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enabling high-throughput and
remote operations at large-scale user facilities†

Tatiana Konstantinova, ‡a Phillip M. Maffettone, ‡a Bruce Ravel, b

Stuart I. Campbell, a Andi M. Barbour a and Daniel Olds *a

Imaging, scattering, and spectroscopy are fundamental in understanding and discovering new functional

materials. Contemporary innovations in automation and experimental techniques have led to these

measurements being performed much faster and with higher resolution, thus producing vast amounts of

data for analysis. These innovations are particularly pronounced at user facilities and synchrotron light

sources. Machine learning (ML) methods are regularly developed to process and interpret large datasets

in real-time with measurements. However, there remain conceptual barriers to entry for the facility

general user community, whom often lack expertise in ML, and technical barriers for deploying ML

models. Herein, we demonstrate a variety of archetypal ML models for on-the-fly analysis at multiple

beamlines at the National Synchrotron Light Source II (NSLS-II). We describe these examples

instructively, with a focus on integrating the models into existing experimental workflows, such that the

reader can easily include their own ML techniques into experiments at NSLS-II or facilities with

a common infrastructure. The framework presented here shows how with little effort, diverse ML models

operate in conjunction with feedback loops via integration into the existing Bluesky Suite for

experimental orchestration and data management.
1 Introduction

The past decade has seen a surge in the use of articial intel-
ligence (AI) and machine learning (ML) across the sciences.
These tools have become essential for interpreting increasingly
large datasets, which are simply too massive to be effectively
analyzed manually. Not only has AI enabled interpretation of
these datasets, it has increased the pace at which decisions are
made,1 and in some cases outperformed human expertise.2

Applications of AI have enabled signicant strides in physics,3

chemistry,4,5 materials science,6 and biology.7 It is thus unsur-
prising that light sources and central facilities have begun to
look toward these technologies for active decision making,
experimental monitoring, and guided physics simulations.8–10

In the following, we outline the challenges that are necessi-
tating the adoption of AI, describe how to navigate the barrier to
entry as a scientist, demonstrate some archetypal uses of AI,
and exemplify their facile deployment at a variety of experi-
ments across a central facility using the Bluesky soware suite.11

The pressing need to create new tools to optimize human
effort at synchrotron light sources stems from the rate of data
ew York 11973, USA. E-mail: dolds@bnl.

logy, Gaithersburg, MD 20899, USA

mation (ESI) available. See

the Royal Society of Chemistry
production from high-throughput and automated experiments
in concert with traditionally slow, post hoc analysis techniques.
In 2021, it is estimated that the National Synchrotron Light-
source II (NSLS-II) will create many petabytes of data, with all US
Department of Energy light sources producing data in the exa-
byte (1 billion gigabytes) range over the next decade.12 The
developments of new tools are underscored by the increasing
transition to partially or fully autonomous operation for safe
and effective experiments. Regardless of operating mode,
beamline use remains a supply-limited resource for researchers.
As such, there has been a surge of interest in optimal use of
experimental resources,1,13 especially with beamline science.14

As key emerging technologies, AI and ML enable experiments at
the light source to be performed more efficiently, intelligently,
and safely.8 Unfortunately, the need for these tools comes with
a mismatch of expertise: the predominant users of beamlines
are experts in the materials of interest or analytical techniques,
and not necessarily in AI or computer science.

Another substantive barrier to utility is real-time integration
of AI with experimental workows. Even with accessible and
interpretable AI, the high-volume data acquisition from auto-
mated and remote experiments is creating a necessity for on-
the-y monitoring and model predictions. As experiments are
commonly programmed to run ahead of time, measurements
will continue indenitely or on a xed schedule, unless inter-
rupted by the experimenter. These naively automated experi-
ments suffer from several common pitfalls, including:
Digital Discovery, 2022, 1, 413–426 | 413
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allocating excessive measurement time to uninteresting
samples, neglecting pivotal changes in the experiment and
continuing measurements during operational failures. Real-
time monitoring would solve these challenges by enabling
researchers (or algorithms) to re-allocate measurement time to
promising samples or parameters on-the-y, as well as to stop or
revisit an experiment that is not producing a fruitful measure-
ment. The initial steps toward this monitoring have been
implemented as data reduction techniques that operate on raw
data streams using analytical or empirical computation. These
techniques take a high dimensional data stream (2-d, 3-d, time
series, etc.) and reduce it to a lower dimensional and inter-
pretable signal.15,16 Given the surge of new techniques and
accessible soware frameworks for developing AI models,17–19

more general interfaces are necessary to enable the growing
suite of AI tools to be accessible at beamlines.

It is worth dening what exactly is the relationship between
AI, ML, deep learning, and other learning methods. Articial
intelligence is an overarching term for any technique used to
have machines imitate or approximate human intelligence and
behavior.3 A subset of these techniques falls under the deni-
tion of machine learning, which is essentially applied statistics
for making accurate predictions. To this end, a simple and
common form of ML is linear regression: tting a line to a set of
points, to subsequently use that line as a prediction for new
points. The line of best t serves as a ML model for the function
of those points, to be validated when applied to new data. A
particularly strong model will be predictive for new data beyond
the domain of the initial training data (i.e. extrapolative). More
complex statistical models exist, and these make up the toolkit
of ML. A subset of these models are considered ‘deep’ models,
which are capable of learning new mappings between ordinate
spaces by usingmultiple layers that progressively extract higher-
level features from the raw data.3 Critical to scientist are the
kinds of data the model consumes, and the nature and uncer-
tainty of outputs, inference, visualizations, or directives it
produces.

While these contemporary methods are t to solve the
immense data challenges presented during routine beamline
scientic operations, there continues to exist conceptual and
technical barriers the hinder beamline users and staff from
readily integrating these methods. The technical barriers to
entry occur with model building and model deployment. The
former challenge is addressed with the many accessible
resources and platforms for designing AI solutions, of which we
favor the Python ecosystem.3,17,20 It is a common case that
a domain-specic AI model is developed prior to an experiment
or through collaboration with technical experts external to an
experiment. In this circumstance, facile integration at the
beamline is necessary for utilizing the model during the
experiment. Through three distinct relevant challenges, we will
explore the different paradigms of what can be learned, with
a limited focus on model details, and various operating modes
of deployment. Our principal objective is to enable the reader to
understand when and how to consider AI—or alternatively
when it serves a limited purpose for their experiment—and to
414 | Digital Discovery, 2022, 1, 413–426
demonstrate recent technological innovations that facilitate the
use of AI at modern beamlines.

