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Scott M. Auerbach d and Michele Ceriotti e

Zeolites are nanoporous alumino-silicate frameworks widely used as catalysts and adsorbents. Even though

millions of siliceous networks can be generated by computer-aided searches, no new hypothetical

framework has yet been synthesized. The needle-in-a-haystack problem of finding promising candidates

among large databases of predicted structures has intrigued materials scientists for decades; yet, most

work to date on the zeolite problem has been limited to intuitive structural descriptors. Here, we tackle

this problem through a rigorous data science scheme—the “Zeolite Sorting Hat”—that exploits

interatomic correlations to discriminate between real and hypothetical zeolites and to partition real

zeolites into compositional classes that guide synthetic strategies for a given hypothetical framework.

We find that, regardless of the structural descriptor used by the Zeolite Sorting Hat, there remain

hypothetical frameworks that are incorrectly classified as real ones, suggesting that they might be good

candidates for synthesis. We seek to minimize the number of such misclassified frameworks by using as

complete a structural descriptor as possible, thus focusing on truly viable synthetic targets, while

discovering structural features that distinguish real and hypothetical frameworks as an output of the

Zeolite Sorting Hat. Further ranking of the candidates can be achieved based on thermodynamic stability

and/or their suitability for the desired applications. Based on this workflow, we propose three

hypothetical frameworks differing in their molar volume range as the top targets for synthesis, each with

a composition suggested by the Zeolite Sorting Hat. Finally, we analyze the behavior of the Zeolite

Sorting Hat with a hierarchy of structural descriptors including intuitive descriptors reported in previous

studies, finding that intuitive descriptors produce significantly more misclassified hypothetical

frameworks, and that more rigorous interatomic correlations point to second-neighbor Si–O distances

around 3.2–3.4 Å as the key discriminatory factor.
1 Introduction

Zeolites are nanoporous crystalline materials with exceptionally
high thermal and hydrothermal stabilities, making them
excellent candidates for a range of present and future technol-
ogies based on shape selectivity. Because of their controlled
nanoporosity and acidic properties, zeolites nd application in
a myriad of industrially relevant processes, predominantly in
separation and catalysis.1–3 To accelerate zeolite discovery,
databases of hypothetical zeolites have been created4–7
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containing millions of new framework structures. These data-
bases have been successfully screened identifying materials
with desirable properties,8–11 but to date, none of them has been
synthesized in the lab, a phenomenon referred to as the “zeolite
conundrum”.12 A common assumption in the search for hypo-
thetical zeolites that may be good candidates for synthesis is
that the synthesizability of a given framework is correlated with
its structural similarity to zeolites that have already been made.
We note that prior work studying drug-like molecules relied on
a similar principle of assessing synthesizability via the
eLaboratory of Computational Science and Modeling, Institut des Matériaux, École
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spectrum features, and a listing of the top Deem candidates for synthesis
resulting from our data-driven pipeline. See https://doi.org/10.1039/d2dd00056c
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Fig. 1 Histograms of (a) energies computed for the IZA and DEEM
frameworks with GULP and of (b and c) values of the first two principal
components of the power spectrum SOAP vectors of a subset of 10
000 DEEM frameworks and all 230 IZA frameworks. The histogram
makes evident that the IZA frameworks are concentrated near the
edge of the structural space defined by the DEEM frameworks. The
PCA projection is defined only by the 10 000 DEEM frameworks. (d)
Atomic snapshot of VET, the IZA framework based with the lattice
energy closest to the IZA average. (e) Atomic snapshot of framework
8154453, the DEEM structure with the lattice energy closest to the
DEEM average.
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comparison of molecular fragments and computation of a syn-
thesizability score.13,14

The great importance and challenge in fabricating new
zeolites prompt several pressing questions: How do collections
of real and hypothetical zeolites relate to each other in terms of
structural diversity? Which structural features play the biggest
role in distinguishing real and hypothetical zeolites? Which
hypothetical zeolites are most likely synthesizable, and in which
chemical composition? Previous attempts to answer these
questions15–22 have relied on intuitive guesses for structural
descriptors such as rings and angles. These rely on prior
assumptions on the most relevant features and cannot be made
systematically more complete,23 which hinders the construction
of systematically-improvable classiers. In the present work, we
answer all these questions via rigorous data science methods
combining unsupervised and supervised machine learning,24

along with the generalized convex hull (GCH) description of
thermodynamic stability,25 yielding a new and powerful
approach for sorting real26 and hypothetical4–7 zeolites, as well
as nding promising zeolite candidates and suggesting likely
chemical compositions for them.

2 Results

The scale of the zeolite conundrum can be appreciated by
comparing the number of hypothetical frameworks with that of
“real” zeolites. Different studies have suggested over 2 600 000
distinct topologies,7 and even the subset we consider here,
which only contains particularly stable, fully connected frame-
works selected among a larger pool of candidates, contains
more than 300 000 all-silica structures (i.e., the database of
Deem and coworkers, henceforth denoted as DEEM; see ref. 7).
In contrast, only 255 framework topologies have been collected
in the International Zeolite Association database (henceforth
denoted IZA), which can be realized in different compositional
variations. To ensure that our comparisons are made on an
equal footing, we perform our study on all-silica models. The
great imbalance between known and hypothetical frameworks
calls for a balancing act when applying data-driven analyses:
models and structural descriptors must be exible and sensitive
enough to detect structural differences among all of the DEEM
frameworks, but sufficiently robust and concise to extract useful
information from a few hundred IZA entries without overtting
the smaller dataset.

