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Experimental data on diffusion in binary liquid mixtures at 298 � 1 K from the literature were systematically

consolidated and used to determine diffusion coefficients DN
ij of solutes i at infinite dilution in solvents j in

a consistent manner. The resulting database comprises basically all data on DN
ij at 298 K that are available

and includes 353 points, covering 208 solutes and 51 solvents. In a first step, the new database was used to

evaluate semiempirical methods for predicting DN
ij from the literature, namely the methods of Wilke and

Chang, Reddy and Doraiswamy, Tyn and Calus, and SEGWE, of which SEGWE yielded the best results.

Furthermore, a new method for the prediction of DN
ij based on the concept of matrix completion from

machine learning was developed, which exploits the fact that experimental data for DN
ij can be

represented as elements of a sparse matrix with rows and columns corresponding to the solutes i and

solvents j; it is demonstrated that matrix completion methods (MCMs) can be used for closing the gaps

in this matrix. Three variants of this approach were studied here, a purely data-driven MCM and two

hybrid MCMs, which use information from SEGWE together with the experimental data. The methods

were evaluated using the new database. The hybrid MCMs outperform both the data-driven MCM and all

established semiempirical models in terms of predictive accuracy.
1 Introduction

Diffusion plays a central role in many processes in nature and
industry. Despite this, experimental data on diffusion coeffi-
cients are astonishingly scarce. In the present work, we address
this topic for diffusion coefficients of a solute i highly diluted in
a solvent j, which are particularly important both for practical
and theoretical reasons, by setting up the rst comprehensive
database for diffusion coefficients at innite dilution and the
development of novel methods for their prediction.

In general, mutual diffusion must be distinguished from self-
diffusion. Mutual diffusion refers to the motion of collectives of
molecules of different components in a mixture, and is directly
relevant for describing technical processes. Self-diffusion, on
the other hand, refers to the Brownian motion of individual
molecules, and is dened for pure components as well as for
mixtures.

There are two common approaches for describing mutual
diffusion: the Fickian and the Maxwell–Stefan approach. We
namics (LTD), TU Kaiserslautern,

serslautern, Germany. E-mail: fabian.

mation (ESI) available. See

is work.

897
study only binary mixtures here, so that the following discus-
sion is limited to this case. The Fickian diffusion coefficient Dij

and the Maxwell–Stefan diffusion coefficient Đij in a binary
mixture (i + j) are related by eqn (1):

Dij ¼ D- ijGij, (1)

where Gij is the thermodynamic factor. Both Dij and Đij are in
general functions of temperature, pressure, and composition.
The inuence of pressure on diffusion coefficients in liquids
is small and neglected here, and the temperature is xed to
298� 1 K, because this temperature is of particular interest and
more data on diffusion coefficients are available for 298 K than
for any other temperature. Furthermore, we only consider
diffusion coefficients at innite dilution here, for which the
thermodynamic factor is unity. Moreover, mutual and self-
diffusion are identical at the state of innite dilution by de-
nition. Hence, at innite dilution, the three cases discussed
here need not be distinguished:

DN
ij ¼ D- N

ij ¼ DN
i . (2)

Here, i refers to the innitely diluted component, j to the
solvent, the index N to the state of innite dilution, and Di to
the self-diffusion coefficient of component i. We will only use
the symbol DN

ij in the following.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Information on DN
ij is directly relevant in problems in which

the diffusing component is diluted. Furthermore, there are
methods to estimate Đij at nite concentrations from the
respective values at innite dilution, i.e., of ĐN

ij and ĐN
ji , most

notably that of Vignes1 for binary mixtures, which has also been
extended to multicomponent mixtures where experimental data
on diffusion coefficients are lacking almost completely.2

Experimental data on diffusion coefficients have been
compiled in several databases. For instance, in the 2019 version
of the Dortmund Data Bank (DDB), which is the worlds largest
data bank for thermophysical properties of pure components
and mixtures, approximately 17 000 data points for diffusion
coefficients are reported.3 These data points cover approxi-
mately 580 individual components and 1300 distinct mixtures,
of which about 75% are binary mixtures. These data include
diffusion coefficients of different types for the gaseous, liquid,
and solid phase, measured at different compositions, temper-
atures and pressures. Compared to the number of relevant
components and, in particular, mixtures, the experimental
database on diffusion coefficients is very small. While this holds
basically for all thermophysical properties, the situation for
diffusion coefficients is even worse than that for other proper-
ties, such as activity coefficients,4 which is astonishing
regarding the importance of diffusion. This could be related to
the challenges in measuring diffusion coefficients.5 Therefore,
methods for the prediction of diffusion coefficients in general,
and DN

ij in particular, are of paramount importance in practice.
Several correlations for the prediction of DN

ij in binary liquid
mixtures have been proposed in the literature,6 of which the
most commonly used ones are those of Wilke and Chang (1955),
Reddy and Doraiswamy (1967), Tyn and Calus (1975), and the
Stokes–Einstein Gierer–Wirtz Estimation (SEGWE) of Evans at
al. (2018).7–10 They are all empirical extensions of the Stokes–
Einstein equation11 and may therefore be classed as semi-
empirical models.

