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the quantum flux–flux
correlation function for catalytic surface reactions†

Brenden G. Pelkie and Stéphanie Valleau *

A dataset of fully quantum flux–flux correlation functions and reaction rate constants was constructed for

organic heterogeneous catalytic surface reactions. Gaussian process regressors were successfully fitted to

training data to predict previously unseen test set reaction rate constant products and Cauchy fits of the

flux–flux correlation function. The optimal regressor prediction mean absolute percent errors were on

the order of 1.0% for both test set reaction rate constant products and test set flux–flux correlation

functions. The Gaussian process regressors were accurate both when looking at kinetics at new

temperatures and reactivity of previously unseen reactions and provide a significant speedup respect to

the computationally demanding time propagation of the flux–flux correlation function.
Fig. 1 Flow chart of workflow. Panel (1) a dataset of reaction rate
constants and flux–flux correlation functions was generated. Panel (2)
with the dataset several Gaussian process regressors, GPR, were
Introduction

Many theories have been developed to approximate quantum
reaction rate constants or lower the cost of their computation.1,2

Indeed, the curse of dimensionality has impeded the calcula-
tion of quantum reaction rate constants dynamically: the cost
scales exponentially with the degrees of freedom.3,4 To date, the
largest fully quantum scattering calculations can only account
for systems of approximately six atoms.5 In catalysis light-
weight atoms such as hydrogen are oen diffusing or reacting
on metal surfaces. This occurs in e.g. selective hydrogenation,
alkyne and alkene reduction, the water gas shi reaction, the
Haber process, etc. Hence quantum effects such as tunneling
must be accounted for when computing reaction rate constants.
Optimal catalysts may enable a reduction of industrially
produced toxic byproducts,6 the removal of carbon dioxide7

from the atmosphere and so forth. By understanding the type of
reactant surface interactions,8 the reaction mechanisms,9 and
the corresponding reaction rate constants, we can establish
which factors lead to optimal reactivity.

In recent years machine learning (ML) has successfully been
employed to accelerate the evaluation of a variety of chemical
and molecular properties.10 For kinetics, the main bottleneck
has been the lack of large representative datasets of reaction
rate constants. These are necessary to train machine learning
algorithms to predict the reaction rate constant. Recently some
kinetic datasets have been generated for non-catalytic
systems,11–14 and contain activation energies,13 as well as
quantum reaction rates for one dimensional systems.12 For
rsity of Washington, Seattle, Washington

il.com

tion (ESI) available. See DOI:

the Royal Society of Chemistry
catalytic surface reactions, Catalysis-Hub15 has become a great
resource, yet activation energies andminimum energy paths are
only available for few reactions. Nonetheless with these limited
trained using a series of input features and kernels to identify the
optimal set. Panel (3) with the optimal kernel and input features, X,
previously unseen test set reaction rate constant products with the
reactant partition function, log(kQR), and parameters for fits to the
scaled flux–flux correlation functions, Cff(t)/Cff(0) were predicted. In
panel 3, RE stands for reaction energy i.e. the difference between
product and reactant zero point energies.
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datasets, supervised machine learning algorithms have
successfully been used16 to predict reactant and transition state
partition functions,17,18 Gibbs free activation energies,19 activa-
tion energies,20 and quantum reaction rate constants12,21 for
small systems. They have also been employed to accelerate the
search for minimum energy paths.22–25 For catalytic systems,
machine learning has been used in a variety of contexts26–28 such
as predicting adsorption energies,29 but little has been carried
out for reaction rate constants, due to the lack of training data.

In this work (Fig. 1), we generated a small set of exact
quantum ux–ux correlation reaction rate constants30 for
heterogenous catalytic surface reactions. With this dataset we
trained Gaussian process regressors (GPRs) to predict the
reaction rate constant and ts to the dynamic ux–ux corre-
lation function. The predicted ts were also used to compute
the reaction rate constant. We will describe our workow and
discuss the results in the following subsections.
Results and discussion
Dataset of quantum ux–ux correlation functions and
reaction rate constants

A set of fourteen gas phase heterogeneous catalytic surface
reactions was selected from Catalysis-Hub (Table 1).15

For these reactions, either a transition state geometry or
a minimum energy path (MEP) were available, together with
reactant and product geometries and energies. For reactions
with missing MEPs, Eckart or skew normal functions were tted
to the energies of the reactants, products and transition states.
The small size of the dataset was necessary due to the compu-
tational time required for the evaluation of the quantum reac-
tion rate constants. Computing the single ux–ux correlation
reaction rate constant for 55 one dimensional reactive pathways
took six months of work. This calculation would take several
months for a single path when expanding to two or three
dimensional potential energy surfaces.

