Direct and nitrite-sensitized indirect photolysis of effluent-derived phenolic contaminants under UV254 irradiation†
Abstract
UV254 photolysis has increasingly been utilized for disinfection of water-born pathogens in wastewater. During disinfection, wastewater-derived trace organic contaminants, such as pharmaceuticals and personal care products (PPCPs), may be subjected to direct photolysis and indirect photolysis sensitized by wastewater constituents such as nitrite (NO2−). Herein, we reported the direct photolysis and NO2−-sensitized indirect photolysis of four phenolic contaminants commonly observed in wastewaters (i.e., bisphenol A (BPA), acetaminophen (ATP), salbutamol (SAL), and 2,4-dihydroxybenzophenone (BP1)). Spectroscopic characterization and quantum yield measurement were carried out to evaluate the photochemical reactivity of these phenolic compounds. In NO2−-sensitized photolysis, the relative contribution of direct and indirect photolysis was quantified by light screening factor calculation and radical quenching studies. The experimental results highlight the important roles of HO˙ and NO2˙ in the NO2−-sensitized photolysis of phenolic compounds. A series of intermediate products, including hydroxylated, nitrated, nitrosated, dimerized, and alkyl chain cleavage products, were identified by solid phase extraction (SPE) combined with high-resolution mass spectrometry (HRMS) analyses. On the basis of identified products, the underlying mechanisms and transformation pathways for NO2−-sensitized photolysis of these phenolic compounds were elucidated. The second-order rate constants of BPA, SAL, BP1 with NO2˙ were calculated to be 2.25 × 104, 1.35 × 104 and 2.44 × 104 M−1 s−1, respectively, by kinetic modeling. Suwanee River natural organic matter (SRNOM) played complex roles in the direct and NO2−-sensitized photolysis of phenolic compounds by serving as a photosensitizer, light screening and radical quenching agent. Wastewater constituents, such as NO3− and EfOM, could accelerate direct and NO2−-sensitized photolysis of BPA, SAL, and BP1 in the wastewater matrix. Our results suggest that NO2− at the WWTP effluent-relevant level can sensitize the photolysis of effluent-derived phenolic contaminants during the UV254 disinfection process; however, the formation of potentially carcinogenic and mutagenic nitrated/nitrosated derivatives should be scrutinized.