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onstrained representation of
brown carbon emissions from wildfires in
a chemical transport model†

Soroush E. Neyestani and Rawad Saleh *

The month of August 2015 featured extensive wildfires in the Northwestern U.S. and no significant fires in

Alaska and Canada. With the majority of carbonaceous aerosols (CA), including black carbon (BC) and

brown carbon (BrC), over the U.S. dominated by emissions from Northwestern wildfires, this month

presented a unique opportunity for testing wildfire BrC representation in the Weather Research and

Forecasting model with chemistry (WRF-Chem). We performed parallel simulations that (1) did not

account for BrC absorption, (2) accounted for BrC absorption, and (3) accounted for BrC absorption as

well as its decay due to photobleaching. We used a comprehensive set of extensive and pseudo-

intensive optical properties, namely the aerosol optical depth (AOD), aerosol absorption optical depth

(AAOD), absorption Ångström exponent (AAE), and single scattering albedo (SSA) to constrain the model

output against observations from the Aerosol Robotic Network (AERONET). We found that accounting

for BrC absorption and photobleaching resulted in the best agreement with observations in terms of

aerosol absorption (AAOD and AAE). However, the model severely underestimated AOD and SSA

compared to observations. We attributed this discrepancy to missing scattering due to missing

secondary organic aerosol (SOA) formation from wildfire emissions in the model. To test this hypothesis,

we applied a zeroth-order representation of wildfire SOA, which significantly improved the AOD and SSA

model-observation comparison. Our findings indicate that BrC absorption, the decay of its absorption

due to photobleaching, as well as SOA formation should be accounted for in chemical transport models

in order to accurately represent CA emissions from wildfires.
Environmental signicance

With the continued reduction in anthropogenic emissions driven by environmental regulation and the projected increase in the intensity of wildres driven by
increase in global temperatures and drought episodes, wildres are expected to be the dominant source of carbonaceous aerosol (CA) in the U.S. in the near
future. Therefore, predicting the air-quality and climate impacts of aerosols requires accurate representation of CA emitted by wildres in chemical transport
and climate models. Here, we utilize a comprehensive set of remote-sensing observations to constrain the representation of wildre CA in models. Our analysis
demonstrates the importance of accounting for light absorption by brown carbon and secondary organic aerosol formation in order to reconcile model output
with observations. These ndings improve themodel ability to predict the effect of wildre CA on the atmospheric energy budget and the CA inhalation exposure
levels in regions impacted by wildres.
Introduction

Emissions from wildland res are associated with signicant
impacts on public health1–3 and the climate.4,5 On the other hand,
they play an essential ecological role that benets natural
resources and promotes ecosystem health and resilience.6,7 This
tradeoff renders planning for the management and mitigation of
wildland res a major challenge,7 especially due to the chaotic
atory, School of Environmental, Civil,
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tion (ESI) available. See DOI:

92–201
nature of open res which makes model predictions of their
public-health and climate impacts highly uncertain.1,4,8 Wildland
res encompass wildres, which are usually ignited uninten-
tionally, and prescribed res.7 On average in the U.S., prescribed
res (mostly in the Southeastern U.S.) and wildres (mostly in the
Western U.S.) cover similar burned areas annually of �3 million
ha each, though Western wildres exhibit signicant year-to-year
variability1 and have been increasing in intensity due to increase
in global temperatures and drought episodes.9 With the
continued decrease in anthropogenic emissions driven by emis-
sion standards and regulation,10 the fraction of air pollutants
attributed to wildland res has been steadily increasing and is
projected to continue to do so in the future.11
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Wildland res are major emitters of carbonaceous aerosol
(CA), including organic aerosol (OA) and black carbon (BC).
Numerous laboratory studies12–14 and eld measurements15–17

have shown that OA from wildland res is light-absorbing, and
is categorized as brown carbon (BrC).18–20 BC is a strong
absorber of solar radiation with a positive radiative forcing that
is globally second only to carbon dioxide.21,22 BrC is comprised
of various species with a wide range of light-absorption prop-
erties, usually quantied using the imaginary part of the
refractive index (k). On average, BrC emitted from biomass
burning (including wildland res) exhibits mid-visible k values
that are one to two orders of magnitude smaller than k of BC.20