With the potential energy paths we dened the Hamilto-

nians, Ĥ, heavyside dividing surface operator, ĥ, ux operators,

F̂ ¼ i
ħ
½Ĥ; ĥ�; time evolution operator, Û and Boltzmann oper-

ator e−bĤ in the canonical ensemble for each system using the
sinc basis set discrete variable representation (DVR).31,32

In this representation, operators are dened by matrices
with elements evaluated using a basis set of sinc functions,
sinc(x) ¼ sin(x)/x. Each function is centred at one point on
a uniformly spaced set of NDVR grid points xj ¼ xmin + Dx(j − 1).
The grids were centred such that the maximum of the potential
energy path was in position x ¼ 0 and the edges of the grid at
positions �L. The products of the quantum reaction rate
constant k(T) with the reactant partition function Qr(T) were
then computed (eqn (1)) by integrating the quantum ux–ux
correlation function (eqn (2)) Cff(t;T) numerically eqn (1)30

kðTÞQRðTÞ ¼
ðþN

0

CffðtÞdt (1)
852 | Digital Discovery, 2022, 1, 851–858
Cffðt;TÞ ¼ Re

8><
>:Tr

2
64e�bĤ$F̂$eiĤt

ħ $F̂$e
�iĤt
ħ

3
75
9>=
>; (2)

The upper bound of the integral in eqn (1) was determined
by nding the time right before the wavefunction reaches the
edges of the grid, for more information see ESI.† The cost of the
calculations is determined by the size of the grid NDVR.
Computing Cff(t;T) using eqn (2) is exact at any given time and
does not require previous values in time. However, it requires
the computation of the time evolution operator at each time
step as well as the products with the ux and Boltzmann
operators.

It is worth noting that the boundaries of the grid can lead to
non-physical reection in the dynamics of the ux–ux corre-
lation function. To identify these and nd the optimal grid
parameters, calculations were carried out at xed grid spacing
and increasing grid width. This enabled the determination of
the maximum physical time at which to truncate the integration
of the ux–ux correlation function when computing the reac-
tion rate constant and avoid unphysical barrier edge reection.
We also searched for and identied the minimum temperature
for which a convergent Cff(t;T) function could be computed for
each reaction. Details of the DVR parameters used for each
temperature and reaction are provided in the ESI.†

For each reaction, four temperatures were randomly selected
in the range [150–400] K. The entire dataset includes 14 tted
reaction minimum energy paths, 55 reaction rate constant
products, 55 ux–ux correlation functions as a function of
time, reaction energies and activation energies. It can be
downloaded from Zenodo.33
Gaussian process regression of reaction rate constant and t
parameter for the ux–ux correlation function

Given the small size of our dataset we chose to use Gaussian
process regression (GPR), a Bayesian non-parametric ML
model, as our machine learning model (Fig. 2).16,34 With GPRs,
given some input data X (training data set input features),
a posterior distribution over functions, f(x) can be inferred.
With this posterior one can make predictions, y* (targets) from
new inputs, X* (test data set input features). Here we recall the
related work of Nandi et al. where GPRs were trained to predict
reaction rate constant corrections for bimolecular reactions.35,36

Here our predictions or “targets” are the natural logarithm of
the product of the reaction rate constant with the canonical
reactant partition function k(T)QR(T) or a scale parameter for
Cauchy t to the ratio Cff(t;T)/Cff(0;T). We will discuss this
second scale parameter target in more detail in the next
subsection. The Gaussian process is dened as the prior for the
regression function; it depends on a mean function and kernel
or covariance function (Fig. 2, panel 1). The joint distribution of
the training and test outputs is dened by using the prior. Then
we can obtain the posterior distribution by conditioning the
joint Gaussian prior distribution on the observations, X,y
(Fig. 2, panels 2 and 3). The Gaussian process's prediction
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 List of the reactions present in the dataset. Reactions were taken from Catalysis-Hub

Nreact Reaction Catalyst Surface Ea [kcal mol−1]