One challenge can be ensuring researchers applying these
methods are accessing the best tool for their job. Thematically,
we will focus on three domains of ML: (i) unsupervised learning
as a mechanism for analyzing and visualizing unlabeled data;
(ii) anomaly detection for identifying rare events or points in
a data stream; (iii) and supervised learning for predicting
functional labels or values associated with a data stream.
Unsupervised learning algorithms identify and react to
commonalities in data without knowledge of the class, category,
label for each datum. These approaches have been effective in
reducing the dimensionality of a large dataset, and segregating
physical response functions such as diffraction data21 and other
spectra.22,23 Anomaly, or outlier, detection, is a reframing of
unsupervised learning for identifying rare events that differ
signicantly from the majority of the data. The detected outliers
can be scientically intriguing as in the case of gravitational
waves,24 or experimentally detrimental, as in the case of system
failure.25 Supervised learning predicts output labels that can be
discrete (classication), such as identifying phases of matter in
a dataset,26 or a continuous response signal (regression) like
temperature or energy.6

Herein, we demonstrate the utility of diverse machine
learning methods for real-time monitoring of streaming data
from three distinct experimental challenges at the National
Synchrotron Light Source II (NSLS-II) at Brookhaven National
Laboratory (BNL). We describe these use cases pedagogically, so
that they may be instructive to operators and users of the
facility, opening with general instructions to overcome
conceptual hurdles with developing an AI solution. In Section 3,
we demonstrate on-the-y data segregation during a total scat-
tering measurement, splitting a 1-d dataset into relevant
components using unsupervised dimensionality reduction.
This is a common challenge when conducting a diffraction
experiment across phase transitions (e.g. over a composition or
temperature gradient), and allows a researcher to focus on
regions near the transition. Then, in Section 4 we explore the
challenge of agging a measurement when something is
different from the norm established based on historical data.
This unusual behavior can be caused by experimental artifacts
during data collection, e.g. change of beam brightness, beam-
induced sample damage, or by novel observations, e.g.
a phase transition or a resonant excitation. This is particularly
relevant in measurements with very sparse data points24 or for
quality control.27 Finally, in Section 5 we solve the operational
challenge of identifying failed measurements as they occur
using supervised learning. In the case of X-ray absorption
spectroscopy (XAS), there is a well dened feature in
a measurement that when not present, indicates a failed
measurement. By labeling a small set of experimental data,
a supervised classication approach is shown to correctly clas-
sify new measurements. We close with a discussion on how
each of these approaches is technically implemented and
comment on the infrastructure of the Bluesky project11 for
enabling everyday use of AI at central research facilities.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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2 Pipeline for developing an AI
solution

While we employed a variety of different modelling techniques
and data sources in the following, the general approach (Fig. 1)
to developing an AI-based solution is similar throughout. The
rst step is dening the problem. By understanding which of
the archetypal domains the problem falls into and the key
performance metrics, one may dene the approach to take with
the data as well as the suite of models available to explore.
Secondly, the process of data ingestion needs to be well dened.
Bluesky's data model and Databroker are an example11 of
a community supported framework that are suitable for solving
the engineering challenge8 of interaction with data for AI-
enhanced experiments.

The next steps in the owchart are related to data collection
and handling. The size of the dataset for a model development
depends on the problem, the intended model and data avail-
ability. It is important that the training data captures the
diversity and relative frequency of the intended use cases. Many
models benet from having large amount training data, which
are available at synchrotron user facilities. However, labeled
data remain a limited resource. The cost of labeling additional
data should be weighted against the expected performance
increase in each particular case. Having too large dataset can
also pose a problem for model development. Some algorithms,
like anomaly detection, do not perform well for very large data
sets. More generally, ability of a model to learn new information
saturates at certain amount of data, while demand for compu-
tational resources keep growing. Datasets used in this work are
less than 1000 points.

Once access to the historical or active data stream is estab-
lished, it can be prepared as input for the AI algorithms. In
some cases, this requires only reformatting or rescaling the data
so that it is tailored for specic AI algorithms, where in others
this can require domain-specic data processing, such as
Fig. 1 Flowchart describing the pipeline for developing an AI solution
for a beamline science problem.

© 2022 The Author(s). Published by the Royal Society of Chemistry
reducing measured detector patterns into integrated spectra. It
can be valuable to perform an additional data preparation step
of feature engineering: a procedure of generating a new set of
calculated variables (or features) from the original data. New
features aim to simplify the functional form of a suitable model
(e.g. power transformations of a variable to t a linear model in
case of a polynomial dependence), reduce the variable range
(e.g. ‘day’/‘night’ instead of a timestamp), or extract physically
meaningful information from raw data (e.g. frequency, phase
and amplitude from a wave signal of an arbitrary duration).
Properly designed features can signicantly improve the accu-
racy of the model and reduce the need for computational
resources. We demonstrate feature engineering in the examples
of anomaly detection (Section 4) and supervised learning
(Section 5) by using learning from a set of summary statistics of
the data instead of the raw data.