However, BrC emissions are usually one to two orders of
magnitude larger than BC,23 thus atmospheric BrC absorption
is potentially equally important to BC. Furthermore, BrC
exhibits absorption spectra that are largely skewed toward
shorter visible and UV wavelengths, which can have important
implications for photochemistry.24,25

Representing BrC absorption in chemical transport models
is challenging. Reported estimates of the global direct radiative
effect (DRE) of BrC absorption range between +0.03 W m�2 and
+0.57 W m�2.24,26 This large range partly reects the aforemen-
tioned large variation in BrC light-absorption properties, where
different modeling studies have used different kBrC values. To
account for variability in kBrC, experimental studies have
developed parametrizations that correlated kBrC in biomass-
burning emissions with the BC-to-BrC ratio (BC/BrC) in the
emissions.12,27,28 Specically, as BC/BrC increases, BrC becomes
more absorbing (i.e. kBrC increases). The underlying reasoning
is that a fraction of BrC is formed through the same route as BC,
and as the combustion conditions become more conducive for
BC formation, the light-absorption properties of the emitted
BrC converge to those of BC.29

Further complicating the representation of BrC in chemical
transport models is that BrC absorption decays upon aging in
the atmosphere. This process, referred to as photobleaching,
involves the destruction of BrC chromophores due to either
direct photolysis or photochemically induced reactions with
OH.15,30–33 Atmospheric observations of the evolution of wildre
plumes have shown that BrC absorption decays with e-folding
timescales on the order of 1 day.18,34 Wang et al.35 imple-
mented a photobleaching scheme in a chemical transport
model and found that the global BrC absorption DRE dropped
from +0.1 W m�2 to 0.048 W m�2 when they incorporated the
effect of photobleaching. Similarly, Brown et al.36 reported
a global BrC absorption DRE of +0.13 W m�2 and +0.06 W m�2

with and without photobleaching, respectively.
While the importance of light absorption by biomass-

burning BrC has been established in experimental studies
and atmospheric observations, the extent to which accounting
for BrC absorption improves model performance is less clear.
On one hand, several investigations have reported that
accounting for BrC absorption resulted in better agreement
between models and observations. Hammer et al.24 compared
ultraviolet aerosol index (UVAI) values retrieved from Ozone
Monitoring Instrument (OMI) data and those simulated by
a global climate model and found that ignoring BrC absorption
© 2022 The Author(s). Published by the Royal Society of Chemistry
in the model caused a negative bias in UVAI over biomass-
burning regions.24 Wang et al.35 used aircra measurements
over the U.S. to constrain model-simulated BrC absorption.
They found that best model-measurement agreement was ach-
ieved by accounting for both BrC absorption and photo-
bleaching. Similarly, June et al.37 found that ignoring
photobleaching in a global chemical transport model led to
overestimating aerosol absorption compared to Interagency
Monitoring of Protected Visual Environments (IMPROVE)
observations. On the other hand, Brown et al.36 found that even
though implementing BrC absorption in a global chemical
transport model led to better agreement between model
absorption Ångström exponent (AAE) values over biomass-
burning regions and those retrieved from Aerosol Robotic
Network (AERONET) observations, the model underestimated
single scattering albedo (SSA) values over these regions
compared to AERONET. This nding was conrmed by a more
comprehensive follow-up study which reported that all of 9
global models underestimated SSA over biomass-burning
regions compared to measurements from 12 observational
data sets.8 Indeed, that study reported that accounting for BrC
absorption exacerbated the underestimation of SSA.

Here, we present a detailed investigation of the extent to
which representing absorption by BrC from wildre emissions
in a chemical transport model improves the comparison with
remote-sensing observations. Using the Weather Research and
Forecasting model with chemistry (WRF-Chem),38 we performed
simulations for the month of August 2015 over the U.S. where
we treated OA emissions from wildres as (1) non-absorbing, (2)
absorbing (i.e. BrC), and (3) BrC with evolving light-absorption
properties due to photobleaching. We then applied a compre-
hensive set of constraints retrieved from AERONET observa-
tions to assess the model performance for each treatment. The
constraints included both extensive (AOD and AAOD) and
pseudo-intensive (AAE and SSA) optical properties.