To this end, we describe framework structures using the
Smooth Overlap of Atomic Postions (SOAP) method,27 which
allows systematic convergence of structural information by
increasing the SOAP length scale and the order of atomic
correlations (e.g., distances, angles, and dihedrals28,29). In
previous work, we proved this convergence by applying SOAP to
machine-learn the framework density and lattice energy of
DEEM frameworks, and showed that several heuristic nger-
prints that have been used previously to analyze zeolite struc-
tures do not allow such convergence.23 Here we nd that the
DEEM-trained models accurately predict the same properties
for IZA frameworks (see Table S1,† energy error below 0.20 kJ
mol−1 Si). The accuracy of DEEM-trained predictions on IZA
780 | Digital Discovery, 2022, 1, 779–789
indicates substantial structural overlap between the two data-
sets, underscoring the signicant challenge of telling them
apart.

Armed with SOAP as a structural descriptor, we seek
a method for discriminating IZA and DEEM entries. We note
that classiers based on lattice energy (Fig. 1(a)) or clustering
along descriptors obtained by unsupervised dimensionality
reduction (Fig. 1(b) and (c)) are both found to fail at telling IZA
and DEEM apart (also see the point-clouds in Fig. S3†). Manual
inspection of the structure of individual frameworks (two
representative cases being shown in Fig. 1(d) and (e)) does not
reveal any obvious discriminating feature, and is impractical
given the size of DEEM. To solve this puzzle, we apply super-
vised learning to classifying zeolites, and denote our approach
the “Zeolite Sorting Hat.”
© 2022 The Author(s). Published by the Royal Society of Chemistry
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In practice, however, we actually seek to solve an even harder
problem: distinguishing subclasses of IZA based on composi-
tion to provide a rough starting point for viable synthesis routes
for analogous DEEM frameworks. To do this, we parse IZA into
subclasses (or “houses”) based on reference compositions, i.e.,
the chemical composition of the material that rst allowed the
establishment of the framework topology, according to the IZA
structure commission. This choice makes the assignment
unique and future-proof, and is also consistent with the
reasonable assumption that the reference material results from
a robust synthetic approach. We reiterate that the sorting hat
classication studied herein is based on geometry-optimized
all-silica structures, and does not explicitly incorporate infor-
mation on the composition. We nonetheless pursue a compo-
sition-based classication to determine the extent to which
network structure predicts reference composition. Success in
classifying frameworks according to their reference composi-
tions can be benchmarked on IZA structures, and will test our
hypothesis that framework structures can be used to infer
information on synthesizability and on viable synthetic path-
ways. By extension, applying the trained compositional classi-
er to DEEM frameworks may suggest the chemical
composition that should be pursued in the laboratory for
a candidate structure, making our predictions of synthesiz-
ability more directly useful for materials chemists.

Analysis of the IZA database yields the following four houses:
zeolite topologies with a pure-silica reference composition are
assigned to IZA1; topologies whose reference composition
contains O, but no Si, are classied as IZA3; topologies refer-
enced to an intermediate fraction of Si (e.g., aluminosilicates)
are labeled as IZA2; and a single exotic framework (RWY) con-
taining neither Si nor O is classied as IZA4 and is discarded
from the present analysis as a structural and energetic outlier
(see Fig. 1(a)). From a certain perspective, the distinction
between pure-silica zeolites and alumino-silicate zeolites can be
viewed as “shades of gray” rather than a qualitative difference
warranting distinct classes. This perspective is supported in
part by post-synthetic modications such as de-alumination
that can vary framework Al content levels. However, there is
an alternative perspective – informed by direct zeolite synthesis
– in which alumino-silicate zeolites and pure-silica zeolites
should be seen as qualitatively different. Indeed, the zeolite
synthesis methods developed in the 1950s by Barrer and
coworkers30 use alkaline media to simulate geological processes
at high pH to make alumino-silicates. In contrast, the methods
pioneered by Edith Flanigen and coworkers in the 1970s31 apply
uoride-media at neutral pH to make pure silica zeolites. The
focus of our work is informed by the direct-synthesis perspec-
tive because one cannot de-aluminate what one cannot make in
the rst place. As such, we see the virtue of distinguishing pure-
silica zeolites (IZA1) and alumino-silicate zeolites (IZA2) as
separate classes.

Through the lens of the principal components of the SOAP
features shown in Fig. 1(b) and (c), these IZA houses occupy the
same region in SOAP vector space, thus appearing indistin-
guishable according to the rst two principal component
directions. In summary, the various framework classes (DEEM/
© 2022 The Author(s). Published by the Royal Society of Chemistry
IZA1/IZA2/IZA3) cannot be effectively discriminated using an
energetic criterion or through a simple unsupervised learning
technique like PCA. In Section 2 we pursue such a composi-
tional classication using a combined energy/density criterion
for comparison with the rigorous results from SOAP. We have
designed the Zeolite Sorting Hat to be robust, accurate, and
interpretable. Together with SOAP representations as inputs
(which provide a exible, but physically sound description in
terms of three-body correlations of the atom density) we use
a linear support vector machine (SVM) whose outputs are
decision functions: one function in the case of the two-class sort
(DEEM/IZA) and four functions for the four-class sort (DEEM/
IZA1/IZA2/IZA3). The use of a linear model simplies the
interpretation of results, and allows for interesting comparisons
with classications based on heuristic descriptors, which we
show below in Fig. 5. Because of the scarcity of IZA structures
relative to the size of the DEEM database, we implemented
a class-balanced classication scheme that magnies the
weight of misclassied IZA structures in the training step.