A large number of further semiempirical models for the
prediction of DN

ij in binary liquid mixtures or extensions upon
the previously mentioned ones exist in the literature, but most
of them are either less general (in the scope of the components
that can be modeled by them) or less accurate than these.12

Power-law models, which have also been applied in the litera-
ture for modeling diffusion coefficients,13–15 suffer from
a similar restriction in generality as they must be “calibrated” to
a specic substance group, and they depend strongly on the
type of components investigated. For a more detailed discus-
sion of such approaches and their delimitation from the semi-
empirical models investigated here, we refer to the review of
Evans.16

As an alternative to physical and semiempirical prediction
methods for thermophysical properties in general, data-driven
approaches from machine learning (ML) are presently gaining
much attention.17–20 In most of the respective works, ML algo-
rithms are thereby used for correlating thermophysical prop-
erties of pure components to a set of selected pure-component
descriptors in a supervised manner. As such, most of these
approaches can be classied as quantitative structure–property
relationships (QSPR).21
© 2022 The Author(s). Published by the Royal Society of Chemistry
Descriptor-based methods of the QSPR type can also be used
for predicting mixture properties, and of course also for the
prediction of diffusion coefficients. In particular, articial
neural networks (ANNs) have been used successfully in QSPR
approaches by several authors,22–25 however, these studies were
oen restricted to specic mixtures, such as diffusion in
water24,25 or diffusion in hydrocarbon mixtures;22 general-
purpose models for the prediction of diffusion coefficients at
innite dilution based on ML methods are still missing to date.

An interesting class of unsupervised ML algorithms for the
prediction of thermophysical properties of mixtures in general,
and of DN

ij in particular, are matrix completion methods
(MCMs), which are already established in recommender
systems, e.g., for providing suitable movie recommendations to
customers of streaming providers.26,27

The idea behind using MCMs for predicting thermophysical
properties of mixtures is that the data for binary mixtures can,
at constant conditions, be stored in matrices with rows and
columns representing the components that make up the
mixtures; since these matrices are only sparsely occupied by
experimental data in basically all cases, the prediction of the
properties of unstudied mixtures can be regarded as a matrix
completion problem. The MCM algorithms solve this problem
by learning similarities between different rows and columns,
i.e., the different instances, and using the inferred knowledge
for predicting the missing entries. Obviously, this requires
a certain amount of data for the learning step and becomes the
more challenging the sparser the matrix is occupied and the
weaker the correlations between the entries in the columns and
rows are.28 The relevance of MCMs for predicting thermophys-
ical properties of binary mixtures has only been realized
recently.4,17 In particular, they have been applied very success-
fully for predicting activity coefficients and Henry's law
constants.4,28–31 In the present work, we extend the MCM
approach to the prediction of diffusion coefficients.

The contribution of the present work is threefold. Firstly, we
have established a consolidated, consistent database of liquid
phase diffusion coefficients at innite dilution DN

ij in binary
mixtures at 298.15 � 1 K based on a careful evaluation of the
literature data. We have mainly used data from the Dortmund
Data Bank (DDB).3 In many cases, this required extrapolations
of data at nite concentration to innite dilution, which we
have carried out in a consistent manner for the rst time.
Furthermore, the data from DDB were consolidated and
augmented by data sets from the literature that were not
included in the DDB. The results can be represented in anm� n
matrix, in which the rows represent the solutes (m ¼ 208) and
the columns represent the solvents (n ¼ 51). However, only 353
of the 10 608 elements of that matrix are occupied with exper-
imental data, corresponding to 3.3%. For the rest, experimental
data are missing.

Second, we have used the new database to systematically
evaluate the performance of four widely applied semiempirical
methods for the prediction of DN

ij , namely those of Wilke and
Chang,7 Reddy and Doraiswamy,8 Tyn and Calus,9 and
SEGWE.10
Digital Discovery, 2022, 1, 886–897 | 887
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Third, we have developed a data-driven MCM for the
prediction of DN

ij , which is trained only on the few available
experimental data points on DN

ij from our database, as well as
two hybrid MCMs that combine the semiempirical SEGWE with
the data-driven MCM in different ways. All MCMs presented in
this work are collaborative-ltering approaches that learn only
from the available data for the mixture property DN

ij , but do not
require information on additional descriptors of the solutes and
solvents, which is in contrast to supervised QSPR methods.32

The predictions of the MCMs were compared to each other and
to the results from the established semiempirical models.
Fig. 2 Histogram representing the number of experimental data
points for diffusion coefficients in binary liquid mixtures from the DDB
meeting the selection criteria illustrated in Fig. 1 as a function of the
temperature T.
2 Database

Raw diffusion data was mainly taken from the Dortmund Data
Bank (DDB) 2019.3 Fig. 1 shows a classication of the 17 085
data points on diffusion coefficients available in the DDB.
Approximately 75% (12 869) of these data points are reported
for binary mixtures, of which about 60% consider diffusion in
the liquid phase and are of interest here.

We have restricted this study to well-dened molecular
components, i.e., we have excluded mixtures that contain
polymers or pseudocomponents as well as some other special
cases (cf. ESI Section S.1†). We will not continue to mention
these restrictions in the following discussion.

Fig. 2 shows a histogram representation of all data points in
the DDB that comply with the selection criteria over the
temperature at which they were measured. About 30% of the
data points (2064) were measured in the range 298.15 � 1 K,
which is why we have selected this temperature for our study, in
which we only wanted to consider isothermal data.

Of these 2064 data points, only a small fraction (13%) is re-
ported as diffusion coefficients at innite dilution DN

ij , while
most reported data points are concentration-dependent Dij(x),
cf. also Fig. 1. For setting up the database on DN

ij , the following
procedure was applied:

First, the data points for DN
ij from the DDB were adopted; in

cases in which data from several sources were available for the
Fig. 1 Sankey diagram representing the different types of data on diff
information on the number of available data points.3 The red branches l

888 | Digital Discovery, 2022, 1, 886–897
same mixture, the arithmetic mean was used. Second,
concentration-dependent Dij(x) were extrapolated to the state of
innite dilution. For this, all data points at solute concentra-
tions xi above 0.2 mol mol−1 were discarded. Then, depending
on the number of remaining data points Nij for a specic
mixture i + j, the following heuristics were applied:

(a) Nij ¼ 1: the reported value of Dij was adopted if the solute
concentration xi was below 0.02 mol mol−1, otherwise it was
discarded.