Experimental design

The goal of this study is to assess the importance of accounting
for the absorption of BrC in wildre CA emissions for accurately
representing their interaction with solar radiation. To that end,
we performed a series of WRF-Chem simulations over the U.S.
for the month of August 2015. We chose this month because it
featured extensive wildre events in the Northwestern U.S.,
while no major res were recorded in Alaska and Canada.
Therefore, this simulation period presents a unique test case
with high levels of wildre CA emissions within the simulation
domain and minimal transport from outside the domain
boundaries. Over themonth of August 2015, approximately 93%
of the CA emissions in the U.S. were from biomass burning (7%
were from anthropogenic sources), 92% of which were from the
Northwestern wildres. The impact of the CA emissions from
the high wildre activity is depicted in Fig. 1a, where the
modeled monthly average wildre CA column burden exceeded
50 mg m�2 over the Northwestern U.S. Fig. 1b shows the frac-
tion of CA column burden over the U.S. attributed to the wildre
emissions, clearly reecting that CA from wildre emissions
Environ. Sci.: Atmos., 2022, 2, 192–201 | 193
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Fig. 1 (a) Column burden of carbonaceous aerosol attributed to biomass-burning emissions averaged over the month of August 2015. As
evident in the spatial distribution, emissions from Northwestern wildfires constitute the majority of biomass-burning emissions in the simulation
period. Black dots show the locations of AERONET stations used in the model-observation comparisons. (b) The fraction of carbonaceous-
aerosol column burden attributed to biomass-burning (wildfire) emissions.
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dominated the CA column burden over the majority of the U.S.
regions. The contribution of the Northwestern wildres to CA is
the lowest in the Eastern U.S. due to both the long transport
distance as well as the relatively high levels of anthropogenic CA
and biogenic secondary organic aerosol (SOA) over that region.

In order to assess the impact of representing BrC in wildre
emissions on CA optical properties, we performed 4 parallel
simulations:

(1) Base: we treated all OA emissions, including biomass-
burning OA, as non-absorbing. This is the default setting in
WRF-Chem.

(2) BrC: we treated biomass-burning OA emissions as BrC
based on the parameterization of Saleh et al.,28 as further
elaborated below. More than 90% of biomass-burning OA
emissions were attributed to Northwestern wildres in the
simulation period with little contribution from other biomass-
burning sources. Therefore, biomass-burning BrC in this
simulation is effectively wildre BrC. Anthropogenic OA emis-
sions as well as SOA from all precursors (biogenic, anthropo-
genic, and biomass burning) were treated as non-absorbing.

(3) BrC + bleaching: we accounted for the decay in BrC
absorption due to photobleaching based on the parameteriza-
tion of Wang et al.,35 as further elaborated below.

(4) BrC + bleaching + SOA: we incorporated a zeroth-order
representation of SOA formation from the oxidation of vapors
in wildre emissions.

Model description

We employed WRF-Chem38 version 3.8. We set a single domain
encompassing the contiguous U.S. with a horizontal resolution
of 12 km (396 � 246 grid cells) and 30 pressure-based vertical
layers extending up to 50 hPa. The model time step was 60
seconds and the output was saved as 3 hour averages. A 10 day
spin-up time was added at the start of the simulation period.
The initial and boundary conditions were processed for mete-
orology calculations using the National Center for
194 | Environ. Sci.: Atmos., 2022, 2, 192–201
Environmental Prediction (NCEP) nal reanalysis data with
a horizontal resolution of 1� � 1� and temporal resolution of 6
hours.39 We also implemented the reanalysis data to apply Four-
Dimensional Data Assimilation (FDDA) nudging40 to the wind
and temperature components in the simulations.

We obtained both anthropogenic and biomass-burning
emissions data from the EPA National Emission Inventory
(NEI).41 In addition to satellite re detection, wildland-re
emissions in NEI are obtained from re information data-
bases reported by national, regional, state, local, and tribal
agencies.42 We preprocessed the NEI emissions for use in WRF-
Chem using the Sparse Matrix Operator Kernel Emission
(SMOKE)43 model version 3.6.5 and converted the SMOKE
hourly emission output into WRF-Chem compatible input les
using EPA_ANTHRO_EMIS code developed by NCAR.44 For
computational efficiency, a simplied plume rise method45 was
applied to the re emission sources before using as input in
WRF-Chem.