The choice of an SVM classier in which DEEM structures
are considered non-synthesizable deserves some further
comment. The problem of identifying synthesizable structures
within DEEM falls squarely within the scope of positive-
unlabeled (PU) methods, which use information on a set of
inputs which are labeled (the IZA structures, which are known
to be synthesizable) and a set of inputs whose classication is
unknown (those from DEEM, which may be synthesizable or
not). Application of PU methods32 requires knowing (or
assuming) much about the relationship between the labeled
and unlabeled datasets. In view of the empirical fact that no
zeolite has been synthesized based on a hypothetical frame-
work, it is reasonable to assume that only a tiny fraction of
DEEM structures are amenable to synthesis, which led us to
simply consider the hypothetical dataset as negative samples.
This is analogous to the case of decoy molecules used in ligand
binding studies,33 which are assumed to be negative samples
even in the absence of data concerning their biological activity.
Furthermore, in the most commonly-adopted setting (which
assumes that labeled samples are selected completely at
random from the set of positive samples) PU classication
reduces to the application of classical binary classiers, treating
the unlabeled inputs as negative samples, but interpreting
differently the resulting classication and the performance of
the model.

It is also worth considering that—even though we formulate
the classication problem in terms of clear-cut target classes—
reality is more nuanced. The synthesis of a given framework
could be facile, or extremely challenging. A framework could be
made as pure SiO2, but also in different compositions. To
recover such nuance, we will base most of our analysis on the
magnitude of the decision functions that are used in the
construction of the SVM, allowing us to rank the “IZA-ness” of
a set of DEEM structures. Indeed, the SVM decision function
goes beyond a binary classication by giving a degree of
resemblance between two classes. To recover a binary classi-
cation, i.e., to classify a particular structure as real or hypo-
thetical, a decision boundary is dened. The decision boundary
Digital Discovery, 2022, 1, 779–789 | 781
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is a cutoff value that separates the otherwise continuous space,
dividing the decision function into “IZA-like” and “DEEM-like”
realms. To decide whether a structure is classied as IZA or
DEEM, the Zeolite Sorting Hat computes the decision function
for a particular zeolite and checks in which realm it falls (on
which side of the decision boundary it lies). The location of the
decision boundary is then varied to minimize false positives
and false negatives in the classication, which provides a rough
metric to assess the performance of the SVM. The Zeolite Sort-
ing Hat was trained on a random half of IZA, and approximately
3% of DEEM (see Methods and the ESI† for details), and the
results we report here refer to predictions made on the
remainder of the datasets.

Fig. 2 shows how the Zeolite Sorting Hat works and displays
its performance in classifying real (IZA, red) and hypothetical
(DEEM, blue) frameworks. Fig. 2(a) illustrates how the support
vector machine operates by using toy data, in which each dot or
square represents the (schematic, 2D) feature vector for a given
framework, and where the decision boundary location can be
Fig. 2 (a) Schematic of a support vector machine (SVM); each dot or
square represents the feature vector for a given data point, the shading
represents the value of the decision function, and the decision
boundary location can be adjusted to optimize the classification
(represented by a green arrow). (b) Histogram of decision function
values for IZA and DEEM frameworks based on the full SOAP power
spectrum with an environment cutoff of 6.0 Å. (c) Receiver operating
characteristic (ROC) curve for the IZA vs. DEEM SVM classification with
6.0 Å SOAP, as the decision function boundary is swept through
decision space as shown by green arrows in (a), (b), and (c). The inset in
(c) shows the confusion matrix for the two-class IZA vs. DEEM clas-
sification using the full SOAP power spectrum, and (d) similarly shows
the four-class confusion matrix, with darker shading indicating
a greater proportion of the class-wise predictions. The superscripts † in
the confusion matrix labels refer to predicted classifications, and the
labels TP, FP, TN, and FN indicate true positive, false positive, true
negative, and false negative classifications, where the DEEM and IZA
frameworks are denoted as the positive and negative classes,
respectively.

782 | Digital Discovery, 2022, 1, 779–789
adjusted to optimize the classication (represented by a green
arrow). The blue/white/red shading in Fig. 2(a) represents
a continuous decision function with negative and positive
values corresponding to toy stand-ins for IZA and DEEM,
respectively, illustrating the nuanced classication provided by
the Zeolite Sorting Hat. Fig. 2(b) reveals the actual histogram of
decision function values for the two-class IZA/DEEM sort ob-
tained from the full SOAP power spectrum including two- and
three-body correlations within a distance cutoff of 6.0 Å. The
histogram is clearly bimodal, indicating that the IZA and DEEM
datasets are indeed distinguishable via the Zeolite Sorting Hat,
a striking contrast to the failure of unsupervised learning shown
in Fig. 1. We also see small areas of overlap between IZA and
DEEM decision function values; these are important for sug-
gesting IZA-like DEEM frameworks that may be targets for
synthesis according to our synthesizability hypothesis. Fig. 2(c)
quanties the performance of the Zeolite Sorting Hat through
the receiver operating characteristic (ROC) curve and optimal
confusion matrix. The ROC curve optimizes sorting accuracy
with respect to the location of the decision boundary (green
arrows in Fig. 2) by maximizing the rate of true positives while
minimizing false positives. The performance of the sorting
procedure can be further assessed by examining the confusion
matrix, which consists of rows and columns that represent the
classes in which the data is to be sorted (IZA and DEEM in our
case). The diagonal terms count the cases in which the predic-
tion and reality match, while the off diagonal terms represent
the number of failed predictions. The best Zeolite Sorting Hat
performance is shown by the confusion matrix inset in Fig. 2(c),
revealing that 102/115 (89%) of the IZA frameworks and 95% of
DEEM frameworks are correctly classied. This excellent sorting
performance is remarkable given the substantial overlap in
energy- and structure-spaces shown in Fig. 1, and substantiates
our simplifying assumption of treating the unlabeled DEEM as
a dataset containing (mostly) decoys.

