leak occurred in the metabolism-
aware model due to the presence of identical metabolites in
the training and test sets, the following procedure was con-
ducted on each split:

(1) Stratied shuffle split was applied on the parent
compounds (see Model development for details).

(2) The metabolites from the parent compounds in the test
and training set were collected independently.

(3) The metabolites in the training set, which were also
present in the test set (as parent or metabolite), were removed
from the training set.

(4) The compounds of the training set were deduplicated based
on the canonical SMILES (duplicates may appear due to repeated
metabolites or metabolites identical to parent compounds).
Machine learning methods for further modeling optimization

RF, gradient boosted trees and k-nearest neighbors models with
optimized hyperparameters were also trained in the hybrid-
approach. The scikit-learn implementations ‘GradientBoos-
tingClassier’ and ‘KNeighborsClassier’ were used for training
the gradient boosted trees and k-nearest neighbor models,
respectively. The hyperparameter optimization was conducted
on the training set within a grid search evaluated on an inner 5-
fold CV over the hyperparameters shown in Table 3.

A further set of molecular descriptors, the Continuous and
Data-Driven molecular Descriptors (CDDD),41 was employed as
input for RF models. These descriptors are derived from
a neural network trained to translate between two syntactically
Digital Discovery, 2022, 1, 158–172 | 163
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Table 2 Overview of the metabolites labeled in each step of the labeling workflow

Endpoint
Number of
metabolites

Percentage of metabolites

With the same molecular
structure as a parent
compound (step 1) (%)

Originating from
non-toxic parent
compounds (step 2) (%)

Originating from toxic parent
compounds already labeled
as toxic (step 3) (%)

Labeled as toxic
as part of step 4 (%)

AMES 86 629 5.19 59.03 3.43 32.34
MNT 27 105 2.11 81.53 2.22 14.14
DILI 10 730 0.40 32.25 4.60 62.75
DICC 46 881 2.21 67.43 4.82 25.54
LLNA 16 842 3.46 51.62 5.66 39.26

Table 3 Grid of hyperparameters applied for each method

Method Hyperparameter Values

Random forest n_estimators 400, 700, 1000
Min_samples_leaf 1, 2, 3
Class_weight ‘Balanced’

Gradient boosted trees n_estimators 200, 400, 600
Min_samples_leaf 1, 2, 3
Learning_rate 0.1, 0.01

K-nearest neighbors n_neighbors 3, 5, 8
Weights ‘Uniform’, ‘distance’
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different molecular representations. In order to make the
translation, the model rst learns to compress meaningful
information for the representation of molecules into a vector.
This vector can hence be used as a data-driven molecular
descriptor, offering a conceptually different method to repre-
sent molecules, compared to the xed Morgan ngerprints and
RDKit physicochemical descriptors.
Results and discussion
Analysis of the chemical space of the parent compounds and
their predicted metabolites

To understand the nature and composition of the metabolites
predicted for the parent compounds in each data set, several
characteristics of the predicted metabolites were analyzed.

The predicted metabolites result from phase I or phase II
reactions (considering up to four generations of metabolites).
Table 4 Overview of the number of predicted metabolites for the paren

Endpoint

Mean number of
metabolites
per compound

Median number of
metabolites
per compound

AMES 17.34 10
MNT 15.52 9
DILI 16.28 12
DICC 14.74 10
LLNA 13.38 8

164 | Digital Discovery, 2022, 1, 158–172
The number of unique metabolites for the individual parent
compounds (aer removing duplicate metabolites from the
respective metabolic tree) varied greatly (from 0 to 828).
However, the median number of predicted metabolites among
all parent compounds of an endpoint-specic data set was
between 8 and 12 in all cases (Table 4).