(b) Nij ¼ 2: DN
ij was obtained from a linear extrapolation of

the two data points to xi ¼ 0.
(c) Nij $ 3: DN

ij was calculated by linear extrapolation to
xi ¼ 0, starting with the points at the lowest concentrations and
including as many points as possible before a discernible
deterioration in t quality was observed.

For each of the cases (a)–(c) detailed above, an example of the
performed extrapolation is given in Fig. 3. This procedure was
usion coefficients in the Dortmund Data Bank (DDB) 2019, including
ead to the data considered in the present work.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Procedure of determiningDN
ij . (a) The single value forDij(x) reported at xi¼ 0.02mol mol−1 was adopted asDN

ij . (b) The two values forDij(x)
reported at xi < 0.2 mol mol−1 were linearly extrapolated to DN

ij . (c) The three values for Dij(x) with the lowest xi, all at xi < 0.2 mol mol−1, were
included in the linear extrapolation to DN

ij . Blue open circles: literature data.3 Red closed circles: extrapolated DN
ij . Lines: linear extrapolations.
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selected aer considering a large number of binary mixtures
and testing alternatives. We have preferred applying a standard
procedure over an ad hoc consideration of each mixture, not
only because of the time required for this but also to avoid
ambiguity. In all cases, obvious outliers were rejected before-
hand (cf. ESI Section S.1†).

As many data points were simply adopted, it is difficult to
give an estimate for the uncertainty of the data: many literature
sources do not report uncertainties for the measured diffusion
coefficients, and those who do typically specify uncertainties in
the range of 1–5%. This seems over-optimistic, as in the few
cases where direct comparisons between results from different
sources were possible, deviations oen were in the range of
10%. The errors induced by our extrapolation scheme are lower
than the uncertainties mentioned above in all cases.

As result of this procedure, a database on DN
ij containing 353

data points for 208 solutes i and 51 solvents j was obtained. The
database is represented in Fig. 4 in matrix form, where the rows
represent the solutes i and the columns represent solvents j,
both of which are simply identied by numbers. The value for
DN
ij is indicated by the color of the respective matrix entry. The

order of the solutes and solvents does not have a meaning but
was chosen to be ascending with regard to the DDB identica-
tion numbers; Table S.1 in the ESI† gives a list with the names of
all considered solutes and solvents and their identication
numbers. In Table S.4,† the numerical values for DN

ij from the
new database are given. The values are censored in instances
where they have been directly adopted from the DDB and
licensing restrictions prohibit their publication. Further, both
tables are also provided in machine-readable form, namely as
.csv les, in the ESI.†

To the best of our knowledge, our database is the rst
comprehensive database of diffusion coefficients at innite
dilution. However, of the 10 608 different possible combina-
tions of the considered solutes and solvents, data are available
only for 353 (3.3%). Furthermore, the resulting matrix is not
only sparsely but also heterogeneously lled with observed
entries, cf. Fig. 4; for instance, for the solvent water (column 28),
© 2022 The Author(s). Published by the Royal Society of Chemistry
a very large number of data points (with different solutes) is
available, whereas many other solvents (and solutes) have been
studied in only a very limited number of mixtures. In fact,
a substantial share of the solutes that were studied in combi-
nation with water have not been studied in combination with
any other solvent with regard to DN

ij .
3 Prediction of diffusion coefficients
3.1 Semiempirical models

The new database was used for studying the performance of
four established semiempirical models for the prediction of
DN
ij , namely those of Wilke and Chang (1955),7 Reddy and

Doraiswamy (1967),8 Tyn and Calus (1975),9 and the Stokes–
Einstein Gierer–Wirtz Estimation (SEGWE) by Evans et al.
(2018).10 All considered models have in common that they
predict DN

ij as a function of the quotient T/hj, where T is the
temperature in Kelvin and hj is the dynamic viscosity of the
solvent j. Hence, information of hj at the temperature of interest
is required. Furthermore, they all require information on the
pure solute i, namely either the molar volume vi, the molar mass
Mi, or the parachor Pi – or some combination thereof. All pure-
component properties were obtained in the present work from
DIPPR correlations taken from the DIPPR database.33 The
Wilke–Chang and SEGWE models additionally require solvent-
specic parameters. The authors provide some values of these
parameters in the original publications, but in practice the
parameters are typically rst tted to experimental data on
DN
ij in the respective solvent j.
For the comparison of the semiempirical models with the

MCMs, we have tted the solvent-specic parameters of Wilke–
Chang and SEGWE to data on DN

ij from the new database using
a leave-one-out procedure (cf. Section 3.2.4). This procedure
ensures a fair comparison between the semiempirical models
and the MCMs. However, when we used SEGWE as prior
information for the hybrid MCMs, the parameter was not tted,
but instead a xed global value was used. More information on
Digital Discovery, 2022, 1, 886–897 | 889
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Fig. 4 Overview of the experimental data for liquid phase diffusion
coefficientsDN

ij of solutes i in solvents j at infinite dilution at 298.15� 1 K
in the database set up in the present work. Solutes and solvents are
simply identified by numbers, see Table S.1 in the ESI.† The color code
indicates the value of DN

ij , and white cells denote missing data.
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the hybridization of SEGWE and MCM is given in Sections 3.2.2
and 3.2.3.