1 CH* + * / C* + H* Rh 111 33.5
2 COH* + * / C* + OH* Rh 111 27.9
3 CHOH* + * / CHO* + H* Rh 111 19.2
4 CH3* + * / CH2* + H* Rh 211 10.3
5 CH2OH* + * / CHOH* + H* Pt 111 27.0
6 CH2* + * / CH* + H* Ir 111 2.6
7 CH3* + * / CH2* + H* Ir 111 14.2
8 CH3* + * / CH2* + H* Pt 111 24.7
9 CHOH* + * / HCO* + H* Ag 111 14.7
10 CHOH* + * / CH* + OH* Ir 111 12.3
11 CHO* + * / CO* + H* Pd 111 2.9
12 COH* + H* / CHOH* Cu 100 17.0
13 CO* + H* / CHO* Cu 100 22.4
14 CH* + H* / CH2* Cu 100 17.0

Fig. 2 Panel 1: Gaussian process regressor prior distribution with zero
mean and a kernel of choice. Panel 2: sample functions from the
posterior, generated from the prior (Panel 1) based on the training data.
Panel 3: mean of the trained GPR (black line) and prediction standard
deviation (shaded area) respect to exact target function (blue line).
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ability depends on the choice of kernel and estimation of
optimal kernel parameters. In the next subsections we will
discuss how the train and test datasets were obtained and how
the kernel and kernel parameters were identied.
Train and test datasets

Two train and test datasets were generated from the full dataset
to investigate the ability of Gaussian process regressors to
predict kinetic quantities as a function of temperature
(temperature-wise train test split) and for unseen reactions
(reaction-wise train test split).
© 2022 The Author(s). Published by the Royal Society of Chemistry
In the rst case the data was split by temperature to inves-
tigate whether a GPR could learn the quantum reaction rate
constant or ux–ux correlation function targets at new
temperatures. For each reaction, a row from the dataset was
selected for the test set by randomly choosing one temperature.
The rest of the dataset rows for that reaction were placed in the
train set.

In the second case the data was split by reaction to analyse
whether a trained GPR could predict the quantum reaction rate
constant or ux–ux correlation function targets for an entirely
new reaction. Here 4 reactions were chosen to be part of the test
set and 10 of the train set. Specically, reactions 2, 7, 8 and 12
were placed in the test set. Due to the small size of the overall
dataset, this choice was done by hand to ensure that every metal
catalyst present in the test set was represented in the training
set. For silver and palladium (reactions 9 and 11) only one
example was present. These were therefore added to the
training set. The corresponding temperatures for each reaction
can be found in Table S1† of the ESI.

As discussed earlier the target was either the natural loga-
rithm of the product of the quantum reaction rate constant with
the reactant canonical partition function, k(T)QR(T), or the scale
parameter s for a Cauchy t (eqn (3)) of the ratio Cff(t;T)/Cff(0;T).
We had initially tried predicting exact Cff(t;T) values but the
error was very large. Hence, we opted to scale Cff(t;T) by its value
at time zero and to t it to a Cauchy distribution function:

Cffðt;TÞzCffð0;TÞ 1

ps

 
1þ

�
t� l

s

�2
! (3)

In eqn (3), l corresponds to the location of the maximum and is
equal to time 0 given that we chose to place the reaction barrier
at the transition state. The scale parameter, s is the second
target to predict by using a GPR.

Rescaling Cff(t;T) by Cff(0;T) was found to be necessary to
improve the prediction accuracy. While this requires future
users to solve for eqn (2) at time zero, it avoids the need to solve
it at all subsequent times and hence reduces the cost to that of
e.g. the Quantum Instanton approximation.37
Digital Discovery, 2022, 1, 851–858 | 853
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Table 2 Accuracy of optimal Gaussian process regressors when predicting log(k(T)QR(T)) or the Cauchy scale parameter, s (eqn (3)), for the fit of
Cff(t). In the first column we list the optimal features and kernel. CM stands for Coulomb matrix, 1/T for inverse temperature and RE for reaction
energy. In the second columnwe specify whether the data was split based on temperature of reaction. The third column lists the target, k(T) is the
fully quantum reaction rate constant at a given temperature T, QR(T) is the canonical reactant partition function and Cff(t) is the flux–flux
correlation function at a given time t and fixed temperature. In the fourth and fifth columns we report themean absolute percent error (MAPE) on
the train and test set