Once processed, data can then be split into training, vali-
dation, and/or test subsets to allow for effective model selection.
Best practices for constructing these datasets can be found in
ref. 28. The training dataset is used to condition (or t) the
models that are being considered, i.e. to obtain the value of
parameters that are directly used during model application,
such as variables' coefficients in a regression model. This
dataset is used to minimize the models' loss functions by
adjusting their respective parameters. The validation dataset is
not used to train directly, but it is the basis to provide an
unbiased evaluation of a given model's performance when
comparing it to other models. The validity of each trained
model is evaluated by comparing the predicted response func-
tion of the validation dataset (i.e., “model output”) against the
true response, which is established by scientists curating the
data. A series of metrics suitable to the problem are used to
quantify the performance of a model on the training and vali-
dation datasets. The data for the training and validation sets
should come from similar distributions to make the compar-
ison of model performance for them meaningful. However, the
data generation process needs to be taken into account when
splitting the data. For example, measurements repeated at
similar conditions during the same experiment should be
attributed to the same set. There is no standard rule for the
splitting ratio as long as all sets are representative of the data
distribution. 60 : 20 : 20 split for training, validation and test
sets, respectively, is common. If a test (holdout) set is not
available during the model training, a 80 : 20 split between the
sets is typical. However, for larger amount of data, validation set
can be smaller.

Caution here is taken around the bias–variance trade-off.
High bias is a common source of undertting, i.e., when the
validation metrics equal or outperform the training metrics due
to a model or feature set that lack the ability to express the
complexity in the data. High variance occurs during overtting,
i.e., when the validation metrics signicantly underperform the
training metrics due to an overparameterized model that
interprets noise in the training data as signicant for general-
ization. Finally, occasionally a test dataset (or holdout set) is
employed to evaluate the set of nal models. Care must be taken
not to expose the model to the test dataset during training so as
Digital Discovery, 2022, 1, 413–426 | 415
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not to bias the selection. This paradigm of splitting the data
into sets is especially well suited for supervised learning tasks
where labels are available.

Finally, the suite of selected models found appropriate for
the task are tuned and trained. Each model type has a set of
adjustable hyperparameters that impact its training and
performance (the description of hyperparameters is le to the
resources on specic models and their implementation docu-
mentation).17 These hyperparameters are tuned while each
model is evaluated using the training and validation datasets.
The pairings of models and hyperparameters are compared
using their validation metrics. A few common metrics are
employed in this work to evaluate models that can be expressed
in terms of binary correctness: true positives, TP, true negatives,
TN, false positives, FP, and false negatives, FN. The fraction of
correct model predictions is called the accuracy,

Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
: (1)

The precision describes the proportion of positive identi-
cations that were actually correct,

Precision ¼ TP

TPþ FP
: (2)

In anomaly detection, precision is commonly re-framed to
the false discovery rate,

FDR ¼ FP

FPþ TP
: (3)

And the recall describes the proportion of actual positives
was identied correctly,

Recall ¼ TP

TPþ FN
: (4)

Lastly, a balanced metric of the precision and recall, F1 score
is calculated from the harmonic mean of precision and recall,

F1 ¼ TP

TPþ 1

2
ðFPþ FNÞ

: (5)

Having a validation set helps to recognize model's over-
tting, which can be controlled by various approaches.
Among them are having large enough dataset to meet the model
capacity (i.e. the number of coefficient in regression model),
regularization,29 building an ensemble of models30 and sub-
sampling.31

Once a suitable model has been trained, validated, and
tested, it needs to be deployed. The deployment strategies vary
from incorporating a fully pre-trained model into online or
offline data analysis, to tting the model actively during an
experiment using newly acquired data. Each step of the model
development pipeline from problem denition to model
416 | Digital Discovery, 2022, 1, 413–426
deployment can be revisited in an iterative cycle as new data
arrives or the core challenges change.
3 Unsupervised learning

When a dataset has no labels to predict, or has no labels
available for each datum, we turn to unsupervised learning for
nding hidden patterns in the data. These methods require
limited human supervision, oen taking only input hyper-
parameters, and are commonly used for visualization of
a dataset.20 Unsupervised methods can be categorically split
between clustering and dimensionality reduction. When con-
fronted with unlabeled data that requires visualization or
segregation, the choice of which of these approaches to use
depends on the dimensionality of the data and framing of the
problem: some algorithms will provide only groupings, while
others can potentially provide meaningful information about
the groups themselves.

Clustering methods are concerned with dividing data into
related groups based on similar properties and/or features.
These include algorithms such as Gaussian mixture model,32 k-
means clustering,33 and hierarchical clustering.34 Commonly
used during exploratory data analysis or to produce preliminary
groupings, these methods are difficult to evaluate in their true
unlabeled setting and are oen ranked using a similar labeled
dataset or a fully labeled portion of the original data.20 The
choice of model is oen dependent on the shape of the data
distribution. Strong examples of failure modes in two dimen-
sions is offered in the scikit-learn documentation.17

In relation, dimensionality reduction attempts to reduce or
project the data into a lower dimensional subspace that
captures the underlying core information of the data. These
include principal component analysis (PCA),35 singular value
decomposition (SVD),36 non-negative matrix factorization
(NMF),37 and deep methods such as variational autoencoders.38

These methods are oen used to cast a problem with many
input variables down to a more manageable number of features
and have found utility across the natural sciences. One attribute
underpinning their utility is the production of a series of basis
vectors during the dimensionality reduction. In the case of
spectral decomposition, the non-negative basis vectors can have
physical signicance as end members of the dataset.37,39 We use
this property here in the live exploration of total scattering data
via NMF, which constructs a components matrix, H, and
a weights matrix, W, such that their product approximates the
true dataset, V, by minimizing the Frobenius norm of the
difference, kV � WHkF.

V z WH (6)

The shape of V is m � n, the shape of W is m � p and the
shape of H is p � n, where m is the number of spectra, n is the
length of each spectra, and p is the number of components or
end-members.