Gas-phase chemistry was processed using the Model for
Ozone and Related Chemical Tracers (MOZART).46 Model of
Emissions of Gases and Aerosols from Nature (MEGAN) version
2 (ref. 47) was used to calculate biogenic emissions online with
meteorology. The Model for Simulating Aerosol Interactions
and Chemistry (MOSAIC),48 which includes major aerosol
species such as BC, organic carbon (OC), sulfate, nitrate, and
ammonium, was selected for simulating aerosol microphysics.
Within MOSAIC, gas–particle partitioning of semi-volatile
organic species is simulated based on the volatility basis set
framework49 and inorganic aerosol thermodynamics is simu-
lated using the multi-component equilibrium solver over
aerosols.50

We compared the monthly average BC and OA surface
concentrations predicted by the model with those obtained
from the Chemical Speciation Network (CSN) and the Inter-
agency Monitoring of Protected Visual Environment (IMPROVE)
network.51 The locations of the CSN and IMPROVE stations are
© 2022 The Author(s). Published by the Royal Society of Chemistry
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given in ESI Fig. S1,† and the comparisons for BC and OA are
given in Fig. S2a and b,† respectively. As shown in Fig. S2c,† the
model achieves the performance goals dened by Boylan and
Russell52 based on the mean fraction error (MFE) for the CSN
comparison for both BC and OA. For the IMPROVE comparison,
the model achieves the performance goals for BC and the less
stringent performance criteria for the OA comparison. The
reason for the larger MFE for the model-IMPROVE OA
comparison relative to the model-CSN comparison is further
discussed in ‘The missing scattering’ subsection.

WRF-Chem employs Mie theory to perform aerosol optical
calculations (scattering coefficients and absorption coefficients)
using MOSAIC size distributions and the complex refractive
indices associated with each MOSAIC chemical constituent.53

We used the model default complex refractive indices except for
wildre BrC, which was parameterized as described in the next
section. We employed an external mixing assumption for BC,
and all the other aerosol components were treated as well-mixed
within each size bin. We note that WRF-Chem does not provide
this mixing state as an option. Therefore, we dened new
(duplicate) size bins for BC particles which were only employed
for optical calculations in the optical module and thus did not
affect the aerosol microphysical and chemical processes in the
chemical transport module.
Brown carbon parameterization

In its default conguration, WRF-Chem treats OA from all
sources, including wildres, as non-absorbing by assigning an
OA imaginary part of a refractive index (kOA) of zero. In simu-
lations 2, 3, and 4 (described above), we accounted for absorp-
tion by biomass-burning (mostly wildre) OA, i.e. we treated
wildre OA as BrC. We applied the parameterization of Saleh
et al.,28 which calculates kBrC of biomass-burning emissions as
a function of the BC-to-BrC ratio (BC/BrC) in the emissions:

kBrC,550 ¼ 0.016 � log(BC/BrC) + 0.03925 (1)

w ¼ 0:2081

BC=BrC þ 0:0699
(2)

where kBrC,550 is kBrC at 550 nm and w is the wavelength
dependence. kBrC at other wavelengths (300 nm, 400 nm,
600 nm, and 999 nm in WRF-Chem) is calculated as:
Fig. 2 Comparison between monthly average AAOD at 440 nm for Augu
with four different model treatments of wildfire carbonaceous aerosol e

© 2022 The Author(s). Published by the Royal Society of Chemistry
kBrC;l ¼ kBrC;550 �
�
550

l

�w

(3)

According to this parameterization, kBrC,550 increases and w
decreases with increasing BC/BrC, signifying that the BrC
absorption becomes stronger but has a atter wavelength
dependence. The inverse relationship between kBrC,550 and w
has been observed in several studies.12,27,54 It is noteworthy that
BC has w ¼ 0 in the visible spectrum.