GPR model Data split Target

Fit Prediction

Train set MAPE Test set MAPE

Input features: rescaled CM
difference, 1/T & RE Kernel:
Matérn + pairwise

Temperature-wise log(k(T)QR(T)) 2.61 � 10−1 9.98 � 10−1

Input features: rescaled CM
difference, 1/T & RE Kernel:
Matérn + Matérn

Reaction-wise log(k(T)QR(T)) 2.21 � 10−1 3.38 � 101

Input features: rescaled CM
difference, 1/T & RE Kernel:
Matérn + rational quadratic

Temperature-wise Scale parameter for Cauchy
t of Cff(t;T)/Cff(0;T)

1.93 � 10−2 1.04 � 100

Input features: rescaled CM
difference, 1/T & RE Kernel:
Matérn + rational quadratic

Reaction-wise Scale parameter for Cauchy
t of Cff(t;T)/Cff(0;T)

1.53 � 10−2 2.82 � 101
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We note that it was possible to use a Cauchy distribution
here as there was no reection or recrossing in the dynamics for
any of the reactions. For other reactions, one would need to t
to a function which includes a negative contribution.
Input features

Coulomb matrix (CM) and encoded bond (EB) input features
were generated from reactant and product geometries with the
MolML soware package.38 From these, a difference input
feature was computed. Indeed difference input features have
been successful in the context of machine learning kinetics.16,39

Many other input feature representations could be considered,
for instance graph input features or machine learned input
Fig. 3 Pairwise plot of the predicted test set values of log(k(T)QR(T));
the product of the quantum reaction rate constant k(T) with the
reactant canonical partition function QR(T) for temperature-wise split
train and test sets. The predicted values are in strong agreement with
the test set with a test set MAPE of 0.998%.

854 | Digital Discovery, 2022, 1, 851–858
features. While it is beyond the scope of this work, we leave this
to future work. To account for organic-metal atom interactions
we considered the 6 atoms which moved the most aer aligning
reactant and product geometries. This number was chosen to
ensure that at least one metal atom was included in the
representation.

When training and testing GPR reaction rate constant
product predictors, inverse temperature,1/T, and reaction
energies (RE) were included as input features. The combined
input features for the train and test set were scaled using the
min–max (0,1) scaler t to the train set implemented in the
scikit-learn soware package.40 The target was not scaled or
normalized. The same input features were used when training
Fig. 4 Predicted value of reaction rate constant product as a function
of 1/T for the reaction of CH3* + */ CH2* + H* on Pt(111), taken from
the test set (Table 1 – reaction (8)). We see that the standard deviation
of the trained GPR posterior predictor is quite large, however the
predicted values are within one standard deviation from the exact
results.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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and testing GPRs to predict the Cauchy scale parameter (eqn
(3)).
Search for optimal kernel and molecular input features for
GPR tting of the reaction rate constant products

A search was carried out for the optimal geometric input
features and GPR kernel combination. The optimal set was
identied by comparing the train set mean absolute error (MAE)
scores. We investigated both the use of single kernels (Matérn,
radial basis function, pairwise with linear metric, rational
quadratic and white noise) and sums of two single kernels.41 For
the temperature-wise split, it was found (Table 2 and ESI Table
S2†) that Coulomb input features with min–max scaling
together with a Matérn kernel summed to a pairwise linear
kernel lead to the lowest MAE 9.92 � 10−11 in units of the
natural logarithm of inverse atomic units or time, log[1/au].
This corresponds to a MAPE of 2.41 � 10−10%. For the
reaction-wise split, the optimal input features were the min–
Fig. 5 Plot of test set time series values from Cauchy fits of the flux–
flux correlation function, normalized by its value at time zero (x-axis)
respect to the time series values from predicted fits using GPRs (y-
axis). Both axes are in log scale to emphasize data points. The pre-
dicted fits are in strong agreement with the exact Cauchy fits.