Commonly, analytical measurements are conducted across
a series of state variables, for example temperature, pressure, or
composition. The combined hardware and soware
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 NMF segregates a series of spectra into a set of non-negative
components, wherein the user can choose how many components
are expected. (a) The resultant components used in the reconstruction
of the full profile. (b) The resultant components used in the recon-
struction of the full profile shown with respect to the measurement
temperature. (c) The relative error of the reconstruction with respect
to each pattern at a given temperature. This shows the datum for
which the model does a poor job of describing the dataset. (d) The
residual difference between the ground truth and reconstruction of
each pattern with an opacity given by the reconstruction error of (c)
shows where in the spectra the model is failing.
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innovations at central facilities enable ex situ and in situ char-
acterization8 with predetermined measurement plans. In these
circumstances, large amounts of data are collected across
distinct phases or other state regions of interest, with no prior
knowledge of labels or transitions. It is oen not until aer the
experiment is complete that the researcher has the opportunity
to separate these regions, at which point they may be unable to
experimentally explore interesting regions in more depth. We
demonstrate this challenge using total scattering studies from
the Pair Distribution Function (PDF) beamline at NSLS-II of the
molten salt NaCl : CrCl3 (molar ratio 78 : 22), wherein the
coordination changes of particular ions across phases impact
corrosion characteristics.40 Knowledge of these materials and
their corrosion characteristics is essential for their utility in
molten-salt nuclear reactor designs.

During a temperature scan in a single sample, various crys-
talline and amorphous phases and their mixtures will emerge.
An unsupervised method is required that can separate sets of
patterns (i.e. regions of temperature) that are distinct, thus
turning a vast dataset into actionable knowledge. Various
unsupervised methods can be used to segregate diffraction data
using different metrics.41 Recent developments in NMF show
promise for spectral functions that are positive linear combi-
nations within mixtures.21,42 NMF reduces the dataset such that
each data point is described by a strictly additive mixture of
relatively few non-negative end members (e.g., unique phases or
components). The number of end members can be decided
automatically based on other algorithmic approaches.39

However, given the ease of calculation and knowledge of the
researcher about the materials system and potentially relevant
phases, it is more effective to grant the user control over this
number. Furthermore, a researcher can focus the decomposi-
tion algorithm on a spectral range of interest. This enables the
researcher to conduct rapid analysis during a variable scan and
makes effective use of remaining measurement time for scien-
tic output.

We deployed NMF using the Bluesky framework43 in the
study of molten NaCl : CrCl3 across a temperature range of 27–
690 �C. Each raw 1-d spectrum in this experiment consisted of
2072 reciprocal space points. We here used the scikit-learn
implementation17 of NMF to calculate the decomposition in
eqn (6) each time a new measurement is completed and
combined the computation with a dynamic plotting using
matplotlib.44 This implementation allows for on-the-y moni-
toring and analysis of an experiment, whereas previous
approaches—even those depending on ML—are focused solely
on post hoc analysis. The resulting display that this imple-
mentation produces is compared against a stacked plot of all of
the data colored by temperature in Fig. 2. Overall, 133 spectra
were collected during the experiment.

In this instance, a maximum of four end-members, and thus
phases of interest, were included. The weights of each compo-
nent, W, are shown across the temperature range, showing
a smoothly varying mixture of three plausible phases in the low
temperature regime, and an abrupt transition around 400 �C.
These correspond to solid mixtures and a second order phase
transition to the liquid region. Also shown is the presence of the
© 2022 The Author(s). Published by the Royal Society of Chemistry
third (green) end member in liquid regime, suggesting kineti-
cally stabilized crystallites during melting. As evidenced by the
increased relative error, the model is failing to t the data in the
region from 400–500 �C. This can be attributed to the existence
of spurious anomalous features in the diffraction data during
the co-existence of the amorphous and crystalline phases40 that
would require far more than 4 components to t well. However,
as the application of NMF here is being used to highlight and
cluster regions of interest in the data, and not necessarily
extract physically real components, the limited 4-component
model is effective. Since NMF is only considering linear
combinations of components, any substantial peak shiing
(from changing lattice parameters or coordination) may appear
as a distinct component. While some innovative models have
attempted to handle peak shiing,21 they were not considered in
this study as we constrained our focus to integrating NMF into
an on-the-y data acquisition process. As opposed to declaring
distinct phases—a task more suited for full pattern rene-
ment45—NMF highlights unique regions of interest in the
temperature scan for interpretation. This summary is refreshed
in real time with each sequential measurement, granting the
user immediate insight.

Unsupervised ML methods are very impactful beyond this
particular total scattering example, and easily adapted to any
spectral measurement. As presented, NMF enabled researchers
to make effective use of limited beam time, by identifying
potential experimental regions of interest and conditions for
focused measurement on the y. This method trivially expands
to locate any second order phase transitions and conduct
a subsequent more detailed scan in that temperature regime.
Digital Discovery, 2022, 1, 413–426 | 417
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Fig. 3 Graphical description of anomaly detection algorithms: (a) local
outlier detection, (b) elliptical envelope, and (c) isolation forest.
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Since advanced detectors now measure in the MHz range, data
sorting is not manually feasible, and unsupervised approaches
could also be used to automate such tasks. These concepts are
directly amendable to increasing automation and adaptive
learning6,46 efforts in materials research. As implemented (see
Code availability), the decomposition and clustering algorithms
can be readily deployed onto other beamlines or types of
measurement that produce relatively low dimensional data (1-
d or small 2-d). For higher dimensional data, deep learning
algorithms could be used in tandem to reduce the data or
identify latent features.38

4 Anomaly detection

Anomaly detection algorithms aim to identify unexpected
observations that are signicantly different from the remaining
majority of observations. Such algorithms are used for many
different tasks, including credit card fraud detection,47 discov-
ering unusual power consumption,27 and identifying cyber
security threats.48 Isolating anomalous instances can be
accomplished using supervised or unsupervised learning.
Further detailed in Section 5, supervised algorithms require the
training data to be labeled and have a proper distribution of the
different types of abnormal cases that can be encountered.
However, the knowledge of potential types of anomalous data is
oen not available before the data are taken. Unsupervised
algorithms, on the other hand, do not assume the knowledge of
types of possible irregularities. They are based on the
presumption that majority of the data is normal with anomalies
being rare and divergent from the ordinary data. Such algo-
rithms tend to learn the distribution of the normal data
according to specic hyperparameters. Sample points that are
unlikely to come from this distribution are labeled as outliers.
In the circumstance when all data outside the expected norm
cannot be predicted and labeled, but still need to be identied,
unsupervised anomaly detection is an incredibly useful tool.