Furthermore, details on the semiempirical models are
provided in Section S.2 of the ESI.†

3.2 Matrix completion methods

Three different MCMs were developed and evaluated in the
present work: one MCM that is purely data-driven, i.e., which is
only trained on the available experimental data for DN

ij from the
new database. Furthermore, two hybrid MCMs, which addi-
tionally incorporate information from the SEGWE model in
different ways as described below. In the following, we rst
890 | Digital Discovery, 2022, 1, 886–897
discuss the general approach, matrix completion, and subse-
quently go into detail on each of the three individual MCMs.

The underlying idea of the MCMs used in the present work is
based on uncovering structure in a sparse matrix of data points
Mij. An MCM thereby models each Mij as the dot product of two
vectors ui and vj, in which so-called latent features of the pure
solute i and the pure solvent j, respectively, are stored:

Mij ¼ ui$vj + 3ij (3)

ui and vj constitute the parameters of the MCM, which are tted
to theMij to minimize the residuals 3ij during the training of the
model.

Note that the latent features ui and vj are pure-component
descriptors of i and j, respectively, which are inferred from
mixture data. For training all MCMs, we followed a Bayesian
approach, in which data and features are considered as random
variables that follow a probability distribution. Therefore,
a probabilistic generative model of the observations (here: Mij)
as a function of ui and vj was specied based on eqn (3). More
specically, the probabilistic model was dened by the so-called
prior, which represents the probability of the features prior to
tting them to the training data, and the so-called likelihood,
which models the probability of the data on Mij conditioned on
the model parameters. The goal of Bayesian inference is to nd
the so-called posterior, which is the probability distribution over
model parameters conditioned on the training data, and which
is consistent with the training data and the a priori information
on the model parameters.34

While different priors were chosen in the different MCMs,
the same likelihood in form of a Cauchy distribution with scale
l¼ 0.2 centered around the dot product ui $vj was chosen for all
MCMs. The Cauchy distribution was preferred over, e.g.,
a normal distribution since the Cauchy distribution is generally
more robust towards outliers, which must be expected if
experimental data are considered. Both the form of the prior
and the likelihood, including the scale parameter l, are hyper-
parameters of the model. In preliminary studies with different
congurations, the hyperparameter set from our previous
work31 proved to be most suitable, which was therefore adopted
here. All feature vectors are of length K, where K is the number
of features considered for each solute and each solvent. K is
a further hyperparameter of the model and is a priori unknown;
it must be chosen so that over- and undertting are avoided. In
preliminary studies, K ¼ 2 was found the most suitable choice
and was therefore used for all models here.

Since exact Bayesian inference is usually intractable, except
for very simple models, methods for approximating the poste-
rior are generally used in practice. In the present work, we have
used variational inference for this purpose, which has been
successfully applied to various models up to large scales.35–37

Specically, we have employed Gaussian mean-eld variational
inference using the Automatic Differentiation Variational
Inference (ADVI)37 option implemented in the probabilistic
programming framework Stan,38 which was used for training all
models. The code is attached in Section S.7 of the ESI.†
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Overview of the experimental data for the liquid phase diffusion
coefficients DN

ij at infinite dilution at 298.15 � 1 K in the reduced
database; these data points were used for evaluation of the MCMs
developed in the present work and comparison of the results to those
of the semiempirical models. Solutes and solvents are identified by
numbers, see Tables S.2 and S.3 in the ESI.† The color code indicates
the value of DN

ij , and white cells denote missing data.
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3.2.1 Data-driven matrix completion method. The training
of the purely data-driven MCM is based only on uncovering
structure in the sparse matrix of experimental DN

ij . Analogous to
eqn (3), each lnDN

ij is thereby modeled as the dot product of the
two latent feature vectors ui and vj:

lnDN
ij ¼ ui$vj + 3ij. (4)

Here, we dene ln DN
ij ¼ ln

 
109DN

ij

m2 s�1

!
as the natural logarithm of

the numerical value of the diffusion coefficient in 10−9 m2 s−1,
which is used for scaling purposes.

During the training of the MCM, the generative model rst
draws two vectors ui and vj of length K with features for each
solute i and solvent j from the prior, for which a normal
distribution centered around zero with a standard deviation
s0 ¼ 1 was chosen here. It then models the probability of each
experimental data point lnDN

ij as a Cauchy distribution with
scale l centered around the dot product of the respective feature
vectors, cf. eqn (4), and thereby adjusts the features so that they
are best suited for describing the training data, i.e., minimizing
the 3ij. When performing Bayesian inference, the probabilistic
model is thereby inverted to obtain the posterior, i.e., the
probability distribution over the features aer considering the
training data. The nal features of the solutes and solvents were
then obtained by taking the mean of the posterior, which we
have subsequently used for calculating predictions for ln
DN
ij with eqn (4) (while setting 3ij to zero).
3.2.2 Hybrid matrix completion method “Boosting”. This

MCM combines information from the experimental data on
DN
ij with information from SEGWE and is thereby based on the

concept of Boosting.39 The idea of this hybrid approach is to
train an MCM not on the experimental data for DN

ij (or ln
DN
ij ), but on the residuals resij of the SEGWE model:

resij ¼ lnDN,SEGWE
ij − lnDN,exp

ij ¼ ui$vj. (5)

Hence, in this case, the MCM is not employed to uncover
structure in the experimental data, but in the deviations of the
SEGWE predictions from the experimental data.