We note that in eqn (1) and (2), BC refers to biomass-burning
BC and BrC refers to biomass-burning OA. Therefore, in order to
implement the parameterization (eqn (1) and (2)) in WRF-
Chem, we dened new species to separate the OA emissions
into anthropogenic OA and biomass-burning OA (BrC) and the
BC emissions into anthropogenic BC and biomass-burning BC.

In simulations 3 and 4 (described above), we accounted for
the decay in BrC absorption by photobleaching15,30–33 upon
aging in the atmosphere based on the parameterization of
Wang et al.35 That study assumed that BrC absorption decreased
following a rst-order dynamic response with a time constant
(i.e. lifetime) of approximately 1 day18,34 at an OH concentration
of 5 � 105 molecules per cm3. Therefore, kBrC at each time step
can be calculated as:

kBrC;tþDt ¼ kBrC;t exp

�
� ½OH� Dt

5� 105

�
(4)

where Dt is the model time step in days and [OH] is OH
concentration in molecules per cm3.

Following Wang et al.,35 we did not allow kBrC to drop below
1/4 of the original value (at t ¼ 0), which is consistent with
atmospheric observational studies showing that the decay in
absorption associated with photobleaching plateaus at a certain
threshold.18,34

Fig. S3a in the ESI† shows the spatial distribution of [OH]
predicted by WRF-Chem for the month of August 2015, aver-
aged over the rst 8 layers of the model (where BrC effect is
important). The corresponding BrC absorption half-lives, esti-
mated from eqn (4), are shown in Fig. S3b.† The domain-
average BrC absorption half-life was 0.52 days, which is
consistent with the global-average half-life of 0.59 days reported
by Brown et al.36
st 2015 obtained from AERONET observations and WRF-Chem output
missions.

Environ. Sci.: Atmos., 2022, 2, 192–201 | 195
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Fig. 3 Comparison between monthly average AOD at 440 nm for August 2015 obtained from AERONET observations and WRF-Chem output
with four different model treatments of wildfire carbonaceous aerosol emissions.

Fig. 4 Comparison between monthly average AAE for August 2015 obtained from AERONET observations and WRF-Chem output with four
different model treatments of wildfire carbonaceous aerosol emissions.
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Observational constraints

In order to assess the optical treatments of BrC, we compared
the model output with observations from the Aerosol Robotic
Network (AERONET) observations.55 Fig. 1 shows the locations
of AERONET stations (black dots) used in this study.

The model-observation comparisons are monthly averages
(August 2015). They include both extensive optical properties,
namely the aerosol absorption optical depth (AAOD, Fig. 2) and
aerosol optical depth (AOD, Fig. 3), as well as pseudo-intensive
optical properties, namely the absorption Ångström exponent
(AAE, Fig. 4) and the single scattering albedo (SSA, Fig. 5). We
use ‘pseudo’ to indicate that even though AAE and SSA do not
depend on aerosol concentration, they are not true intensive
optical properties (as for example, the complex refractive index)
Fig. 5 Comparison between monthly average SSA at 440 nm for Augus
with four different model treatments of wildfire carbonaceous aerosol e

196 | Environ. Sci.: Atmos., 2022, 2, 192–201
because they depend on particle size and mixing state of the
aerosol.

AERONET inversion products use an inversion algorithm
described in Dubovik & King56 where radiative transfer forward
modeling is coupled with statistical estimation and constraints
to optimize the inversion method. AERONET inversion prod-
ucts have two quality assurance levels.57 The rst level (1.5)
includes thresholds on azimuth and scattering angles while the
second level (2.0) applies an extra set of criteria (e.g. omitting
data points with AODs smaller than 0.4). For this study, we used
level 1.5 AERONET inversion data to retain a large number of
data points for comparison with the model results.