By comparing the molecular properties of the parent
compounds and their predicted metabolites (Fig. 3 reports on
the AMES and MNT data sets; the graphs for the other
endpoints are provided in Fig. S1†) we found the latter to have,
averaged over all endpoints, a higher molecular weight (+43.9
Da) as well as a larger polar surface area (+44.4 �A2). The pre-
dicted metabolites also tended to have a lower log P value than
the parent compounds (�1.5; averaged over all endpoints).
These shis are primarily a result of the addition of polar
groups to the parent compounds, which make themmore water
soluble and therefore easier to excrete. This observation is in
concordance with the higher number of hydrogen bond donors
and acceptors observed in metabolites compared to parent
compounds (1.8 more hydrogen bond donors and acceptors on
average; Fig. 3). Overall, the shis in the physicochemical
property space between the parent compounds and the pre-
dictedmetabolites are consistent with those observed for parent
compounds and experimentally detected metabolites,42 a fact
that supports the relevance of the predicted metabolites.
Analysis of metabolites originating from toxic and non-toxic
parent compounds

The toxicity observed for a compound may be a direct result of
the parent compound or of one or several of its metabolites.
t compounds in each endpoint data set

Percentage of parent
compounds
without any
predicted metabolite

Percentage of parent
compounds with fewer than
ve predicted metabolites

1.28 19.67
1.66 20.90
0.30 11.53
0.88 15.94
0.87 23.75

© 2022 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1dd00018g


Fig. 3 Comparison of the physicochemical properties of the parent compounds (blue) and predicted metabolites (orange) represented in the
AMES and MNT data sets.
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Understanding the differences in the metabolites formed by
toxic and non-toxic compounds may therefore help in their
discrimination. However, when comparing the physicochemical
© 2022 The Author(s). Published by the Royal Society of Chemistry
properties of the (predicted) metabolites originating from toxic
and from non-toxic parent compounds, we did not detect any
substantial, systematic differences. This is not surprising
Digital Discovery, 2022, 1, 158–172 | 165
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because toxic effects may be related to a single metabolite,
which is difficult to detect.

Most notable was a minor shi in the log P distribution (see
Fig. S2† for an example of the log P distributions of AMES and
MNT): the log P of metabolites originating from non-toxic
compounds was generally lower (log P of 0.8; averaged over all
metabolites of all endpoints) than for metabolites from toxic
compounds (log P of 1.2; averaged over all metabolites of all
endpoints). The higher log P of metabolites originating from
toxic parent compounds could be related to the observed
toxicity, as these metabolites are more likely to evade excretion
and to cross membranes.

Another aspect that could differ from toxic to non-toxic
compounds are the types of biotransformations that they are
undergoing. Testa et al.43 observed that some reactions are more
prone to generate reactive or toxic metabolites than others. They
showed that toxic metabolites are mainly formed by redox
reactions, followed by conjugation reactions and, lastly,
hydrolysis. Hence, the type of biotransformation that
a compound undergoes may be an indicator of the compound's
toxicity. To investigate whether the types of biotransformations
in the metabolic trees of toxic and non-toxic compounds differ,
the percentage of parent compounds of each toxicity class
undergoing each biotransformation (as labeled by Meteor
Nexus) was calculated for all endpoints.

We observed that some biotransformations occur more
frequently in toxic parent compounds than in non-toxic ones
(and vice versa). However, there was no single biotransforma-
tion observed to be related to the same toxicity class for all
endpoints (see Fig. S3† for the examples of AMES andMNT). For
instance, “aromatic reductive dehalogenation” is predicted
more frequently for toxic compounds in theMNT assay (than for
non-toxic compounds in this assay) while it is more oen
observed for non-toxic compounds in the AMES assay (than for
toxic compounds in this assay).

In an analogous way, the enzymes catalyzing biotransfor-
mations in the metabolic tree of toxic and non-toxic compounds
were also investigated. Similar results as for the biotransfor-
mations were observed, but, in this case, the differences
between classes were smaller (i.e. there were few enzymes
metabolizing a higher percentage of toxic or non-toxic
compounds).
Baseline performance of the models

To enable the (later) quantication of the added value of
metabolism prediction in toxicity prediction we generated
baseline models trained exclusively on physicochemical prop-
erties of the parent compounds (encoded by count-based
Morgan ngerprints and RDKit physicochemical property
descriptors; see Materials and methods section for details).