Table 3 The first two rows report the average mean absolute percent e
(eqn (3)) with the GPR predicted scale parameter. The “rx” subscript indic
report the percent mean absolute error on the logarithm of the product
the product is obtained by using trapezium integration of the Cauchy fit

Computed quantity Method

Cff ðt;TÞ
Cffð0;TÞ

Cauchy curve t with GPR predicted
scale parameter for temperature-
wise split data

Cff ðt;TÞ
Cffð0;TÞ

Cauchy curve t with GPR predicted
scale parameter for reaction-wise
split data

log(k(T)QR(T)) Trapezium integral of predicted
Cff(t) Cauchy t for temperature-
wise split data

log(k(T)QR(T)) Trapezium integral of predicted
Cff(t) Cauchy t for reaction-wise
split data

© 2022 The Author(s). Published by the Royal Society of Chemistry
max scaled Coulomb input features together with 1/T and
reaction energies and the optimal kernel was the sum of two
Matérn kernels with an MAE of 5.69 � 10−10, corresponding to
a MAPE of 1.43 � 10−9% (Table S3†). With these optimal
kernels and input features, the trained models predicted the
test set with errors ten orders of magnitude larger than those for
the train set. To address this issue of overtting, we adjusted the
value of the noise term a added to the diagonal of the covari-
ance matrix during tting. This term can be used as a regulari-
zation parameter to prevent overtting.34,42 Due to the small size
of our data set a reasonable validation set was lacking for
hyperparameter optimization. Hence, the optimal value of
a was selected by comparing the train and test set errors for
a range of values between 10−10 and 100 and choosing the value
which led to the smallest gap between train and test errors; a ¼
0.5. Varying a over this range did not signicantly impact the
log marginal likelihood of the t or the test set error for any of
the models. All models were then retrained with a set to 0.5 and
results are presented from these retrained models.

GPR prediction of reaction rate constant products

The optimal GPR models listed in Table 2 were used to predict
reaction rate constant products for previously unseen temper-
atures and reactions. For temperature-wise split test set values,
the GPR had a high prediction accuracy with a MAPE of 0.998%.
As we can see in Fig. 3 the predicted values (y-axis) closely follow
the exact values (x-axis). The highest accuracy was in the
temperature range T ˛ [250–350] K which is where there was
a higher density of points in the training set (see ESI Fig. S4†).
On the other hand, in the case of reaction-wise split test values,
theMAPE was signicantly larger at 33.8%. In Fig. 4 we compare
the predicted and exact k(T)QR(T) for the decomposition of
activated CH3* on a Pt(111) surface (reaction (8) of Table 1).

We nd the Gaussian process regressor standard deviation
to be large, however the predicted mean values are within one
standard deviation from the exact values.

We believe these larger errors on reaction-wise split test data
are due to the small size of the training dataset. To improve on
this prediction error, in section “Computation of k(T)QR(T),
rror on the computation of Cff(t;T)/Cff(0;T) using a Cauchy distribution
ates that MAE errors are averaged over all reactions. The last two rows
of the reaction rate constant with the reactant partition function. Here
of the scaled flux–flux correlation function

Error metric % Error

hMAPE(Cexact
ff (t;T), CGPRCauchy

ff (t;T))irx 9.77 � 10−1

hMAPE(Cexact
ff (t;T), CGPRCauchy

ff (t;T))irx 9.76 � 10−2

MAPE(log(kQR)
exact,

log(kQR)
GPRCauchy)

6.78 � 10−1

MAPE(log(kQR)
exact,

log(kQR)
GPRCauchy)

8.21 � 10−1

Digital Discovery, 2022, 1, 851–858 | 855
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from a predicted t of Cff(t;T)”, we look at training a GPR to
predict a t to the Cff(t;T) and integrating it to compute a k(T)
QR(T) value.
Search for optimal kernel for GPR tting of scale parameter of
Cauchy t of ux–ux correlation function

For the GPRs of Cauchy distribution Cff(t;T)/Cff(t;0) t scale
parameters, s (eqn (3)), we used the same input features found
optimal when tting GPRs to predict log(k(T)QR(T)); i.e.
Coulomb matrix input features together with the inverse
temperature and reaction energy.

All input features were min–max scaled. We then searched
for the optimal kernel and found that (Table 2 and S4†) for
temperature-wise splitting the best was the sum of a Matérn
kernel with a rational quadratic kernel.