AERONET observations are reported at 440 nm, 675 nm,
870 nm, and 1020 nm. For the AAOD, AOD, and SSA compari-
sons, we focus on the observations at 440 nm, where BrC
t 2015 obtained from AERONET observations and WRF-Chem output
missions.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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absorption is the strongest. Comparisons at 675 nm are shown
in Fig. S4–S6 in the ESI.†

We calculated AAE from AERONET AAOD at 440 nm and
675 nm as:

AAE ¼
log

�
AAOD440

AAOD675

�

log

�
675

440

� (5)

WRF-Chem optical properties are calculated at 300 nm,
400 nm, 600 nm, and 999 nm. Therefore, we converted WRF-
Chem AAOD, AOD, and SSA values to 440 nm for comparison
with AERONET observations. First, we calculated AAE and the
extinction Ångström exponent (EAE) from WRF-Chem AAOD
and AOD at 400 nm and 600 nm as:

AAE ¼
log

�
AAOD400

AAOD600

�

log

�
600

400

� (6)

EAE ¼
log

�
AOD400

AOD600

�

log

�
600

400

� (7)

Then, we calculated AAOD and AOD at 440 nm as:

AAOD440 ¼ AAOD400 �
�
400

440

�AAE

(8)

AOD440 ¼ AOD400 �
�
400

440

�EAE

(9)
Model-observation comparison
The Base simulation

As shown in Fig. 2a, the slope of the linear t to model AAOD
versus AERONET AAOD at 440 nm is 0.49 for the Base simula-
tion. The underestimation of aerosol absorption at 440 nm is
larger than at 675 nm (slope ¼ 0.62; Fig. S4a†), which is an
indication of missing BrC absorption in the Base simulation.
The effect of missing BrC absorption in the model is more
evident in the AAE comparison (Fig. 4a). AERONET AAE values
range between 0.8 and 1.4, which is consistent with variable
contributions of BC and BrC to absorption, where smaller AAE
values indicate BC-dominated absorption and larger AAE values
indicate an increased contribution to absorption by BrC. On the
other hand, the model AAE values exhibit a narrow range
between 0.6 and 0.7 and no correlation with AERONET AAE
because absorption in the Base simulation is solely dictated by
BC. The AAE comparison in Fig. 4a indicates that missing BC
absorption in the model cannot explain the underestimation of
AAOD in the Base simulation because the Base simulation not
only underestimates AAOD, but also its wavelength
© 2022 The Author(s). Published by the Royal Society of Chemistry
dependence. For instance, if one is to add BC to the model to
reconcile the model and AERONET AAOD at 440 nm, that would
lead to overestimating AAOD at 675 nm.

The slope of model AOD versus AERONET AOD is 0.31
(Fig. 3a), which is smaller than the slope of the AAOD
comparison. This indicates that in addition to the underesti-
mation in aerosol absorption in the model, there is a more
signicant underestimation in scattering. As expected, because
scattering is more underestimated on average than absorption
in the model, a substantial fraction of model SSA values are
smaller than AERONET SSA (Fig. 5a). The model SSA values are
generally clustered in two groups, one in good agreement with
AERONET and one lower than AERONET. This clustering can be
understood by examining the spatial distribution of model and
AERONET SSA in Fig. 6. The model SSA values are smallest in
the Northwest, where wildre CA is dominant, and increase
toward the South and East, with the largest values along the
Eastern region. The AERONET observations are mostly clus-
tered in the Western region (where model SSA is smallest) and
the Eastern region (where model SSA is the largest and closest to
AERONET SSA), thus creating the two clusters in Fig. 5a. More
importantly, comparing the spatial distributions of SSA (Fig. 6)
and wildre CA column burden (Fig. 1b) clearly indicates that
the underestimation in model SSA (i.e. underestimation in
aerosol scattering) is associated with the treatment of wildre
CA in the model. The missing wildre CA scattering is further
explored later in this section.
Effect of incorporating brown carbon absorption

Model AAOD values in the BrC simulation are signicantly
larger than in the Base simulation. As shown in Fig. 2b, the
slope of model AAOD versus AERONET AAOD for the BrC
simulation is 1.23. The BrC simulation exhibits an improved
model-observation AAOD comparison compared to the Base
simulation (slope ¼ 0.49; Fig. 2a), though incorporating BrC
absorption leads to overestimating AAOD, on average. This is
further evidenced in the AAE comparison. As shown in Fig. 4b,
model AAE in the BrC simulation is better correlated with
AERONET AAE compared to the Base simulation. However,
almost all model AAE values are larger than AERONET AAE
values. Overall, even though representing BrC based on the
parameterization of Saleh et al.28 leads to overestimating aerosol
absorption, it presents an improvement in the prediction of
aerosol absorption compared to the Base simulation, where BrC
is neglected.