Themean F1 score obtained by the baselinemodels within 5-
fold CV ranged from 0.64 (for MNT) to 0.82 (for AMES; Table 5).
The superior performance of the AMES baseline model (F1
score at least 0.09 higher than for any other baseline model) is
attributed to the larger size of the data set (it is the biggest data
set considered in this study with at least 1853 compounds more
166 | Digital Discovery, 2022, 1, 158–172
than any other data set) as well as the nature of the endpoint:
the AMES test is an in vitro assay carried out on bacteria, hence
representing a more simple problem than the in vivo endpoints
based on living mammals and considered in this work. Among
the in vivo endpoints, the model for the LLNA assay, a skin
sensitization assay measuring cellular proliferation in the
draining lymph nodes of mice, obtained the highest mean F1
score (0.73). The lowest F1 score (0.64) was obtained by the MNT
baseline model. The precision and recall yielded by each
endpoint-specic model were on a similar level in all cases,
indicating a balanced ratio of false positive and false negative
predictions.
Metabolite information as input descriptors for parent
compounds

Molecular descriptors for metabolites. One or several
chemical features present in the metabolites could be associ-
ated with the toxic effect observed for a parent compound. In an
attempt to include this information in the model, molecular
descriptors of the ve best-scored predicted metabolites were
included as further input features for model building. These
molecular descriptors include (a) count-based Morgan nger-
prints, (b) RDKit physicochemical property descriptors and (c)
a combination thereof (see Materials and methods for details).
In cases where fewer than ve metabolites were predicted for
a parent compound (between 12% and 24% of the compounds;
Table 4), the remaining features were lled with zeros (in the
case of the Morgan ngerprints) or with the mean value of the
feature (in the case of the RDKit property descriptors). The
trainedmodels were evaluated by comparing the predicted label
for each test parent compound with their experimental toxicity
label within 5-fold CV.

When comparing the performance of these models con-
taining metabolite information with that of the baseline
models, no improvements of performance were observed (Table
S2†). The fewminor gains in performance did not exceed a value
of +0.04 among all evaluated metrics and were not signicant
(at a p-value of 0.05; Table S3†). In several cases the addition of
descriptors for the predicted metabolites led to small decreases
in performance (up to a value of �0.09 among all metrics).

Biotransformation ngerprint. Our analysis of the types of
biotransformations recorded for toxic and non-toxic
compounds (see “Analysis of metabolites originating from
toxic and non-toxic parent compounds”) found indications that
this information could be utilized to enhance toxicity predic-
tion. Therefore, we derived a biotransformation ngerprint
which encodes the number of occurrences of each biotrans-
formation in the predicted metabolic tree of a compound. In
combination with the molecular descriptors calculated for the
parent compounds, this biotransformation ngerprint was
used for the training of machine learning models (see the
Materials and methods section for details).

Within the 5-fold CV framework, the performance of these
models was comparable to the baseline performance of each
endpoint. For all evaluated metrics the difference from the
baseline performance did not exceed �0.01 (Tables S4 and
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 5 Performance of the baseline models within 5-fold cross-
validationa

Endpoint F1 score MCC Precision Recall

AMES 0.82 (�0.01) 0.65 (�0.03) 0.83 (�0.01) 0.82 (�0.01)
MNT 0.64 (�0.03) 0.29 (�0.05) 0.67 (�0.02) 0.62 (�0.03)
DILI 0.68 (�0.04) 0.37 (�0.08) 0.69 (�0.04) 0.68 (�0.04)
DICC 0.69 (�0.02) 0.39 (�0.04) 0.71 (�0.02) 0.69 (�0.03)
LLNA 0.73 (�0.02) 0.47 (�0.04) 0.74 (�0.02) 0.73 (�0.02)

a Numbers reported in parentheses are the standard deviations.
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S5†). The lack of an improvement in performance may be
related to the sparsity of the biotransformation ngerprint:
most of the biotransformations were not predicted to take
place on more than 10% of the compounds. This low coverage
of compounds may not be sufficient to enhance toxicity
prediction. In order to remove possible noise caused by the
sparse ngerprints, feature selection with a lasso model was
applied to all input features (in order to discard irrelevant
features prior to the training of the RF model). However, no
relevant improvement in the performance compared to the
baseline models was observed when feature selection was
included prior to model training (F1 score deviations ranged
from �0.05 to +0.01 among all endpoints).
Fig. 4 Overview of the steps (i–iv) of the workflow for combining the p
showing the variations investigated at each stage. A grid search among a
identify the optimum solution.