Here, we focus on three unsupervised algorithms: local
outlier detection49 (LOD), elliptical envelope50 (EE) and isolation
forest51 (IFT). The LOD algorithm identies the regions with
similar local density of points based on several nearest neigh-
bors (Fig. 3a). The points with local density smaller than their
neighbors are identied as outliers. The degree of certainty with
which a point is attributed to outliers depends on the number of
nearest neighbors considered—an additional hyperparameter
of the model. The EE algorithm assumes that the normal data
are centered around a single point and ts a multidimensional
ellipsoid around the center (Fig. 3b). Whether or not each point
is considered an outlier is based on the Mahalanobis distance
between the point and this elliptical distribution. Exploratory
analysis of the principle components shows that the normal
data in our case constitute a single cluster, though its shape is
not close to elliptical in some planes. The IFT algorithm isolates
outlier points in a series of data splits. It has an isolation tree as
its basic structure. Such tree is built by randomly selecting
a variable and a split point until each leaf of the tree contains
only samples with the same values. A path to the leaf is equal to
the number of partitioning necessary to isolate the sample. The
418 | Digital Discovery, 2022, 1, 413–426
length of a path to a point, averaged over the collection of the
trees (the forest), is the metric used to determine if it is an
outlier (Fig. 3c). The algorithm is known to outperform other
methods for variety of cases, though is can be computationally
expensive for high-dimensional data.

Synchrotron user facilities can benet from integrating
anomaly detection tools into their operations. Oen in
ameasurement setting, it is necessary to highlight when a result
is different from what is expected. In some cases, this amounts
to recognizing an equipment failure early, thus allowing the
researcher to react promptly. In other instances, this would take
the form of nding new or interesting data points within
© 2022 The Author(s). Published by the Royal Society of Chemistry
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a larger dataset. Both tasks would normally require constant
monitoring of collected signals by the researcher. Anomaly
detection algorithms can be integrated in the online data
analysis for prompt evaluating of the measurements, reducing
the need for human efforts.

We built an anomaly detection toolkit for the time series
collected for the X-ray Photon Coherent Scattering (XPCS)
experiments.52,53 During the measurements, series of scattering
images (frames) are recorded by the 2-d area detector (e.g. CCD).
As part of the analysis, the photon intensity for a group of pixels
is autocorrelated over time since the decorrelation of the
speckles' intensity is reective of the inherent sample's
dynamics. Consequently, the events like a sample motion, the
X-ray beam dri, or changes in the beam intensity can lead to
artifacts in the correlation functions.8 In some occasions,
changes of the scattering peak's position or intensity can be due
to intrinsic properties of the samples. As the anomalous events
encountered during the data collection, they should be inves-
tigated by a researcher, who can dynamically adjust the exper-
imental plan or conditions. Since experiments last extended
periods of time (on the order of days) and are controlled by pre-
assembled plans, it is critical to have an automated tool that
alarms the researcher about anomalous observations, so they
may target the most critical experimental conditions rst and
Fig. 4 Illustrative examples for (a) normal series, (b) discontinuity in the
model on validation data set for different number of principle component
(e) Confusion matrix that reflects the performance of the final EE mode

© 2022 The Author(s). Published by the Royal Society of Chemistry
then make appropriate decisions regarding subsequent
measurements and analysis.

The data for this work were collected by processing results of
previous measurements at the CSX beamline at NSLS-II. For
multiple regions of interest at the 2-d detector for each frame we
calculate 6 time series: the total intensity, the standard deviation
of binned pixels' intensity counts, the center of mass coordinates
and its standard deviations for both directions. These variables
are chosen because they can be directly calculated and reported
by the detector's control soware during an experiment and
circumvent the need formore time consuming post-processing of
scattering images. The number of points in each time series
ranges from 20 to 14 400, with mean number being 2792.

While such algorithms do not require the labeled data for
the training, we annotate a dataset for the purpose of evaluating
the models' performance. Each example is labeled as ‘normal’
or ‘anomalous’ based on the expert knowledge. Fig. 4 illustrates
how an intensity time series can look in a normal Fig. 4(a) and
anomalous Fig. 4(b) and (c) cases. In a normal case, all
considered experimental parameters are (almost) stationary,
while anomalous cases may contain sudden jumps or signi-
cant dris of the parameters' values. The duration of each time
series ranges from tens to thousands of frames. To be processed
by the anomaly detection algorithms, the series need to be
converted to a set of variables of a xed length.
data and (c) strong fluctuations in the data. (d) Performance of the EE
s. The region with the best model performance is highlighted in yellow.
l on the test set.
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Table 1 Results of the unsupervised algorithms on the test set

Models LOD EE IFT

Recall anomaly 0.92 0.98 0.98
False anomaly discovery rate 0.026 0.036 0.042
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We engineered a set of 93 features to capture the statistical
diversity of the variable length data. The derived features
include (i) standard deviation to mean ratio within the series,
(ii) autocorrelation coefficients up to 4th order, (iii) ratio of
a parameter's standard deviation to the standard deviation of its
rst time derivative, (iv) difference of parameter values at the
beginning and the end of the scan. The feature engineering
aims to highlight the lack (presence) of trends and disconti-
nuities in normal (anomalous) cases and can be helpful in other
ML tasks involving sequential data. The features were calcu-
lated from the time series following two preprocessing steps:
centering the series around their mean values and normalizing
by the mean values. The second step was not included for the
series related to the intensity peak positions as their absolute
displacement can be indicative of outliers and thus should be
preserved.

As EE and LOD use Euclidean distance measure in the base
of their algorithms, it is likely that the models do not perform
well in a high-dimensional space. Moreover, the number of
variables is comparable to the number of examples in our train
set, increasing the potential risk of over-tting. To address these
concerns we control the dimensionality of the data. We employ
an unsupervised dimensionality reduction technique, principle
component analysis (PCA),35 similar to that presented in Section
3 to reduce the size of our engineered feature vectors. PCA is
a linear approximation of the data in a new orthogonal coor-
dinate system, such that the greatest variance by some scalar
projection of the data comes to lie on the new coordinates.
These scalar projections are used as our reduced dimensions.