BrC absorption has a negligible effect on aerosol scattering
and only affects the absorption component of aerosol extinc-
tion. Consequently, incorporating BrC absorption has only
a small effect on the AOD model-observation comparison, as
evident in comparing Fig. 3a and b. Because BrC absorption
causes a substantial increase in absorption and negligible effect
on scattering, this is reected in a substantial decrease in SSA in
the BrC simulation compared to the Base simulation. As shown
in Fig. 5b, incorporating BrC absorption widens the gap
between the two clusters described above and substantially
worsens the SSA model-observation comparison.
Environ. Sci.: Atmos., 2022, 2, 192–201 | 197
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Fig. 6 SSA at 440 nm averaged over the month of August 2015 from WRF-Chem output with four different model treatments of wildfire
carbonaceous aerosol emissions. The colored dots show the locations and SSA values of AERONET stations used in the model-observation
comparisons.
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As expected, accounting for the decay in BrC absorption due
to photobleaching (BrC + bleaching simulation) leads to
a reduction in both AAOD and AAE compared to the BrC
simulation. As shown in Fig. 2c and 4c, the AAOD and AAE in
the BrC + bleaching simulation exhibit very good agreement
with AERONET observations. However, similar to the Base and
BrC simulations, the BrC + bleaching simulation severely
underestimates aerosol scattering as evident in the model-
observation AOD comparison (Fig. 3c). Because incorporating
photobleaching reduces BrC absorption, the SSA values in the
BrC + bleaching simulation (Fig. 5c) are larger than in the BrC
simulation (Fig. 5b) resulting in a slight improvement in the
SSA model-observation comparison. However, SSA model-
observation comparison in the BrC + bleaching simulation is
still worse than the Base simulation (Fig. 5a).

To recap, neglecting BrC absorption (Base simulation) results
in a signicant underestimation of aerosol absorption as evi-
denced in the model-observation AAOD and AAE comparisons.
Accounting for BrC absorption (BrC simulation) leads to over-
estimating AAOD and AAE, but results in a better comparison with
observation. The best agreement in AAOD and AAE with obser-
vations is achieved when accounting for both BrC absorption and
photobleaching (BrC + bleaching simulation). However, all
simulations severely underestimate scattering compared to
observations, as evident in the AOD comparisons. We note that
the better model-observation agreement of SSA in the Base
simulation compared to the BrC and BrC + bleaching simulations
is rather serendipitous; it is due to the fact that the Base simu-
lation underestimates both absorption and scattering.
Fig. 7 Column burden of SOA averaged over themonth of August 2015 f
carbonaceous aerosol emissions.

198 | Environ. Sci.: Atmos., 2022, 2, 192–201
The missing scattering

The model-observation comparisons employed in this study
(Fig. 2, 3, 4, and 5) include both absorption and scattering, as
well as extensive and pseudo-intensive properties. This
comprehensive set of constraints enables dissecting the
missing scattering problem described in the previous sub-
section. For instance, the underestimation of AOD cannot be
explained by an underestimation in wildre CA emissions.
Reconciling model and AERONET AODs would require
increasing CA emissions by a factor of �3 (Fig. 3), which would
lead to overestimating AAOD (Fig. 2). The underestimation of
AOD cannot be explained by wrong BC/BrC or BrC optical
properties either. Increasing the amount of BrC (or making BrC
more absorbing and/or scattering) to reconcile the model and
AERONET AOD would lead to either overestimating AAE, or
AAOD, or both.

A plausible explanation that satises the observational
constraints is that the model largely underestimates SOA forma-
tion from wildre emissions. Laboratory experiments58–61 and
eld measurements62–64 have reported SOA formation in wildre
plumes from the oxidation of vapor precursors as well as evapo-
ration and subsequent oxidation of semi-volatile OA compo-
nents,65 though to highly variable extents. We performed
a simulation (BrC + bleaching + SOA) that involved a zeroth-order
representation of wildre SOA in addition to representing BrC and
photobleaching. We treated SOA formation as direct emissions
from wildres alongside BrC (i.e. primary organic aerosol; POA)
and BC. We assumed equal amounts of SOA and POA, which is
romWRF-Chemoutput with four different model treatments of wildfire