For the Boosting approach, SEGWE was applied in a purely
predictive manner; this means that the parameter 9eff, cf. eqn
(S.5),† was not treated as a t parameter but globally set to the
value 9eff ¼ 619 kg m−3 as suggested by the original authors.10

We have chosen SEGWE for the Boosting approach for two
reasons: rst, SEGWE proved to be the best-performing of the
studied semiempirical models, cf. Section 4.1. Second, in the
chosen variant of SEGWE, the only component descriptors
required in the model equation are the viscosity of the solvent
and the molar masses of solute and solvent; information on
these properties is readily available.

The training of this hybrid MCM was carried out analogously
to the data-driven approach and with the same hyper-
parameters (prior and likelihood as well as number of features
per solute/solvent K). Aer the training, MCM-Boosting yields
predictions of the residuals of the SEGWE model for specied
mixtures (i + j). The respective predicted lnDN

ij (and thus
© 2022 The Author(s). Published by the Royal Society of Chemistry
DN
ij ) can then be calculated from the predicted residuals by

rearranging eqn (5).
3.2.3 Hybrid matrix completion method “Whisky”.

Furthermore, a second hybrid MCM for the prediction of DN
ij ,-

which also combines information from experimentally available
DN
ij with information from SEGWE, was considered in this work.

In contrast to MCM-Boosting, this hybrid model does not
operate on the residuals of SEGWE, but is trained in two
subsequent steps on two different data sets. The approach can
be considered as a form of distillation of a model, which is why
we have given it the label MCM-Whisky. The approach is similar
to the one recently introduced for the prediction of activity
coefficients,29 we therefore only give a brief description here and
refer to the original work for an in-depth discussion.

The training of the Whisky model consists of two steps. In
the rst training step, the predictions of lnDN

ij obtained with
SEGWE (again with globally xed 9eff ¼ 619 kg m−3) for all
combinations of the considered solutes and solvents were used
for training a data-driven MCM according to eqn (4) (while
again using the same hyperparameters as in the MCMs
described above). As result, preliminary feature vectors u*i and v*j
of the solutes i and solvents j, respectively, were obtained. We
can interpret this training step as distilling the essence of the
SEGWE model and storing it in the preliminary feature vectors
u*i and u*i ; we therefore call this rst training step distillation
step in the following.

In the second training step, the preliminary feature vectors
u*i and v*j were rened using the (sparse) experimental data on
DN
ij from our database; we therefore call the second training

stepmaturation step in the following. In thematuration step, the
Digital Discovery, 2022, 1, 886–897 | 891
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preliminary u*i and v*j were used for creating an informed prior
for the training of an additional MCM, which was then trained
on the experimental DN

ij . Specically, the means of the respec-
tive preliminary features were adopted, whereas the standard
deviations of the features were scaled with a constant factor,
such that the mean of all resulting standard deviations was s ¼
0.5. This scaling procedure was carried out analogously to our
previous work31 and ensures that the model remains exible
enough to reasonably consider the experimental training data.
The nal informative prior for the maturation step of the hybrid
MCM was then obtained by multiplying the scaled posterior
from the distillation step with the uninformed prior distribu-
tion as used in the data-driven MCM. With this last step, we
ensure that the informed prior is in all cases stronger than the
uninformed prior.

Hence, in this hybrid MCM, information from SEGWE is
included and transferred via the prior in the maturation step.
However, the model is still capable of overruling the prior
information from SEGWE via the likelihood, if the available
experimental data for DN

ij is convincing enough to do so.
In both training steps of the Whisky model, the same like-

lihood (Cauchy with scale parameter l ¼ 0.2) and the same
number of features per solute and solvent (K¼ 2) as in the other
MCMs were used.

While both hybrid approaches, MCM-Boosting and MCM-
Whisky, incorporate information from the SEGWE model, the
difference is how the knowledge from the semiempirical model
is encoded in the MCM as described above. MCM-Boosting can
only lead to improvements over the baseline model (here:
SEGWE) if that model shows systematic prediction errors. Only
then can the MCM reveal structure in the residuals of the model
and thereby rene the predictions. Furthermore, any informa-
tion from SEGWE for mixtures for which no experimental data
are available is inevitably discarded in the Boosting approach.
In the Whisky approach, in contrast, different classes of
training data are combined: predictions with the SEGWE
model, which can be obtained for many mixtures (for the
present data set, they could be obtained for all combinations of
solutes and solvents) but rather uncertain, and experimental
data, which are rare (cf. Section 2) but more reliable than model
predictions. For components for which there are many experi-
mental data, the Whisky approach can be expected to hardly
improve the predictive performance compared to a data-driven
MCM. On the other hand, for components for which there are
only few experimental data for training, the largest improve-
ments compared to the data-driven MCM can be expected with
the Whisky approach.

3.2.4 Leave-one-out analysis and reduced data base. The
predictive performance of all MCMs developed in this work was
evaluated by a leave-one-out analysis.40 Following this concept,
each MCM was trained to a subset of the experimental data on
DN
ij that includes all observed entries except for the one to be

predicted. The single le-out data point, which we call test data
point in the following, was then predicted by the MCM. This
procedure was repeated by subsequently dening all data points
once as test data point, until true predictions for all available
DN
ij were obtained. Finally, these predictions were compared to
892 | Digital Discovery, 2022, 1, 886–897
the respective experimental DN
ij to evaluate the performance of

the MCMs.
By nature, such a leave-one-out analysis of anMCMdemands

a database in which at least two distinct data points are avail-
able for each solute i and each solvent j, so that aer declaring
one of these data points as test data point, there is at least one
data point for each component in the training set to allow the
model to learn its characteristics. Hence, if the database is
arranged in matrix form with solutes and solvents representing
the rows and columns, respectively, at least two observed entries
per row and per column are required for a meaningful analysis.

