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Automatic optimization of temporal monitoring
schemes dealing with daily water contaminant
concentration patterns†

M. Gabrielli, a F. Trovò b and M. Antonelli *a

The semi-arbitrary selection of water monitoring frequencies and sampling instants conducted by water

utilities and regulatory agencies does not guarantee the identification of the maximum contaminant

concentration or the extent of the daily variations present in fast-responding water systems, potentially

leading to erroneous evaluations of process performances or human health risk. Hence, this work proposes

two novel methods to optimize temporal monitoring schemes dealing with daily contaminant

concentration patterns to select the sampling instants characterized by the maximum concentration or the

maximum daily variation, while, coincidentally, limiting the number of samples analysed. The corresponding

algorithms, based on the multi-armed bandit framework, were termed SeqĲGP-UCB-SW) and SeqĲGP-

UCB-CD). While the first algorithm passively adapts to daily pattern changes, the other actively monitors

the sampled concentrations providing change detection alerts. The algorithms' application to monitoring

of drinking water distribution systems has been compared against traditional schemes on two synthetic

scenarios derived from full-scale monitoring campaigns regarding chemical or microbiological

contaminants and directly employing high-frequency flow-cytometry data. Compared to traditional

schemes, the algorithms demonstrate better performances, providing lower differences between the

observed and true target values (i.e., maximum concentration or maximum concentration variation) with a

reduced number of samples per day, being also resilient to pattern changes. Following a sensitivity analysis,

we provide practical guidance for their usage and discuss their applicability to other water matrices and

highlight possible modifications to handle different usage scenarios and other pattern types. The

application of the developed algorithms results in lower monitoring costs while providing detailed water

contamination characterization.

1 Introduction

Monitoring contaminant concentrations in urban and
environmental water matrices (e.g., drinking water, wastewater,
surface water) is of primary importance to provide reliable data

for their control and permits to make informed management
decisions and interventions.1 For example, in the case of
drinking water, estimating the actual performance of water
treatments and the contaminant concentrations is fundamental
to ensure the protection of the consumers. Hence, it is essential
to carefully design monitoring campaigns accounting, among
other factors, for the possible presence of variations on several
temporal and spatial scales. Focusing on temporal variability,
both the presence of transient events and daily patterns should
be considered to characterize the water quality properly.2

Several studies showed how the concentrations in water of
several contaminants can change smoothly throughout the
day resulting in stochastic but reproducible daily patterns.3–5
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Water impact

This study proposes two automatic online algorithms to optimize temporal monitoring schemes to target maximum concentration or maximum
concentration variations of daily contaminant concentration patterns, while, coincidentally, limiting sampling costs. These algorithms overcome the
constraints of current monitoring schemes which do not provide guarantees on the monitored concentrations. Algorithms' validation on drinking water
full-scale data proved their robust applicability.
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Noteworthily, such daily patterns also change over longer
time scales, likely due to the variations of the surrounding
environmental conditions and/or anthropic activities
responsible for their occurrence.6,7 Remarkably, these daily
concentration patterns arise due to several causes in fast-
responding water systems such as surface water, shallow
groundwater, and water distribution and collection systems.
For instance, in drinking water production and distribution,
patterns can be caused by variations in the source water of
the drinking water treatment plants or even by the daily
variation of operating and conditions in the treatment plants
and drinking water distribution systems.3,8–12 Such evidence
highlights how monitoring schemes should take into account
the possible presence of daily contaminant concentration
patterns.3

Monitoring the temporal variability of water contaminant
concentrations has recently become more accessible thanks to
the recent advancements of online analytical instrumentation
(e.g., flow cytometers, gas chromatographs, ATP meters) which
have increased the range of chemical and microbiological
parameters measurable.8,11,13–15 However, compared to
electrochemical sensors, these new instruments are
characterized by non-negligible capital and operating costs and
the need for increased maintenance in case of high sampling
frequencies.5,11