Here the training set MAPE was 1.32 � 10−11%. For reaction-
wise splitting the optimal kernel was a Matérn kernel summed
to a rational quadratic kernel and the train set MAPE was 3.36�
10−11% in atomic units of time. Again, models were then
retrained with the regularization parameter a set to 0.5.
GPR prediction of Cauchy t ux–ux correlation functions

We used the GPRs of the Cauchy t scale parameter to obtain
a “predicted” Cauchy t of the scaled ux–ux correlation
function. We found that these “predicted” ts closely followed
the original ts of the exact scaled ux–ux correlation func-
tions for both the temperature-wise split and reaction-wise split
test data. In Fig. 5 we show the pairwise correlation between the
unscaled predicted ts (y-axis) and unscaled test set ts (x-axis)
for the reaction wise split. The predictions are in strong agree-
ment with the exact values. We note a series of segments in the
Fig. 6 Pairwise plot of the exact (x-axis) respect to the integrated
Cauchy GPR fit (y-axis) product of the reaction rate constant with the
reactant partition function. Data was obtained for the reaction split
previously unseen reaction. The MAPE ¼ 0.82% is two orders of
magnitude smaller than what was found when predicting the product
directly for the same data (see Table 2).

856 | Digital Discovery, 2022, 1, 851–858
predicted values of Cff(t;T)/Cff(t;0). Each segment can be asso-
ciated with one or at most two reactions.

We also see accurate predictions of the ux–ux correlation
function (Fig. 7, panel a) for reaction 8 at 300 K. The predicted
values closely follow the exact values in time for this previously
unseen test set reaction.
Computation of k(T)QR(T) from a predicted t of Cff(t;T)

From our GPR Cauchy scale parameter predicted Cff(t;T) data we
computed the reaction rate constant products by using trape-
zium integration for both the temperature wise and reaction
wise split test set values. The results are shown in the last two
rows of Table 3 and also in the pairwise plot (Fig. 6). We note
Fig. 7 Panel (a) predicted Cauchy fit of the flux–flux correlation
function (dashed blue line) for the reaction of CH3* / CH2* + H on
Pt(111) (reaction (8) in Table 1) at 300 K. Panel (b) comparison of the
exact reaction rate constant products (grey circles and dashed line)
with numerically integrated values obtained from the GPR Cauchy
predicted scale parameter fit (blue diamonds and solid line). We see
a large improvement on predicted test set reaction rate constant
values respect to what we had found when predicting the rate
constant product directly (Table 2).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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a very large improvement in the mean absolute percent error
(MAPE) for the reaction-wise split dataset. While the MAPE was
on the order of 101 when predicting the product directly (Table
2) it is now two orders of magnitude smaller and equal to 0.82%.
This implies that the error on the integral of the tted Cff(t;T) is
smaller than the error of the GPR predictor of the reaction rate
constant product. If we look at the prediction of the reaction
rate constant product for reaction (8) from the test set (Fig. 7,
panel b). we nd a signicant improvement respect to Fig. 4.
The predicted values now closely follow the exact as a function
of temperature.

With these last results we believe GPRs can predict kinetics
not only as a function of temperature, but also for previously
unseen reactions.
Conclusions

Gaussian process regressors were trained on our home built
set of exact ux–ux correlation functions and quantum
reaction rate constant products for heterogeneous surface
reactions.33 We investigated the GPRs' ability to predict both
the product of the reaction rate constant with the reactant
partition function and the ux–ux correlation function in
time, rescaled respect to its initial value. Two previously
unseen test sets were used to determine prediction ability, one
contained previously seen reactions at new temperatures and
the other previously unseen reactions at new temperatures.
GPRs were accurate in predicting reaction rate constant
products at new temperatures with a small MAPE on the order
of 100. When looking at reaction-wise split however, the error
was larger and on the order of 101. We were able to reduce the
prediction error by considering a different GPR target – the
scale parameter of a Cauchy distribution function t to the
ux–ux correlation function. The resulting trapezium inte-
grated reaction rate constants had an MAPE error of 0.82%
which was two orders of magnitude smaller for that same
reaction wise split test set. The cost of our predictors is low
when looking at predicting the fully quantum k(T)QR(T)
directly. All that is needed in input is a reaction energy,
temperature and the geometries of reactants and products. No
information on minimum energy paths is required. However,
it is important to recall that these quantities depend on the
specic catalyst. When considering the prediction of the
Cauchy t for the ux–ux correlation function, one also needs
the value of the ux–ux correlation function at time zero.
While this comes with a cost it remains orders of magnitude
smaller than the full computation of the ux–ux correlation
function. We trust that this work will help in the prediction of
fully quantum kinetic quantities.
Data availability

The ux–ux correlation function and reaction rate constant
dataset can be found on Zenodo.33 All code needed to reproduce
these results can be found at https://github.com/brendenpelkie/
learning_uxux_kinetics.
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