Therefore, for developing the MCMs, a reduced database for
DN
ij that satises the aforementioned condition was dened. To

enable a direct comparison, the predictive performance of the
semiempirical models was also evaluated based on this reduced
data set. Thereby, the solvent-specic parameters of the models
ofWilke and Chang and SEGWEwere also tted to experimental
data for DN

ij in a leave-one-out approach (cf. Section S.2.5 of the
ESI†).

The reduced database is presented in Fig. 5. It is the basis for
the comparison of the performance of the three MCMs and the
semiempirical models for predicting DN

ij considered in the
present work.

While the MCM only works for mixtures within the matrix
shown in Fig. 5, the semiempirical models can also give
predictions for additional mixtures outside the matrix, namely
for all mixtures for which the required pure-component prop-
erties are known.

The reduced database comprises data for 45 solutes and 23
solvents. The corresponding matrix, which is shown in Fig. 5,
has about 16% observed entries: for 166 of the 1035 possible
mixtures experimental data are available.

Four particularly well-lled columns can be discerned for
j ¼ 3, 14, 15, and 18. The respective solvents are ethanol,
methanol, n-propanol, and water. They are common solvents
for which experimental data were measured in combination
with many solutes. Moreover, a column-based structure can be
observed in the absolute values of DN

ij themselves (and not just
in the availability of data): for example, the diffusion coeffi-
cients in the solvent methanol (j ¼ 14) are consistently higher
than the respective diffusion coefficients in the solvent n-
propanol (j ¼ 15), which is readily seen by the darker colors in
that column in Fig. 5. Two further solvents, n-hexane and n-
heptane (j ¼ 12 and j ¼ 13, respectively), exhibit even darker
colors, corresponding to even higher values of DN

ij . Similar
structural relationships in thematrix exist also for the rows, e.g.,
for carbon dioxide (i ¼ 39) comparatively large diffusion coef-
cients are found. We will show below that the MCMs devel-
oped in the present work are able to pick up on these
relationships, and even identify more complex relationships in
the data structure, which are veiled before the human eye.

The predictive performance of the methods was analyzed
and compared in terms of a relative mean absolute error
(rMAE), cf. eqn (6), and a relative root mean-squared error
(rRMSE), cf. eqn (7), which were calculated by comparing the
predictions (pred) obtained during the leave-one-out analysis to
the respective experimental data (exp):
© 2022 The Author(s). Published by the Royal Society of Chemistry
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rMAE ¼ 1

N

X
i

X
j

�����D
N;pred
ij �D

N;exp
ij

D
N;exp
ij

����� (6)

rRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i

X
j

 
D

N;pred
ij �D

N;exp
ij

D
N;exp
ij

!2
vuut (7)

where N is the total number of available experimental data
points for DN

ij in the reduced database and the summation is
iterated over all considered solutes i and solvents j.
4 Results and discussion

In Fig. 6, the performance of the four studied semiempirical
models, as well as that of the three developed MCMs for the
prediction of the DN

ij from our reduced database, are compared
in terms of the relative mean absolute error (rMAE) and the
relative root mean-squared error (rRMSE), cf. Section 3.2.4.
4.1 Prediction of DN
ij with semiempirical models

Let us rst compare the results of the four semiempirical
models.

We observe a similar performance of all semiempirical
models in both error metrics. The rMAE is about 0.20, and
below 0.25 in all cases, with the largest value (poorest perfor-
mance) found for the model of Reddy and Doraiswamy and the
lowest value (best performance) found for SEGWE. Also, the
values for the rRMSE vary only slightly between the different
models and range from 0.31 (Reddy–Doraiswamy) to 0.28
(SEGWE). Although the four semiempirical models do not vary
Fig. 6 Relative mean absolute error (rMAE, yellow) and relative root
mean-squared error (rRMSE, blue) of the predicted DN

ij with the
studied semiempirical models and the developed MCMs for the
experimental data from the reduced database.

© 2022 The Author(s). Published by the Royal Society of Chemistry
substantially in their rRMSE scores, we can observe a continu-
ously decreasing rRMSE with the year of publication of the
respective model. We can speculate that this is an effect of the
increasing availability of experimental data, to which these
models were tted.

It is also important to note that, at the time these works were
published, the authors presumably used the entirety of avail-
able data on DN

ij for developing their models. This means that
the semiempirical models have already seen substantial parts of
the data on which we evaluate their performance.

Comparing the rMAE and the rRMSE from the semiempirical
models directly with the corresponding values from the MCM
models, as it is done in Fig. 6, therefore creates a bias, which
favors the semiempirical models; the calculation of the rMAE
and rRMSE for the MCMmodels, in contrast, is based on a strict
application of the leave-one-out strategy, i.e., none of the pre-
dicted values were part of the training set, which is not the case
for the development of the semiempirical models. The fact that
the tting of solute-specic model parameters (of Wilke–Chang
and SEGWE) was carried out with a leave-one-out technique
does not change the above statement, as the model develop-
ment was nonetheless based on all available data at that time.

Overall, SEGWE shows the best performance of the studied
semiempirical models in both rMAE and rRMSE, and was
therefore considered as benchmark against which the MCMs
developed in the present work are compared in the following.
4.2 Prediction of DN
ij with matrix completion methods

We now discuss the performance of the MCMs for the predic-
tion of DN

ij developed in this work: the purely data-driven MCM
and the hybrid approaches based on Boosting, which we call
MCM-Boosting, and the one based on model distillation, which
we call MCM-Whisky in the following.