Overall, 727 time series are processed. The data are divided
into exclusive sets for training, validation and testing. Only the
‘normal’ data are used for training the models and the training
set contains 80% of all normal examples – the rest is evenly
divided between the validation and the test set. In doing so, we
ensure that the assumption of the models about majority of the
data being ‘normal’ is satised during training. Since the
considered models do not rely on the data labels for training
process, a signicant presence of anomalous examples in the
training set could deteriorate a model performance. The valida-
tion dataset is used for identifying optimal hyperparameters of
the models. In addition to the 10% of the normal examples, it
contains 50% of the anomalous examples. The rest of the data
belong to the test set, which is used for the nal models'
assessment. The model performance can be evaluated through
various parameters calculated from the confusionmatrix (Fig. 4).
Recall R reects the rate of correctly identied normal (anoma-
lous) labels among all normal (anomalous) examples and false
anomaly discovery rate FDR reects the ratio of incorrectly
identied labels among all examples labeled as anomaly.

The key hyperparameters we tune across all models are the
dimensionality of the input signals (the number of principle
components) and the contamination level. The contamination
level is the percentage of anomalous examples in the train set.
Despite only normal data being in the training set, we let a small
portion of them to be identied as anomalous, i.e. having false
anomalous labels, in expectation that an actual outlier will be
even further away from the main cloud of normal data and thus
420 | Digital Discovery, 2022, 1, 413–426
correctly identied by the model. This approach prioritizes
having false positives (alarms being raised prematurely) over
false negatives (alarms which should have been raised being
missed). The hyperparameters of the models are optimized by
maximizing the products R � FDR for the normal and anoma-
lous data in the validation set. An example of selection of the
optimal number of the principle components is shown in
Fig. 4(d).

The results of our performance comparison across three
anomaly detection models are shown in Table 1. LOD has the
least percentage of incorrectly labeled normal data, but it
slightly under-performs in identifying anomalies comparing to
other algorithms. Comparing to the LOD, the IFT algorithm
demonstrates better results in correctly identifying the anom-
alous test data, but it mislabels more of the normal examples
than other algorithms do. In our case, the EE algorithm has the
best performance when considering both recall and false
discovery rate. Depending on the application priorities, the
threshold value of the model's metric can be adjusted to reduce
either false positive or false negative outcomes (see ESI† for
precision-recall curves).

This example with XPCS clearly demonstrates that anomaly
detection algorithms can be an effective tool for identifying
unusual signals, such as in the presented time series data, in X-
ray light source measurements. Automatic agging of such
observations helps optimize the workload of XPCS researchers,
freeing them from the necessity of manually evaluating every
dataset. The innovations here including feature engineering,
dimensionality reduction, and online unsupervised anomaly
detection are not limited to applications in XPCS or even to time
series. The sequence of these methods could be applied directly
to any one-dimensional equally spaced data arrays, where the
order of observations is important, e.g., spectra, line cuts of two-
dimensional images, temperature series. More generally, the
model is applicable for ltering out artefacts in a set of repeti-
tive measurements performed54,55 to obtain appropriate statis-
tics in case of a weak signal, which can include higher order
dimensions when suitable feature engineering is employed.

5 Supervised classification

Supervised learning is a very common task in science and
engineering and based on the same principles as standard
tting procedures or regression. Its core objective is to nd an
unknown function that maps input data to output labels. When
those labels are discrete, this is considered a classication task,
and when those labels are continuous, it is considered
a regression task. A particularly desirable outcome of super-
vised learning is transferability: a model trained on a one
dataset should be predictive on another, and not simply
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) XAFS measurements considered good, or ready for inter-
pretation by an expert, will contain a rising edge somewhere along the
scanned energy, followed by the oscillatory fine structure. (b) Data that
are considered bad, or requiring experimental intervention by an
expert, will not contain an absorption edge and often present as noise.
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interpolative. As such, it is advantageous to perform feature
engineering—which biases the generalization of the approach
to the engineer's discretion—or utilize deep approaches that
‘learn’ the proper featurization. In general, a problem can be
cast as a supervised learning problem if there is labeled data
available, and that data format can be mapped as an input for
the available algorithms.

The broad impact of supervised learning is undeniable,
impacting technologies in our daily lives through image clas-
sication,56 speech recognition,57 and web-searches.58 However,
in the domains of applied materials science and crystallog-
raphy, these contemporary approaches have accelerated phys-
ical simulations,3 property prediction,6 and analytical
techniques such as diffraction59 andmicroscopy.60 Each of these
advances is underpinned by a variety of models, some of which
require deep learning to accomplish. Model selection for
supervised learning is dependent on both the size of the labeled
dataset, and the dimensionality or shape of the data.6 In
general, with small datasets (˂10 000 points), it is advisable to
consider statistical ML algorithms over deep learning for
transferable predictive performance that does not over t. We
will here demonstrate an application of supervised learning
employed on a beamline to classify data quality in a binary
fashion, as simply ‘good’ or ‘bad’ data.

In many circumstances there is a stark and identiable
contrast between ‘good’ and ‘bad’ data during a materials anal-
ysismeasurement.Where we use the term ‘good’ to describe data
that is ready for immediate interpretation, and ‘bad’ to describe
data that may be uninterpretable or which merits human inter-
vention prior to being ready for interpretation. Bad data stems
from a variety of sources, including but not limited to weak
signal-to-noise ratio, improper sample alignment, or instru-
mentation failure. Contrary to the experimental situations we
presented for anomaly detection (Section 4), these bad data are
well dened and can readily be labeled. However, there is
a pressing need for on-the-y analysis to identify when ‘bad’ data
arises during an automated experiment, so as to enable rapid
intervention. In this case, the supervised learning approaches
that were not well suited for anomaly detection are useful.