The successful two-class (DEEM/IZA) sort prompts the
investigation of the even more challenging four-fold (DEEM/
IZA1/IZA2/IZA3) classication: a prediction of the reference
composition based exclusively on the structure of the pure SiO2

framework. Note that all frameworks were treated as all-silica
for the purpose of our work, so the success of the four-fold
classication cannot be taken for granted. The optimal confu-
sion matrix of the four-way classier (Fig. 2(d)) demonstrates
that the Zeolite Sorting Hat is also successful at this more
difficult task. The distinction between IZA1 (all-silica) and IZA3
(no-silicon) is nearly perfect, and most of the incorrect classi-
cations involve IZA2. This is consistent with the fact that our
denition for IZA2 encompasses a broad range of compositions
from high-silica alumino-silicates (some of which have also
been synthesized as pure silica frameworks) to low-silicon
silico-aluminophosphates. Thus, the imperfect classication
of mixed-composition frameworks can be seen as a verication
that the model is not overtted, and reects some of the
nuances that are not captured by our somewhat articial clear-
cut splitting of the houses. It is also intriguing to note that most
of the IZA being misclassied as DEEM belong to the no-silicon
IZA3 house, while the all-SiO2 IZA1 entries are never mistaken
© 2022 The Author(s). Published by the Royal Society of Chemistry
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for a hypothetical framework, which is consistent with the fact
that IZA3 consists of exotic frameworks that are more diverse
and less typical than the all-silica zeolites, as well as farther in
their chemistry from the silicate representation that was used
for all frameworks. The success of this four-fold sort opens the
door to recommending synthesis compositions for IZA-like
DEEM structures.

The confusion matrix in Fig. 2(c) shows that z15 000 DEEM
frameworks are misclassied as IZA. To further narrow down
the subset of DEEM structures for which synthesis should be
attempted, we augment the notion of similarity generated by
the Zeolite Sorting Hat with the concept of thermodynamic
stability. The importance of thermodynamic stability (a rough
estimate of which is given by the lattice energy34) was under-
scored by a recent machine learning study showing that syn-
thesizable zeolite phases correlate with their thermodynamic
stabilities.35 However, as discussed above, Fig. 1(a) shows that
naively using lattice energies to identify synthesizable DEEM
frameworks is insufficient because of the signicant overlap
between IZA and DEEM energies. Furthermore, most zeolites
are only metastable, their synthesis being made possible by
carefully chosen thermodynamic conditions.

The convex hull construction is oen used in materials
discovery as a proxy for the stability of a phase subject to e.g.
xed composition, or a prescribed molar volume.36 One could
imagine building convex hulls in which the parameters that
determine the synthesis conditions play the role of generalized
thermodynamic constraints, akin to composition and volume.
Their diversity, however, makes it all but impossible to map
them on a single, clearly-dened stabilizing order parameter.
For this reason, we have used a generalized convex hull (GCH)
construction, which uses data-driven coordinates that are
computed as a function of the atomic congurations, and
provide a low-dimensional description of the structural diver-
sity of the frameworks. The idea is that two structures that are
very different from each other respond in different ways to the
application of a thermodynamic constraint, so that by
designing appropriate synthetic conditions it might be possible
to stabilize, and therefore make, the structure which is less
stable in terms of lattice energy. Frameworks with very similar
structure, instead, respond similarly to any thermodynamic
forcing, and so among neighboring congurations only those
with low lattice energy can be synthesized. The GCH construc-
tion provides a quantitative way to apply this concept, as dis-
cussed in ref. 37, by dening the stability as the vertical distance
from the hull built from the data-driven coordinates (the “hull
energy”).

The GCH does not, however, say what synthesis parameters
correlate with the data-driven coordinates, nor how to optimize
the data-driven coordinates so that they correlate with known
synthesis parameters. To determine a coordinate space for the
GCH that can be loosely interpreted in relation to known
synthesis conditions, we use the decision functions of the 4-way
Zeolite Sorting Hat, and apply the method of principal cova-
riates regression (PCovR),38,39 which optimizes a lower-
dimensional space that supports classication by the Zeolite
Sorting Hat, and simultaneously resolve as well as possible the
© 2022 The Author(s). Published by the Royal Society of Chemistry
structural differences between frameworks. We produce a 2D
latent space for the GCH which separates as well as possible
DEEM and each of the three IZA houses, and take the energetics
for the GCH from the same classical forceeld40 used by
Deem and coworkers. Aer determining which frameworks
dene the vertices of the GCH, we can compute the “hull
energies”, and use them as an energetic measure of synthesiz-
ability in the sense discussed above.