The rMAE and rRMSE scores of the data-driven MCM are
0.42 and 1.56, respectively, which is much higher than those of
all studied semiempirical models, cf. Fig. 6. The data-driven
MCM thereby strongly suffers from a poor prediction of DN

ij in
mixtures with the solvent 1,2-propanediol; namely the DN

ij in the
mixtures (benzene + 1,2-propanediol) and (1,3-dihydroxy-
benzene + 1,2-propanediol) are predicted with extremely large
relative errors of 1397% and 1339%, respectively, which results
in a large rMAE and a particularly large rRMSE score for the
data-driven MCM. As shown in Fig. 5, the experimental DN

ij for
the solvent 1,2-propanediol (j ¼ 19) are extremely small, namely
about two orders of magnitude lower than the bulk of the data.
Hence, already small absolute deviations between prediction
and experimental DN

ij lead to extremely large errors on the
relative scale, i.e., large values of rMAE and rRMSE, here.
Excluding just the two mentioned data points from the evalu-
ation improves the score of the data-driven MCM to 0.26 (vs.
0.42 with the points included) in the rMAE and 0.42 (vs. 1.56
with the points included) in the rRMSE – still slightly worse, but
in the same range as the performance of the semiempirical
methods.

An important requirement for the success of data-driven
prediction methods in general, and the introduced data-
Digital Discovery, 2022, 1, 886–897 | 893
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Fig. 7 Residuals resij of the SEGWE predictions from the experimental
data for DN

ij at 298.15 � 1 K from our reduced database. Solutes i and
solvents j are identified by numbers, see Tables S.2 and S.3 in the ESI.†
The color code indicates the value of resij, and white cells denote
missing data.
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driven MCM here in particular, is the availability of training
data. One way to evaluate the data situation is comparing the
number of available data points for training the model to the
number of model parameters, which, among others, depends
on the number of different components considered by the
model. We can therefore assess an observation ratio

robs ¼ Nobs

mþ n
as done in recent work of our group,28 where Nobs

is the number of observed entries of the sparsely populated
matrix andm and n are the numbers of rows and columns of the
matrix, i.e., considered solutes and solvents, respectively.

In our previous work, we found a strong correlation of the
predictive performance of MCMs for the prediction of activity
coefficients at innite dilution with robs, which was between 4.4
and 9.2 in that study.28 Rather high values of robs led to
Fig. 8 Parity plots of the predictions (pred) of DN
ij with SEGWE and both

from our reduced database. The solid lines indicate perfect predictions,

894 | Digital Discovery, 2022, 1, 886–897
a signicantly better performance than rather low values. In the
present study, the value of robs is 2.4, which is substantially
smaller than the lowest studied value in ref. 28. This indicates
that the situation regarding availability of training data is highly
challenging here, in particular for the data-driven MCM, which
leaves ample room for improvements. We only note here that
also other points besides the mere number of training data
points are important, like the heterogeneity in the number of
available data for different components.

Such improvements can, as shown in Fig. 6, be achieved by
hybridizing the data-driven MCM with information from
SEGWE: both hybrid MCMs perform signicantly better than all
established semiempirical models and the data-driven MCM in
both error scores rMAE and rRMSE. Let us rst discuss the
results of MCM-Boosting.

The key idea of MCM-Boosting is to train the algorithm on
the residuals of the SEGWE model, and not on experimental
data directly, cf. Section 3.2.2. In Fig. 7, the residuals between
the SEGWE predictions and the data from our reduced data-
base, cf. eqn (5), are plotted. Here, SEGWE was applied in the
purely predictive variant with a globally xed 9 ¼ 619 kg m−3 to
ensure that no information on the test data point was included
in the training of MCM-Boosting. Fig. 7 basically shows the
performance of SEGWE for each individual data point from our
reduced database. We observe large deviations, indicated by the
color code in Fig. 7, in particular for the solutes water (i ¼ 27)
and carbon dioxide (i ¼ 39), but beyond that, no apparent
structure in the residuals is immediately recognizable. A more
detailed discussion of the mixtures for which SEGWE gives
predictions with particularly large errors is included in the ESI
(cf. Section S.2.6†).

The diffusion coefficients predicted by MCM-Boosting show
overall a very good agreement with the literature values. The
rMAE and rRMSE (cf. Fig. 6) are 0.130 and 0.184, respectively.
The performance of MCM-Boosting is not just better in the
averaged scores: as we show in Fig. S.3 of the ESI,† the
maximum prediction error found for any mixture is lower for
MCM-Boosting than for all other investigated methods.
hybrid MCMs developed in this work over the experimental data (exp)
the dashed lines indicate relative deviations of �25%.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Predictions of DN
ij by MCM-Boosting (left) and the uncer-

tainties of the predictions (right) for all solutes i and solvents j (iden-
tified by numbers, see Table S.1 in the ESI†) from the full database. The

Fig. 9 Histogram of the number of data points N from the reduced
database that are predicted with a defined relative deviation from the
respective experimental data dDN

ij ¼ (DN,pred
ij − DN,exp

ij )/DN,exp
ij by

SEGWE (red) and MCM-Boosting (blue).
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The second hybrid model, MCM-Whisky, which uses –

besides information from the experimental training data –

information from SEGWE via an informed prior, cf. Section
3.2.3, also performs signicantly better than the data-driven
MCM and all semiempirical models. The rMAE and rRMSE of
MCM-Whisky are 0.143 and 0.202, respectively, cf. Fig. 6,
making the overall performance close to but slightly worse than
that of MCM-Boosting.

For an improved evaluation of the results of the hybrid
MCMs, the respective predictions for DN

ij are additionally shown
in parity plots over the experimental data from our reduced
database in Fig. 8. For comparison, a parity plot showing the
predictions of the best semiempirical model, namely SEGWE
with a solvent-specic tted 9eff (cf. Section S.2.4†), is also
included in Fig. 8.