At the Beamline for Materials Measurement (BMM) at NSLS-
II, X-ray absorption ne structure (XAFS) is routinely measured
via X-ray absorption spectroscopy (XAS) in a high-throughput
automated experiment. The XAFS measurement varies the
incident photon energy to measure the energy-dependent, X-
ray-absorption cross section, which provides a direct assess-
ment of valence and other chemical information and whichmay
be analyzed to recover details of local partial pair distribution
functions.61 XAFS is regularly measured in two modes at a hard
X-ray beamline like BMM. In transmission, the optical opacity
of the sample is measured by the attenuation of the incident
beam intensity as it passes through the sample. Here, the
absorption cross section changes dramatically as the energy of
the incident beam is scanned through the binding energy of
a deep-core electron, resulting in the emission of a photo-
electron and the creation of a short-lived core-hole. In uores-
cence, the absorption cross section is determined by measuring
the emission of the secondary photon produced when the core-
© 2022 The Author(s). Published by the Royal Society of Chemistry
hole created by the photo-excitation of the deep-core electron is
relled by the decay of a higher-lying electron. The energy range
of this scan depends on the chemistry and composition of the
sample and on other experimental considerations. To make the
measurements accessible to non-sequential ML algorithms,
every spectra is down-sampled to contain 400 members;
however, the energy bounds of the spectra are not adjusted. The
results of these experiments and processing are thus a set of 1-
d vectors with 400 members, with typical ‘good’ spectra shown
in Fig. 5a.
Digital Discovery, 2022, 1, 413–426 | 421
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The spectra are easily labeled as good or bad data, as the good
data will undergo a sharp and signicant change in intensity
(called an ‘absorption edge’ in XAFS), while the bad data
(Fig. 5b)—regardless of root cause—will lack an absorption edge
and take the appearance of random noise or featureless back-
ground signal. Regardless of the ease of this pattern recognition
task, the current approach for good/bad classication requires
human intervention and judgement, which is not ideal for
remote, high-throughput, and/or overnight data collection. AML-
based classication will make for more efficient use of the
beamtime. From a set of previously collected and labeled spectra,
we applied a suite of classication models with some achieving
100% accuracy on an unseen test-set. We considered Random
Forrest (RF),62 Support Vector Machine (SVM),63 Multi-layer per-
ceptron (MLP),64 k-Neighbors,65 and Gaussian Process (GP) clas-
siers.66 In all cases, we used the default hyperparameters in the
scikit-learn implementation, except for MLP models where we
reduced the default hidden nodes to 10.

We compared the performance of these models across
different splits of the labeled dataset (Table 2). In the rst
approach, a set of 711 data from transmission and uorescence
data of variable quality was randomly split into training and
validation sets (80% training and 20% validation). We refer to
these approach as uniform validation. In the second approach
(unique validation), data from a set of ‘very good’ measurements
were retained for the validation set with 10% of the remaining
data sampled for validation (156 total). This unique validation
approach allows for testing of the extensibility of models, that is,
howwell they will behave on data outside of the scope of training.
In both approaches, we explored each model's performance on
the raw spectra (Fig. 5) aer normalization onto the range [0,1],
and on a set of statistical features that were calculated from the
spectra and their rst derivatives: (i) autocorrelation coefficients
for lag 1–4, (ii) mean of the rst 5 values, (iii) mean of the last 5
values, (iv) mean of the intensity, (v) standard deviation of the
intensity, (vi) sum of the intensity, and (vii) location of the
intensity maximum. These features were normalized by the
maximum for the training data of each feature.

Based on the results in Table 2, the challenge of effective
representation becomes apparent. In the case of using the raw
spectra, only the MLP models are able to make accurately
predictions on data from new experiments. However, when the
ML algorithms are fed derived features that capture the most
Table 2 Binary classification results from a suite of models applied to tw
an unseen experiment in the unique validation; however, using engine
generalization

Models

Raw spectra

Uniform validation
F1-score

Unique valid
F1-score

RF 0.986 0.829
SVM 0.995 0.807
MLP 1.00 1.00
k-Neighbors 0.995 0.807
GP 0.990 0.803

422 | Digital Discovery, 2022, 1, 413–426
important information, the models can be more effectively
generalized to new data. The models trained on raw spectra fail
to classify spectra with rising edges of new shapes or in different
positions. This lack of generalization is unsurprising because
these models do not create their own abstractions, whereas
when abstractions are provided by feature engineering, the
models become more useful beyond the training data. Other
approaches to creating abstractions without biased feature
engineering exist in the eld of deep learning. Convolutional
neural networks trained on the raw spectra dataset, similar to
the multi-layer perceptrons, approach 100% validation accuracy
where shallow models fail. These approaches are beyond the
scope of this paper, being less accessible to the average scien-
tist; however, their success underscore the value of feature
engineering with expert knowledge since those features can be
‘learned’ by deep algorithms.

6 Deployment interfaces

The nal component of the AI pipeline referenced in Fig. 1 is
deployment. The complexity of steps involved in model
deployment can vary considerably depending on the applica-
tion. The simplest deployment strategy is to provide a pre-
trained model to a user. While this approach has its advan-
tages, such as ease of testing and exibility of workow modi-
cation, it also requires a lot of user intervention to utilize the
model via managing le transfer, data inputs and outputs, as
well as the interpretation of the model output. As such, to
produce superior experimental research, the most user friendly
interfaces would produce no additional “work” for the user, by
allowing for AI tools that are seamlessly integrated into existing
workows. Such an interface enables both human-in-the-loop
operation,67 and completely autonomous experiments.13,68

While many of the beamlines at NSLS-II use similar interfaces,
it is common for particular experiments or beamlines to have
bespoke soware solutions built on or interfacing with
common frameworks, such as Bluesky43 or Ophyd.69 Here we
outline how each of the proceeding sections was implemented,
to demonstrate the diverse integrationmodes across the facility.
Each of these deployment techniques and training strategies
can be found in the accompanying code repository.