© 2022 The Author(s). Published by the Royal Society of Chemistry
Combination of predicted probabilities for parent compounds
and metabolites

Another approach for considering metabolite information in
toxicity prediction is the calculation of an “Overall predicted
probability of toxicity” by combining the probabilities predicted
for the parent compounds and their metabolites. A related
approach (although based on distinct modeling methods and
utilizing measured metabolites; explored for different
endpoints) was applied, with some success, by Dmitriev et al.2

and Filimonov et al.3 (see the Introduction section for details).
In this work, we explored four strategies to combine

prediction probabilities:
Strategy 1: mean of the probabilities of the parent compound

and all predicted metabolites.
Strategy 2: median probability of the parent compound and

all predicted metabolites.
Strategy 3: maximum probability among the parent

compound and all predicted metabolites.
Strategy 4: mean between the predicted parent compound

probability and the maximum probability among all metabo-
lites (i.e. the probability of the metabolite that the model deems
most likely to be toxic, among all predicted metabolites).

To evaluate model performance, the obtained “Overall
probability of toxicity” (derived by the different strategies) was
compared to the experimental toxicity label of each parent
redicted probability of parent compounds and predicted metabolites,
ll combinations of parameters at the different stages was conducted to

Digital Discovery, 2022, 1, 158–172 | 167
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compound (within 5-fold CV; see the “Data splitting” section for
details). Note that all predicted metabolites (not only the ve
best-scored metabolites) were considered here.

The four strategies were applied to two approaches that
differ in the underlying models used for calculating the pre-
dicted probabilities (Fig. 4ii). In the baseline-approach, we
applied the baseline models on the test parent compounds and
their metabolites and combined them with each of the above-
mentioned strategies. With strategy 1, strategy 2 and strategy
3, a drop in F1 score and MCC was observed for all investigated
endpoints. Strategies 1 and 2 especially showed a decrease in
recall (up to �0.17), which was sometimes compensated, to
some extent, by an increased precision (up to +0.04), while the
opposite effect was observed for strategy 3 (Table S6†).

Out of the four strategies, the best classication performance
was obtained, in general, with strategy 4. However, the gain in F1
scores compared to the respective baseline models was 0.02 or
less (and hence not signicant, according to the Mann–Whitney
U test; see Table S7† for details). Compared to strategies 1 and 2,
strategy 4 may provide a well-balanced compromise between an
improved capacity to detect toxicity related to metabolism and
noise introduced by the predicted metabolites. A similar result
was also observed in the study by Dmitriev et al.,2 where several
strategies to combine the predicted LD50 value (for acute rat
toxicity) for parent compounds and their measured metabolites
were investigated (mean of the predicted LD50 of all metabolites;
mean of the predicted LD50 of the parent compound and all
metabolites; maximum predicted LD50 among all metabolites;
mean of the predicted LD50 of the parent compound and the
most toxic metabolite). In agreement with our observations,
Dimitriev et al. obtained their best results for the prediction of
acute rat toxicity when taking the mean of the predicted LD50 for
the parent compound and that of the most toxic metabolite. Also
the increase in model performance (compared to taking the
prediction of the parent compound only) in their case was minor
(+0.03 in R2 and no differences in RMSE).

In the hybrid-approach, the predicted probabilities of the
metabolites to be toxic were calculated with a dedicated model.
We addressed the possibility that the absence of relevant
improvement by the four above-mentioned strategies was due to
a decient coverage of the chemical space of the metabolites by
the baseline model. The differences observed in the chemical
space of parent compounds and metabolites (see the section
“Analysis of the chemical space of the parent compounds and
predicted metabolites” for details) could indicate that some
metabolites fall outside the applicability domain of the models
trained only on parent compounds (baseline models).