The parity plots for the two hybrid MCMs show a narrow
spread of the data points around perfect predictions (solid
lines) and in general only few outliers that are predicted with
very large deviation; most of the predicted data points lie within
the �25% boundaries (dashed lines). Slightly more data points
are underestimated by MCM-Whisky compared to MCM-
Boosting, which is the reason for the slightly higher rMAE and
rRMSE scores. In contrast, SEGWE shows a comparatively large
number of predictions outside the �25% boundaries.

The results of MCM-Boosting (the overall best-performing
MCM) are also compared to those of SEGWE (the overall best-
performing semiempirical model) in a histogram representa-
tion in Fig. 9, which shows the number of data points that are
predicted with a certain relative deviation from the experi-
mental data.

Fig. 9 underpins the performance of the hybrid MCM-
Boosting: more DN

ij are predicted with low deviation compared
to the predictions by SEGWE. For instance, 116 data points are
predicted with a relative error jdDN

ij j < 15% with MCM-Boosting,
© 2022 The Author(s). Published by the Royal Society of Chemistry
whereas for SEGWE, this is the case for only 99 data points. The
differences are even clearer when looking at predictions with
a relative error jdDN

ij j < 5%: MCM-Boosting predicts 53 mixtures
with such high accuracy, versus just 36 in the case of SEGWE.
4.3 Completed database

As a nal result, we provide the completed matrices of DN
ij pre-

dictions using MCM-Boosting and MCM-Whisky for the 10 608
possible combinations of all 208 solutes i and 51 solvents j from
the full database, as introduced in Section 2. In this case, the
MCMs have not been trained following a leave-one-out strategy,
but using all data points from the database; the same hyper-
parameters were thereby used as in the previously described
color code indicates the values of DN
ij .

Digital Discovery, 2022, 1, 886–897 | 895
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analysis. The complete predicted data set is provided in
a machine-readable format, namely as a .csv le, as part of the
ESI,† together with the learned feature vectors ui and vj, from
which the data can also be constructed. If predictions for
unstudied DN

ij are required, they can be taken from this table.
For MCM-Boosting, the completed matrix of DN

ij predictions
is visualized in Fig. 10, together with the uncertainties of the
predictions. The corresponding visualization for MCM-Whisky
is in Fig. S.4 of the ESI.†

A signicant advantage of the Bayesian approach of matrix
completion, which we have followed here, is that probability
distributions for all predicted DN

ij with the MCMs are obtained.
This allows us to report not only the predictions for DN

ij , but also
the corresponding uncertainties. That information is also
provided both for MCM-Boosting and MCM-Whisky in the .csv
les in the ESI.†

The methods presented in this work were applied here only
to a single isotherm. The semiempirical models, on the other
hand, describe diffusion data at arbitrary temperatures. In
principle, the studies done in this work could be extended to
include the inuence of the temperature on DN

ij , as it was done
by Damay et al. for the prediction of activity coefficients at
innite dilution.28 However, such an endeavour is likely to
encounter problems as the database on DN

ij is extremely narrow
outside the range of ambient temperatures, cf. Fig. 2. To achieve
substantial advances, we need more data, and in particular
more data that covers a wider temperature range.

5 Conclusions

In the present work, we provide a comprehensive database of
liquid phase diffusion coefficients at innite dilution DN

ij in
binary mixtures at 298.15 � 1 K. The database contains 353
experimental data points for DN

ij , which were mainly extrapo-
lated from concentration-dependent data, and covers 208
solutes i and 51 solvents j. We have used the new database for
systematically evaluating four established semiempirical
models for predicting DN

ij , namely the methods of Wilke and
Chang, Reddy and Doraiswamy, Tyn and Calus, and SEGWE; the
best performance was found for the most recent of these
models, which is SEGWE.

Furthermore, we have developed novel methods for the
prediction of DN

ij based on the machine-learning concept of
matrix completion. Three such matrix completion methods
(MCMs) are presented here: a purely data-driven MCM, which
was trained only on the data on the experimental DN

ij from our
database, and two hybrid MCMs that combine information
from SEGWE with the experimental data. The purely data-
driven MCM suffers from the sparsity of the available data
and performs not as well as the semiempirical models. This is
different for the two hybrid MCMs, for which signicant
improvements in terms of predictive accuracy compared to all
semiempirical models were found.

As a result, we report values for all 10 608 DN
ij for the studied

solutes and solvents, which includes a large number of novel
data points. We also provide the expected accuracy of the
predictions in form of model uncertainties, which is in most
896 | Digital Discovery, 2022, 1, 886–897
cases not much different than typical deviations between
experimental values for DN

ij for the same mixture reported by
different authors. Such data may also be instrumental in the
design of experiments, which is especially relevant considering
the sparse availability of experimental data on DN

ij .
The results of the present work, in particular the surprisingly

good performance of the hybrid MCMs, motivate an extension
to other conditions and the application of MCMs to the
prediction of further thermophysical properties in future work.
It is interesting to note that the matrix completion approach
emerges not as a competitor to the established methods, but
rather as a complement. Its full potential is unlocked in the
combination with the semiempirical models, which leads to
signicant improvements in the prediction of diffusion coeffi-
cients. We therefore consider this work as an inspiration to
future investigations of coupling ML approaches with existing
thermophysical models to create the next generation of
powerful hybrid predictive models.
Data availability

The data sets supporting this article have been uploaded in
tabular form as part of the ESI.† Furthermore, these data sets,
together with all predictions for DN
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