A visualization of the resulting GCH construction is given in
Fig. 3(a), in which each IZA and DEEM framework is respectively
plotted as a single square or circle and is colored according to
its two-class DEEM/IZA decision function value. The points are
also sized and given an opacity corresponding their hull ener-
gies: larger, more opaque points are those closer to the GCH.
The hull vertices are indicated via thick black borders, and are
energetically stable relative to the frameworks that are close to
them in PCovR space. This local stability implies that—subject
to appropriate thermodynamic constraints—it might be
possible to stabilize all the hull frameworks, including those
which lie to the right of the plot. However, the conditions
needed to stabilize frameworks that are very distinct from any
IZA structure are likely to be completely different from those
used in the synthesis of any currently known zeolite. Thermo-
dynamic stability and structural similarity to known zeolites
should be used simultaneously to assess the synthesizability of
a candidate structure. The DEEM frameworks that show the
most promise according to our criteria, then, are those that are
misclassied as IZA and lie close to the GCH, i.e., the large,
opaque, red circles in Fig. 3(a).

The utility of the GCH construction based on a PCovR latent
space is evident upon comparing Fig. 3(b)–(d) with Fig. 1(a)–(c).
While the difference in mean IZA and DEEM lattice energies in
Fig. 1(a) is only 5 kJ mol−1 Si, the mean hull energies shown in
Fig. 3(b) differ by more than 10 kJ mol−1 Si, with most IZA
frameworks either on or very close to the GCH, thus conrming
that the energy distance from the convex hull is a more selective
lter for thermodynamic stability than the bare lattice energy.
Fig. 3(c)–(d) also reveal the advantage of the PCovR space over
the PCA space (Fig. 1(b)–(c)) in arranging the IZA and DEEM
frameworks: the rst PCovR component correlates strongly with
DEEM/IZA decision-function values, and therefore highlights
the structural distinction between the real and hypothetical
frameworks—an arrangement that is largely absent from the
PCA. Furthermore, the second PCovR component (Fig. 3(d))
roughly organizes the IZA frameworks according to their
compositional (house) classication: there is minimal overlap
between the all-silica (IZA1) and no-silicon (IZA3) frameworks,
and the frameworks that contain both Si and other tetrahedral
(“T”) atoms (IZA2) overlap with both the all-silica and no-silicon
frameworks. The separation into IZA houses through the Zeolite
Sorting Hat shown by the confusion matrix (Fig. 2(d)) is actually
better than what can be visually inferred from the histogram in
Fig. 3(d) because the classication is applied in the full-
dimensional SOAP space and not in that obtained by 2D
PCovR, which trades-off some information to achieve a low-
dimensional representation. This visualization also demon-
strates that our analysis based on the value of the decision
Digital Discovery, 2022, 1, 779–789 | 783
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Fig. 3 (a) First two components of the PCovR projection based on the four-class decision functions with IZA (square) and DEEM (circle)
frameworks colored according to two-class decision function value (red: IZA-like; blue: DEEM-like). Larger, more opaque points lie close in
energy to the GCH; hull vertices are indicated via points with thick black borders. (b) Histogram of the energy distance to the convex hull for the
IZA and DEEM frameworks. (c) and (d) Histograms of the PCovR component values for the IZA houses and DEEM.
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function allows us to recover some of the nuance that is
inherent to the zeolite conundrum. The misclassied IZA
structures lay close to the decision boundary, suggesting the
possibility of interpreting the two-class decision function as an
indication of how “typical” a putative zeolite framework is:
indeed, we recall that most of these misclassied structures
belong to the IZA3, no-silicon house, and that they can be seen
as “borderline” cases with unusual geometries. Similarly, the
greater spread in the distribution of the IZA2 structures is
consistent with the broad denition of this class.

The GCH construction leaves us with approximately 4600
DEEM structures that are classied by the Zeolite Sorting Hat as
belonging to IZA and that lie within a 5 kJ mol−1 window from
the hull. From energetic and structural perspectives, these
frameworks appear as likely to be synthesizable as structures
that have been made already. While selecting among these
worthwhile candidates for synthesis can be achieved by ranking
the structures based on their GCH distances, a more
784 | Digital Discovery, 2022, 1, 779–789
application-oriented selection can be performed by introducing
a secondary ltering criterion. To demonstrate this approach,
we stratify the DEEM dataset in terms of molar volume and
select the IZA-like DEEM candidate closest in energy to the hull
within each of the 55–60, 60–65, and 65–70 Å3/Si ranges, which
cover the upper end of the distribution of molar volumes for
known IZA structures. This stratied search can be intuitively
visualized using the chemiscope structure–property explorer;41

a link to the visualizer is included in ESI† for readers to explore.
The structures of the resulting three promising DEEM

frameworks are highlighted in the insets of Fig. 3(a). Two
(8158735 and 8054476) are classied by the Zeolite Sorting Hat
as belonging to IZA2, i.e. as aluminosilicates, and the third
(8312395) is classied as IZA3, a zeolite containing no silicon,
suggesting synthesis as an aluminophosphate. Framework
8158735, the candidate within the 55–60 Å3/Si range, is closest
to the IZA framework THO in SOAP space and exhibits rings of
3, 4 and 8 T atoms; THO is similarly composed of 4- and 8-rings.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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The candidate within the 60–65 Å3/Si range is the triclinic
framework 8054476, having SBN as its closest IZA neighbor.
Like SBN, framework 8054476 contains 4-, 8- and 9-member
rings. The DEEM framework in the largest volume category that
is closest in energy to the GCH is structure 8312395, which
shares many structural similarities to its nearest IZA neighbor
RHO: both frameworks contain 4-, 6-, and 8-member rings.
Additional discussion of the similarities of these three candi-
date DEEM frameworks and their nearest IZA analogues is given
in the ESI.†