To expand the chemical space coverage of the models and try
to improve the toxicity predictions for the metabolites, models
including metabolites as input data (i.e. with their molecular
descriptors as input features and the assigned toxicity as class
label) were also developed (metabolism-aware models). The
toxicity label of the metabolites for these models was assigned
following the workow described in the section “Assignment of
toxicity labels to metabolites”. Instead of applying this
168 | Digital Discovery, 2022, 1, 158–172
straightforward labeling approach, the toxicity labels of the
metabolites could have also been predicted with the baseline
model. However, we did not investigate this option further as it
would increase the complexity of the workow and does not t
the purpose of this study. By labeling the metabolites we pretend
to analyze whether the reason for the small model performance
improvement is due to poor quality of the predicted probabilities
of toxicity of the metabolites. Hence, predicting the toxicity label
of the metabolites would suffer from the same limitation. We
acknowledge that any manual or automatic metabolite labeling
approach is a limitation of this study. The only way to overcome
this limitation is the use of a large dataset of metabolites with
measured toxicities. However, to our best knowledge no such
dataset is in existence in the public domain.

With the hybrid-approach we aim to obtain the best
predictions for each compound by predicting the probability of
the parent compound to be toxic with the baseline model, and
the probability to be toxic of the individual metabolites with the
metabolism-aware model. Note that we also investigated the
possibility to predict both the toxicity of the parent compound
and the metabolites with the metabolism-aware model, but we
did not see a relevant improvement compared to the baseline-
or hybrid-approaches in this case and therefore did not further
investigate this direction.

Compared to the baseline-approach, the hybrid-approach
yielded better results in toxicity prediction. However, with
improvements in the F1 scores and MCCs not exceeding 0.03
and 0.05, respectively, these results are not signicantly better
(based on the Mann–Whitney U test) than those obtained with
the baseline model (Table 6). Few signicant improvements
were recorded for precision or recall for the MNT and DICC
models (Table S8†).

The decrease in performance with strategies 1 and 2
(considering the predictions of all metabolites) in combination
with the hybrid-approach was in general not as drastic as with
the baseline-approach. This may indicate that the predicted
probabilities for the metabolites were more accurate and did
not include as much noise in the overall prediction. Again in
this case, the best performance was observed with strategy 4
(averaging the probability of the parent compound and the
most toxic metabolite), with only minor improvements in the F1
score of up to +0.03. Only for the DILI endpoint the F1 score
decreased (by �0.02) with this strategy.

In addition, we analyzed whether the improvements in model
performance may be limited due to the consideration of metab-
olites that are irrelevant to the observed toxic effect. In order to
reduce the noise in the prediction caused by these metabolites,
we applied several metabolite lters removing predicted metab-
olites that (a) have a low Meteor Nexus prediction score, (b) have
a low calculated log P, or (c) are predicted to be further metab-
olized by conjugating enzymes (Fig. 4i).

Metabolites predicted with a low score by Meteor Nexus may
be less likely to be observed in vivo and hence irrelevant to
toxicity prediction. Metabolic reactions oen lead to
compounds with low log P values, making them more water
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 6 Average performance within 5-fold cross-validation for the different combinations of predicted probabilities with the hybrid-approach

Endpoint Combinationa F1 score MCC Precision Recall

AMES Baseline performance 0.82 (�0.01) 0.65 (�0.03) 0.83 (�0.01) 0.82 (�0.01)
Strategy 1 0.80 (�0.01) 0.61 (�0.02) 0.82 (�0.01) 0.80 (�0.01)
Strategy 2 0.80 (�0.01) 0.61 (�0.02) 0.81 (�0.01) 0.79 (�0.01)
Strategy 3 0.79 (�0.02) 0.60 (�0.03) 0.79 (�0.01) 0.81 (�0.01)
Strategy 4 0.83 (�0.02) 0.65 (�0.03) 0.82 (�0.02) 0.83 (�0.02)