Firstly, it is useful to have a generic interface to expect with AI
models, so that similar models can be deployed in different
o dataset splits. Most models using the raw spectra fail to generalize to
ered features from the statistics of the spectra enables more robust

Engineered features

ation Uniform validation
F1-score

Unique validation
F1-score

0.990 0.874
0.990 0.982
0.986 0.957
0.990 0.947
0.986 0.988

© 2022 The Author(s). Published by the Royal Society of Chemistry
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experimental processes regardless of other design decisions. This
separates the design of the agent from the management of data
streaming, in-line callbacks, or application specic techniques.
Following recent work in adaptive experiments at NSLS-II and the
developments of Bluesky Adaptive70,71 we implemented all pre-
sented models with a tell–report–ask interface. That is, each
model had a tellmethod to tell themodel about new data, a report
method to generate a report or visualization, and an ask method
to ask the model what to do next. While the latter method is
required with adaptive learning in mind, it enables simple
adaptations such as a model detecting an anomaly and wishing to
pause the experiment. This generic interface suits most needs for
AI at the beamline, and allows users to ‘plug-and-play’ the models
they have developed without considering how the data is being
streamed or other communication protocols. A complete tutorial
using the tell–ask components to deploy multiple AI models can
be found at ref. 71, and all the models presented here have been
made available (see Code availability statement).

The example deployment of NMF demonstrates how the tell–
report–ask interface can be used with an established collection of
data, and not requiring explicit streaming. At the PDF beamline at
NSLS-II, raw diffraction images from a 2-d area detector are
streamed as documents to data reduction soware, that produces
data for scientic interpretation as a 1-d pattern stored in a le
system locally or on a distributed server. Here, we employ the tell–
report–ask interface inside a le system watcher. The model is
told about new data each time new les appear, and subsequently
generates a new report, i.e. the visualization shown in Fig. 2. Due
to the inexpensive nature of updating the NMF model, this gives
the researcher a developing model and visualization over time.
This example also shows how to include both model training and
evaluation in-line with an experimental data stream.

It is possible to train and use a model completely offline
using the corpus of data generated over an extended period of
time without the need to constantly update the model aer
a new measurement. For the anomaly detection model, we used
data from multiple experimental measurements, separated by
an expert into normal and anomalous groups. The training of
the model and selection of the best performer is done in
a Jupyter Notebook environment because simple pipelines are
all that is required for development and testing. The model can
be deployed for both online data streaming application and for
offline analysis. Its self-contained simplicity allows a user to
insert the model to work best in their preferred workow. In the
examples accompanying this work, we demonstrate tell–report–
ask interface for the le system. Alternatively, this can be
implemented using the following pseudo code with a data-
broker catalog for the most recent measurement.
© 2022 The Author(s). Published by the Royal Society of Chemistry
Here, the AnomalyAgent() is designed in a way that it only
ingests the experiment identication number and the dictio-
nary of the time series, without being tied to the way that the
dictionary is created. The data can be processed from the
catalog or from hdf5 les in folder. With either interface, the
model can access the data and return a prediction of whether
the measurement is considered an anomaly. The output of the
model can be utilized by subsequent AI-guided analysis and
results extraction.72 The model does not have to be updated
aer each new measurement is added to the folder and routine
model updates can be scheduled when sufficient amount of new
data are acquired and labeled. The process of model update and
application can easily be automated using Papermill.73

In our deployment of supervised learning for identifying failed
measurements at BMM, we constructed a part of Bluesky plan—
a callback—to publish the report from the model onto Slack,74

a common business communication platform, in the form of
emojis. This enables remote monitoring of an experiment for
potential failures, as well as a timeline of those failures. We use
a class with the tell–report interface, separate from the callback
designed by the beamline scientist, so that themodels and report
styles can be easily interchanged. The ML models can either be
loaded from disk or retrained from a standard dataset at the start
of a each experiment. Each time ameasurement is taken, a report
is generated based on the model classication and passed to the
callback that processes the report for Slack. This deployment
shows how the same interface used for monitoring directories in
a le system, can be quickly linked to streaming data, and
publish results to the internet or a chat service.

7 Conclusions

AI opens opportunities for making many beamline experiments
more efficient in various aspects from data collection and
analysis to planning next steps. As the rate of data production
continues to increase with new high-throughput technologies,
and remote operations requirements grow, new analytical tools
need to be developed to accommodate this increased ux of
data in a distributed manner. Herein we tackled three unique
experimental challenges at NSLS-II that fall under individual
archetypes of machine learning: unsupervised segregation,
anomaly detection, and supervised classication. We integrate
non-negative matrix factorization to separate key components
of total scattering spectra across a temperature driven phase
transition. Secondly, we deploy anomaly detection to warn
a user of substantial changes in the time evolution of XPCS data.
And lastly, we train a supervised binary classier to separate
good data that is ready for immediate analysis and bad data that
requires experimental intervention during an XAFS experiment.
Use of these AI methods is aimed to increase scientic outcome
of the experiments and does not rely on large-scale computa-
tional resources or extended soware development skills. Each
of the models could be trained on a personal computer in
a matter of minutes or even seconds. Open-source Python
libraries, such as scikit-learn,17 make encapsulated imple-
mentation of elaborate algorithms available for researchers
from wide range of disciplines.
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Beyond the scope of this work, yet still relevant to beamline
science are adaptive learning and reinforcement learning.75

Adaptive learning is an extension of supervised learning where
the algorithm can ask for more data to improve its model, and
has been used in experimental optimization and search.13,68,76,77

Reinforcement learning approaches a related task of learning
an optimal policy given a reward and penalty structure. This has
recently been demonstrated for optimizing beamline opera-
tions and resource allotment.14,75 Deploying these techniques at
a beamline are signicant enough to warrant their own
study,14,77 albeit the tools we develop here are designed with
adaptive protocols in mind.

The integration of each considered model into the Bluesky
Suite for experimental orchestration and data management
underpins their accessibility to beamline users and staff that
are unfamiliar with ML, and extensibility to new applications.
These extensions include similar thematic data challenges at
different experiments and algorithmic development to incor-
porate adaptive experiments which depend on the feedback
from ML.78 Given this framework and the scientic python
ecosystem, there are boundless opportunities for further
applications of these and different ML approaches in high-
throughput and distributed experimental feedback loops.
Data availability

The source code and data to reproduce the examples in this
work is available at https://www.github.com/bnl/pub-
ML_examples/. https://doi.org/10.11578/dc.20220118.1.
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