Let us outline how we foresee our analysis can provide some
indications to facilitate the design of a synthetic route, taking
DEEM zeolite 8158735 (DEEM-A) as an example. For this
framework, the Sorting Hat points to synthesis as an alumino-
silicate. We note that the closest IZA cousin to DEEM-A is THO,
which can be fabricated using a hydrothermal treatment of
precursor gels made from Na2O, CaO, Al2O3, and SiO2.42 Obvi-
ously using this exact treatment will yield THO and not DEEM-
A, but it serves as a data-driven initial condition for an opti-
mization of the reaction mixture and any structure directing
agents, perhaps through the use of docking calculations.43

Armed with the result of such an optimization for DEEM-A, we
would have an excellent starting point in the synthesis condi-
tions space to nd a successful protocol for its synthesis in a few
synthesis conditions iterations; the same logic and consider-
ations apply for hypothetical zeolites 8054476 (DEEM-B) and
8312395 (DEEM-C). The above recommendations show how our
data science results t into the ecosystem of zeolite synthesis
design.

The Zeolite Sorting Hat's ability to discriminate between IZA
and DEEM, and among different reference compositions of IZA,
represents a breakthrough that begs a fundamental question:
what aspects of zeolite structure are critical to these discrimi-
nating powers? Additionally, how do the features that emerge
Fig. 4 (a) ROC curves of SVM classifications for three “knock-out”models
neighboring O atoms. The models include angular and radial correlatio
angular correlations limited to 3.5 Å (orange). The corresponding confu
DEEM real-space densities based on Si–O correlations (black line) plotted
blue lines) and 25 IZA frameworks (faded red lines). The d(r) for the three h
and are labeled using symbols. The line d(r) = 0 indicates the decision bo
to IZA. The background coloring representing the SVMweightsw(r) is sub
the colorbar limits are assigned the color at the corresponding end of th

© 2022 The Author(s). Published by the Royal Society of Chemistry
from an analysis of the SOAP-based models compare with some
of the structural discriminants that have been postulated as
inputs for previous real and hypothetical zeolite comparisons?
To reveal key structural discriminants, we rst performed an
ablation study in which we built several “knock-out models”
that use only a subset of the structural features. We repeat the
two-class DEEM/IZA sort to determine the impact on classi-
cation performance of (i) restricting the range of correlations to
rst neighbors (up to 3.5 Å), (ii) considering only radial infor-
mation on pair correlations, and (iii) using only some of the
three-body angular correlations between Si and O neighbors.
We show three representative models in Fig. 4(a)–(d), and report
a more systematic investigation in the ESI.†

Restricting the range of correlations or discarding all angular
information leads to a degradation of classication perfor-
mance, indicating that the structural features that distinguish
real and hypothetical zeolites involve angular correlations and
patterns in the relative positions of second and third neighbor
atoms, i.e., at length scales beyond the typical indicators that
have been hypothesized in previous studies,15–22 and in line with
the T site-h neighbour distance tested by Perez and
coworkers.20 It is also interesting to see that a model that uses
only 6.0 Å 3-body Si–O correlations, rather than also Si–Si
correlations, leads to a noticeable improvement in resolving
power: the number of misclassied DEEM structures drops by
30%. This underscores the data-limited nature of this exercise,
that requires nding a set of descriptors that is sufficiently
informative, yet not overcomplete.

Second, our use of linear constructs—SOAP vectors and
linear support vector machines—allows us to recast the Sorting
Hat in a “real space” form to elucidate the spatial weights that
distinguish real and hypothetical zeolites. The decision func-
tions are then obtained by summing the values of these weight
functions over all pairs and triplets of atoms in a structure. For
based on a limited set of structural correlations between a Si atom and
ns up to 6.0 Å (green), only radial information (purple) and radial and
sion matrices are shown in panels (b)–(d). (e) Class-averaged IZA and
together with the decision traces d(r) for 25 DEEM frameworks (faded
ighlighted frameworks from Fig. 3 are also plotted as fully opaque lines
undary: the top half corresponds to DEEM predictions, the bottom half
ject to a threshold to better show sign changes: weights falling outside
e colorbar.
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a purely radial model, the decision process can then be inter-
preted as the incremental construction of a “decision trace” d(r)
(see Methods) that, for r/N, gives the decision function value
used for classication. The length scales at which d(r)
undergoes large changes are those that dominate the
classication.