MNT Baseline performance 0.64 (�0.03) 0.29 (�0.05) 0.67 (�0.02) 0.62 (�0.03)
Strategy 1 0.61 (�0.03) 0.31 (�0.05) 0.75 (�0.02) 0.59 (�0.03)
Strategy 2 0.61 (�0.04) 0.29 (�0.06) 0.74 (�0.03) 0.59 (�0.03)
Strategy 3 0.65 (�0.02) 0.31 (�0.03) 0.64 (�0.02) 0.67 (�0.02)
Strategy 4 0.66 (�0.03) 0.33 (�0.06) 0.69 (�0.04) 0.65 (�0.03)

DILI Baseline performance 0.68 (�0.04) 0.37 (�0.08) 0.69 (�0.04) 0.68 (�0.04)
Strategy 1 0.66 (�0.03) 0.33 (�0.06) 0.67 (�0.03) 0.66 (�0.03)
Strategy 2 0.66 (�0.03) 0.32 (�0.06) 0.67 (�0.03) 0.65 (�0.03)
Strategy 3 0.59 (�0.05) 0.31 (�0.07) 0.73 (�0.03) 0.60 (�0.03)
Strategy 4 0.66 (�0.03) 0.37 (�0.05) 0.73 (�0.02) 0.65 (�0.03)

DICC Baseline performance 0.69 (�0.02) 0.39 (�0.04) 0.71 (�0.02) 0.69 (�0.03)
Strategy 1 0.68 (�0.02) 0.40 (�0.03) 0.75 (�0.02) 0.66 (�0.01)
Strategy 2 0.68 (�0.02) 0.39 (�0.04) 0.73 (�0.02) 0.66 (�0.02)
Strategy 3 0.68 (�0.01) 0.38 (�0.01) 0.67 (�0.00) 0.70 (�0.00)
Strategy 4 0.72 (�0.02) 0.44 (�0.03) 0.72 (�0.01) 0.72 (�0.02)

LLNA Baseline performance 0.73 (�0.02) 0.47 (�0.04) 0.74 (�0.02) 0.73 (�0.02)
Strategy 1 0.70 (�0.02) 0.42 (�0.04) 0.73 (�0.02) 0.70 (�0.02)
Strategy 2 0.71 (�0.03) 0.44 (�0.05) 0.73 (�0.02) 0.71 (�0.03)
Strategy 3 0.69 (�0.01) 0.42 (�0.03) 0.71 (�0.02) 0.71 (�0.01)
Strategy 4 0.74 (�0.02) 0.48 (�0.05) 0.74 (�0.02) 0.74 (�0.03)

a The baseline performance corresponds to models considering only parent compounds. Strategies 1, 2 and 3 correspond to taking the mean,
median and maximum predicted probability among the parent compound and its metabolites, respectively. Strategy 4 corresponds to the mean
between the predicted probability for the parent compound and the highest probability predicted for any of its metabolites.
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soluble and therefore easier to excrete. These metabolites are
also unlikely to cross membranes and they are less likely to
induce toxic effects. Along the same lines, phase II metabolism
facilitates the conjugation of compounds with polar moieties,
making them more water soluble. It has already been observed
that only few conjugation reactions lead to toxic metabolites.43

Following this reasoning, several thresholds for removing
metabolites based on their Meteor Nexus score as well as
calculated log P values were investigated. Also strategies to
remove metabolites formed by phase II reactions, or remove
metabolites which are further transformed by phase II reactions
were explored. A grid search over all ltering possibilities (and
all above-mentioned approaches and strategies) was conducted
on each data set to obtain the most favorable combinations.

In most cases, reducing the number of metabolites consid-
ered for the prediction based on these parameters did not yield
better models. Among the ve top-ranked models (based on the
F1 score) of the grid search, only in a few cases, minor
improvements of up to +0.06 among all metrics and endpoints
were observed (Table S9†). However, these performance
improvements were not signicant for any endpoint compared
to the baseline performance (Table S10†).
Exploration of further modeling approaches with the hybrid-
approach

To evaluate whether the predictions may be improved by opti-
mizing the modeling approach, different machine learning
© 2022 The Author(s). Published by the Royal Society of Chemistry
modeling methods with optimized hyperparameters (within
a grid search; see Materials and methods section for details)
and a further, distinct set of descriptors (CDDD descriptors)41

were investigated at the example of the best performing
approach, namely the hybrid-approach.