© 2022 The Author(s). Published by the Royal Society of Chemistry
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within the range of values reported in the literature.61 For
simplicity, we treated wildre SOA as non-absorbing. Fig. 7a
shows monthly average SOA column burdens over the model
domain from the Base simulation. The relatively high levels of
SOA over the Eastern U.S. are due to biogenic volatile organic
compounds (VOCs) emissions, which are efficient SOA precur-
sors. On the other hand, SOA formation from VOCs and other
precursors (intermediate volatility and semi-volatile organic
compounds)66 in wildre emissions is severely underestimated in
the model as evidenced by the low SOA levels in the Northwest
incorporating BrC leads to a slight decrease in SOA concentrations
(Fig. 6b and c) because BrC light absorption reduces the surface
temperature slightly, which leads to a reduction in emission rates
of biogenic VOCs.47 Representing wildre SOA in themodel (BrC +
bleaching + SOA simulation) increases SOA column burden by
about two orders of magnitudes over the wildre regions in the
Northwest (Fig. 7d).

Relative to the BrC + bleaching simulation, accounting for
SOA formation in the BrC + bleaching + SOA simulation has
a small effect on AAOD as shown in Fig. 2c and d (slope of AAOD
comparison increases from 1.05 to 1.15) and AAE (Fig. 4c and d).
However, accounting for SOA formation has a signicant effect
on AOD as shown in Fig. 3c and d (slope of AOD comparison
increases from 0.35 to 0.60), thus largely reconciling the model
SSA and AERONET SSA (Fig. 5d). Brown et al.8 performed
a comprehensive SSA comparison between 9 global chemical
transport/Earth system models and 12 observational data sets
over globally distributed regions dominated by biomass-
burning emissions. The study found that all models under-
estimated SSA compared to observations. Since those models
did not include SOA formation from biomass-burning emis-
sions,8 it is plausible that the underestimated scattering due to
the missing SOA at least partly explains the inconsistency
between the models and the observations.

The results obtained from the model-observation compar-
ison performed in this study indicate that SOA formation from
precursors in wildre emissions is important and should be
accounted for in chemical transport models.65,67 This SOA has
implications not only to the radiative balance in the atmo-
sphere, but also to air quality (public health). Including wildre
SOA in the model improved the comparison between surface-
level OA concentrations predicted by the model and those ob-
tained from IMPROVE, as evidenced by lower MFE of the BrC +
bleaching + SOA simulation (ESI Fig. S2f†) compared to the Base
simulation (ESI Fig. S2c†). We note that MFE of the model-CSN
OA comparison was only slightly impacted by including wildre
SOA in the model. The reason is that IMPROVE stations (46 out
of 118) are substantially more represented than CSN (14 out of
119) in the regions most impacted by wildre emissions (ESI
Fig. S1†). These results indicate that neglecting wildre SOA can
lead to underestimating aerosol surface concentrations, thus
inhalation exposure, in regions impacted by wildre emissions.

Conclusions

We employed a comprehensive set of optical properties
retrieved from AERONET observations as complementary
© 2022 The Author(s). Published by the Royal Society of Chemistry
constraints for testing the representation of wildre BrC in
WRF-Chem. Specically, the combination of AAOD (an exten-
sive aerosol light-absorption property) and AAE (a pseudo-
intensive light-absorption property that describes the wave-
length dependence of absorption) comparisons showed that
BrC absorption should be accounted for in order to reconcile
model and observed absorption. One could match model and
observed AAOD at a certain wavelength by scaling wildre BC
emissions, but that would lead to disagreement at other wave-
lengths if BrC absorption was ignored. Overall, the best model-
observation agreement in terms of aerosol absorption was
achieved by representing wildre BrC absorption using the
parameterization of Saleh et al.28 and its decay by photo-
bleaching using the parameterization of Wang et al.35 However,
in order to also reconcile model and observed AOD and SSA, we
found that the model should account for relatively high levels of
wildre SOA (similar levels to wildre POA). Neglecting wildre
SOA results in severely underestimating aerosol scattering. This
nding indicates that modeling frameworks that do not
account for wildre SOA underestimate aerosol concentrations
in regions impacted by wildre emissions.
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