Fig. 4(e) shows that, for most DEEM frameworks, d(r) settles
to plateau positive values around r= 3.5 Å, corresponding to the
onset of second-neighbor Si–O correlations (3–4 Å). Known IZA
frameworks show an opposite behavior, driing towards nega-
tive decision values in the same region. The role played by these
second-neighbor Si–O correlations manifests itself in the sharp
change of w(r) from positive to negative values at around 3.5 Å,
indicating that frameworks in which the second-neighbor Si–O
peak appears at shorter-than-average distances favor a DEEM
prediction, and vice versa for IZA. We thus conclude that
second-neighbor Si–O distances are the most clearly discernible
structural feature that differentiate IZA and DEEM frameworks.
More subtle structural correlations involving angular informa-
tion and third-neighbor distances are needed to achieve clas-
sication accuracies above 90%, making an automatic data
analysis preferable to ad hoc heuristics.

To contextualize the discriminating power of an SVM based
on SOAP features, we also constructed SVMmodels based on (i)
the molar volumes and energies of the zeolite frameworks, and
(ii) the local interatomic distances (LIDs) of Li et al.;17 the ROC
Fig. 5 ROC curves and confusion matrices for the energy–volume (a) an
ROC curve for the SOAP descriptor in Fig. 2(c) is plotted alongside the ROC
Energy–density plot for the IZA and DEEM frameworks, illustrating the di
a support vector classifier. (f) Two-component PCA decomposition of
distinguish IZA frameworks from DEEM.

786 | Digital Discovery, 2022, 1, 779–789
curves and confusion matrices of these two “classical” models
are shown in Fig. 5. Despite their simplicity, the classical
models perform well in separating IZA from DEEM, with AUC
values of 0.91 and 0.95, respectively, in comparison with 0.97
obtained from the full SOAP approach (Fig. 2). Another impor-
tant way to compare these descriptors is via the number of
misclassied DEEM frameworks, which we want to make as low
as possible to focus on the most feasible hypothetical struc-
tures. The full SOAP model (6.0 Å power spectrum) misclassies
15 000 DEEM frameworks, that can be reduced further to 10 000
by dropping redundant descriptors, as shown in Fig. 4(a). The
volume/energy and LID descriptors misclassify 47 000 (Fig. 5(a))
and 42 000 DEEM frameworks (Fig. 5(c)), respectively, thus
diluting the search for feasible DEEM frameworks with low-
value targets because of the incompleteness of these classical
structural descriptors. Also notable is the fact that the energy–
volume and LID models perform more poorly in the four-class
exercise compared to the top SOAP models (compare Fig. 5(b)
and (d) to Fig. 2(d)).

In comparison with the SOAP-based models (see ESI†), the
energy–volume descriptor is outperformed by all but themodels
containing only radial information on the Si atoms. In contrast,
the LID-based SVM outperforms all but the best 3.5 Å SOAP
models, but is outperformed by all of the 6.0 Å power spectrum
models, which contain 3-body correlations that are missing in
LIDs. Overall, these results suggest that traditional
d (b) and LID (c) and (d) descriptors, analogous to Fig. 2(c) and (d). The
curves for the energy–volume and LID descriptors for comparison. (e)

scriminating power of using framework energy and volume as input to
the nine LID features, also visually demonstrating their potential to

© 2022 The Author(s). Published by the Royal Society of Chemistry
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representations of zeolite frameworks such as energy, volume,
and local interatomic distances can be used to effectively
distinguish IZA and DEEM frameworks; however, the longer-
range and angular correlations afforded by an appropriately
constructed SOAP representation provide additional improve-
ments that reduce the number of misclassied DEEM struc-
tures by more than a factor of 3 or 4, considerably rening the
space of candidate structures.

3 Conclusions

Synthesizing new zeolites is both an exciting intellectual chal-
lenge, and a technological quest with high potential rewards.
The huge databases of computationally-proposed zeolites stand
in striking contrast to the 255 known framework topologies
(IZA), conguring a highly asymmetric problem that hinders the
solution of this zeolite conundrum by brute-force applications
of data science. We developed and applied a multi-pronged
strategy for siing through the hypothetical zeolites in search
of the most promising candidates for synthesis. This “Zeolite
Sorting Hat” tackles data scarcity by using exible and unbiased
SOAP structural descriptors as inputs, and relatively simple and
robust linear classication algorithms via support vector
machines to reach a 95% accuracy in distinguishing real and
hypothetical structures. The 5% of hypothetical structures that
are recognized as “real” by the Zeolite Sorting Hat then become
promising candidates for synthesis. A thermodynamic stability
criterion provides an additional lter, and together with strati-
cation by framework density leads us to propose three leading
hypothetical candidates for synthesis. By further partitioning
IZA frameworks into “zeolite houses” based on known reference
compositions, and by quantifying geometric proximity to
existing materials, we provide guidance for synthetic efforts at
fabricating new zeolites. The principled choices we made in the
architecture of the Zeolite Sorting Hat also affords a degree of
interpretability in the classication process, pointing to the
importance of second-neighbor Si–O distances as the leading
factor that distinguishes real and hypothetical frameworks.

As it is the cases for many synthetic tasks, making zeolites is
a form of art, guided by experience, chemical intuition and
serendipity. The Zeolite Sorting Hat introduces data-driven
techniques and rational design44,45 into the process of select-
ing candidates that we hope will accelerate the rate of discovery,
which in turn will improve the predictive capabilities of the
model in a positive feedback mechanism that will progressively
take the guesswork out of zeolite synthesis.