The F1 score obtained for the following machine learning
setup combinations is shown in Table S11:† RF, gradient boosted
trees and k-nearest neighbors, each with and without the use of
oversampling with SMOTENC (based on Morgan ngerprint and
RDKit physicochemical descriptors as input descriptors). More-
over, the performance of RFmodels trained on CDDDdescriptors
(including oversampling with SMOTE) are also provided.

The results obtained with these new models do not deviate
from those obtained with the models generated with the initial
modeling setup (i.e. RF with xed hyperparameters; combination
of Morgan ngerprints and RDKit physicochemical descriptors;
oversampling with SMOTENC; results reported in Table 6): the
largest observed improvement in F1 scores yielded by the new
models was of just +0.01. The conclusions derived in the
‘Combination of predicted probabilities for parent compounds
and metabolites’ section remain consistent with the new results.
The explicit incorporation of predicted metabolite information
in toxicity prediction models did not signicantly improve the
toxicity predictions of these models either. Although there was
oen no benet compared to the baseline models (or the benet
was small), the best strategy for combining the predicted prob-
abilities of parent compounds and metabolites was, also in this
case, strategy 4 (taking the mean between the predicted
Digital Discovery, 2022, 1, 158–172 | 169
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probability of the parent compound and the maximum proba-
bility among all predicted metabolites).

Conclusions

In this work we systematically investigated a variety of strategies
to enhance toxicity prediction by taking into account xenobiotic
metabolism. Our results show that none of these strategies
produces models that consistently outperform others. The best
results were obtained by averaging the probability of toxicity
predicted for the parent compound and the maximum proba-
bility of toxicity predicted for any metabolite. This approach
yielded models with F1 scores up to +0.03 higher than the
baseline models disregarding metabolism.

We observed that models trained exclusively on the parent
compounds oen produce poor predictions for the metabolites
as their chemistry oen differs. Including labeled metabolites
in the training set of the models slightly improved the predic-
tions of toxicity for the metabolites and hence the overall result
of averaging the probabilities of toxicity for parent compounds
and their metabolites. In some cases, discarding unlikely or
water-soluble metabolites slightly improved the predictions (F1
score up to +0.04 higher than for the baseline models).

While metabolites can be key to detecting and under-
standing toxicity, they also add a new layer of complexity. The
metabolites formed, their concentrations in the organism, and
their excretion kinetics are oen unknown. Therefore,
including metabolism data in toxicity prediction poses veritable
challenges. The fragile balance between added signal and
added noise, when working with predicted metabolites in
machine learning, may explain the small differences in perfor-
mance of the models including metabolism information for
toxicity prediction compared to the baseline models. It is clear
from these results that there is still a long way to go in the
development of sufficiently accurate models for metabolism
prediction which, in turn, can boost toxicity prediction.
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Data availability

All data sets used in this study are publicly available. Due to
licensing reasons, the original data and the predicted metabo-
lites cannot be provided with this publication. However,
a detailed protocol for the reproducible collection and pre-
processing of the data utilized in this work is provided in the
Materials and methods section. Moreover, Table S1† contains
links for downloading the original data and complementary
information about the data sets. Also detailed KNIME work-
ows used for preprocessing each data set and calculating the
chemical descriptors of the parent compounds are provided in
the ESI.† The workows and parameters used for developing the
models and necessary for reproducing the results are described
in detail in the Materials and methods section. The code used
for model training and evaluation can be accessed at https://
github.com/marinaglr/metabio.
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E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris,
A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van
Mulbregt, A. Vijaykumar, A. P. Bardelli, A. Rothberg,
A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem,
C. N. Woods, C. Fulton, C. Masson, C. Häggström,
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