4 Methods

Real zeolite structures were obtained as CIF les from the
online IZA database (https://www.iza-structure.org/databases/);
of the approximately 250 structures in the database, we
consider only those that are fully connected (as of early 2021),
totalling 230 structures. For the hypothetical zeolites we use
the dataset constructed by Pophale et al.7 All the IZA
structures were optimized following the same procedure
previously considered for the DEEM zeolites. The structural
© 2022 The Author(s). Published by the Royal Society of Chemistry
relaxation was performed with GULP46 using a modied
version of the Sanders–Leslie–Catlow (SLC) potential40 to
overcome the negative energy divergence due to the
Buckingham contributions for r / 0 (see ESI†). The same
forceeld was also used to evaluate the framework energies
for the IZA structures in their optimal congurations. Since
the DEEM frameworks are already relaxed with the SLC
forceeld, we computed their energies though a relaxation of
the atom shells only, keeping the cell and cores xed. Our
computed energies were in good agreement with those
obtained by Deem and coworkers, except for ve frameworks
which were thus discarded from all of our analyses. We have
also discarded DEEM frameworks that we found to be
identical to an IZA framework. To establish this, we evaluated
the Euclidean distance between the full power spectrum SOAP
feature vectors with an environment cutoff of 6.0 Å (more
details can be found in the ESI†).

Local interatomic distances (LIDs), as dened by Li and
coworkers,17 were computed on the Deem structures and the
optimized IZA frameworks using the pymatgen package.47 With
this approach, each framework is represented by a nine-
component vector: for each kind of distance (T–O, T–O–T, and
O–T–O), we include the mean value, the standard deviation, and
the range. The values are computed from the list of all the
distances of the same kind found in each framework.

SOAP representations were computed using librascal48 for
two different environment cutoffs: 3.5 Å and 6.0 Å for each Si-
centered environment (that is, for every Si atom in a given
framework). For our structure-based analyses, we dene the
SOAP representation of a given framework as the average over
the SOAP vectors corresponding to each of its Si atoms. Further
details of the SOAP calculations can be found in the ESI.†

Molar energies, volumes and compositions were predicted
by optimizing the mean absolute error of the target property
predictions via ridge regression.

Two-class (DEEM/IZA) and four-class (DEEM/IZA1/IZA2/IZA3)
linear kernel SVM models were built using scikit-learn49 to
distinguish the IZA frameworks from the DEEM. The SVMmodels
were constructed for each combination of SOAP environment
cutoff (3.5 Å or 6.0 Å), n-body correlation (two-body radial spec-
trum and three-body power spectrum), and atom–atom correla-
tions (Si–Si correlations, Si–O correlations, and Si–Si and Si–O
correlations for the radial spectrum; and Si–Si–Si correlations, Si–
O–Si correlations, and Si–O–O correlations and all combinations
thereof for the power spectrum). The real-space expansion of the
SOAP vectors was performed through a sum over the product of
“contracted”50 Legendre DVR radial basis functions and spherical
harmonics based on Legendre polynomials (for the power spec-
trum) with the SOAP vectors summed over the expansion orders
and angular index. The optimization target of the SVM was the
class-balanced accuracy. To lend support to the validity of the class
distinctions learned by the SVM, we assigned a set of random
labels to the DEEM frameworks and subsequently attempted to
classify them based on the randomly assigned labels. The SVM
was unable to learn the random labels, suggesting that the learned
distinctions between the IZA and DEEM frameworks are indeed
due to genuine differences in their structural characteristics. The
Digital Discovery, 2022, 1, 779–789 | 787
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“decision trace” d(r) is dened by combining the smoothed radial
correlation function r(r) (the real-space counterpart of the pair
descriptor associated with each structure) and a weight w(r) that is
also a function of distance, yielding

dðrÞ ¼ bþ
ðr
0

dr
0h
r
�
r
0�� r

�
r
0�i

w
�
r
0�
: (1)

d(r) is dened to also include the SVM intercept b and the class-
averaged radial correlation function rðrÞ, so that the decision
trace provides the value of the decision function based only on
contributions between 0 and r; limr/Nd(r) gives the value which
is ultimately used for classication.

The PCovR models were constructed using the same feature
data and decision values as the corresponding SVMmodels. The
optimization target was the PCovR loss (the sum of regression
and projection losses) based on a three-component latent space.
The convex hull was constructed in the space dened by the
framework energies and the rst two PCovR components for the
model based on the full 6.0 Å SOAP power spectrum feature
vectors and the corresponding four-class decision functions for
the classication exercise on these same feature vectors.

The train-test splits of the datasets were slightly modied
based on the ultimate goal of the machine learning exercise (see
details in the ESI†). To account for the imbalance in the class
populations, we employed class-specic misclassication
penalties in the SVM models: the penalty for a given class is
weighted inversely to the true class proportion in the train set.
In contrast, class imbalance in the PCovR models was accoun-
ted for through replication of minority samples to achieve
approximate class parity. This approach was preferred over
undersampling the majority class, because the smallest number
of minority class samples in a given training fold was very low,
i.e. fewer than 20 structures.
Data availability

The data used as input to the machine learning workow,
including the (optimized) atomic structures of the IZA and DEEM
frameworks, house classications, framework energies and
volumes, and LID descriptors, as well as a chemiscope visuali-
zation41 of the Generalized Convex Hull used to identify prom-
ising synthesis candidates are available on the MaterialsCloud
Archive at: https://doi.org/10.24435/materialscloud:sd-j6.
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