While high monitoring frequencies using such instruments
have uncovered relevant contaminant concentration
fluctuations,3,9,16,17 such intensive campaigns are not
sustainable by water utilities or environmental protection
agencies for long periods due to budget constraints. Hence,
sampling frequencies are arbitrarily reduced by the operators to
limit costs, having legislative compliance as the only constraint
for the sampling frequency selection. Together with the fact that
sampling instants are chosen arbitrarily, this results in
monitoring schemes which do not guarantee the effectiveness
of the monitoring campaign, potentially leading to miss
relevant fluctuations.5,6,18 Moreover, different contaminants
might require different monitoring schemes. For instance, the
identification of maximum concentrations should be the focus
when monitoring contaminants linked with a direct human or
environmental risk to ensure that no concentration exceeds the
acceptability thresholds and connected risks are not
underestimated.9 In cases where no direct risk is present, e.g.,
measurement of total bacterial concentrations, monitoring
should focus on detecting the variability to obtain information
regarding process stability as legislative compliance is often
based on its variability.3,19

The use of event-based sampling, already proposed for
transient events,20 constitutes an efficient monitoring
strategy when the causes of contaminant concentration
patterns are easily identifiable and measurable (e.g., well
abstraction rates21). Conversely, this approach is not feasible
in the case where the daily patterns either arise from the
sum of several minor events (e.g., domestic water uses4) or
have no explicit direct cause.6 In this case, the solution
proposed by Gabrielli et al.6 could be adopted. However, this

method requires manual selection of the monitoring scheme
based on an initial high-frequency monitoring period of
arbitrary duration to gather information on the pattern
present. Therefore, as the daily concentration pattern might
vary with time, periodical checks are required to evaluate if
the initial calibration is adequate for the current pattern.
Remarkably, general guidelines have already been proposed
for the selection of sampling times for calibrating hydrologic
models.22 However, such guidelines cannot be applied in the
case of daily contaminant concentration patterns, as they
focus on collecting a few samples from transient events to
calibrate water discharge models.

The absence of prior information on the process of
interest and the capability to gather information during the
operating life of the system, adapting to possible changes,
are commonly addressed in the Machine Learning field by
Online Learning techniques.23 Specifically, the problem of
determining the optimal sampling time can be modelled with
the Multi-Armed Bandit (MAB) framework, a decision-making
approach commonly used in advertising, internet routing,
and other applications.24 While active sampling approaches
have already been used for environmental monitoring
applications (e.g., to improve hydrologic model calibration25

and identify anomalous sensors' data26), such methodologies
do not fully exploit the guarantees provided by the MAB
framework.

Within the MAB framework, a learner is presented with a
set of available options, which can be selected each time over a
finite time horizon. The learner starts with no prior
information on the available options and he can observe only
the realization of the options selected each time.27 Over the
time horizon, the learner balances between the characterization
of the available options (exploration) and the selection of the
one they believe as optimal (exploitation), to either identify the
optimal option with high probability or to minimize the loss
accumulated over time due to the choice of sub-optimal
decisions. Several algorithms have been proposed to achieve
such goals while, at the same time, providing theoretical
guarantees.27–30 While classical MAB techniques assume that
the processes are stationary, i.e., they have constant behaviour
over time, recently, a new set of techniques for non-stationary
MAB settings have been proposed and showed promising
results in a wide range of applications in the Internet
advertising and dynamic pricing fields, but not environmental
monitoring.31–34 This framework is usually described as a slot
machine game with several arms characterized by different
rewards, which in the non-stationary case might change as the
game progresses. At the beginning of the game, the player will
pull the arms randomly, not having any previous knowledge of
the rewards, while, as the game progresses, they will focus on
the most promising arm, pulling the others less frequently. The
exploitation/exploration dilemma derives from the fact that the
player will have to decide whether to pull the arm they consider
as the best or a more uncertain one, possibly discovering a
better performing arm, especially in the non-stationary case, as
the arms' rewards might change over time.
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In this work, we propose two novel methods to optimize
temporal monitoring campaigns targeted for monitoring
campaigns using advanced online instrumentation and
dealing with daily contaminant concentration patterns. The
algorithms, based on the MAB framework, termed SeqĲGP-
UCB-SW) and SeqĲGP-UCB-CD), aim to sample instants which
are characterized by either the maximum daily concentration
of a target contaminant or its maximum concentration
variation without the need for external information (e.g. no
available measurements of the daily pattern causes).

The proposed algorithms frame temporal sampling within
the MAB framework: starting with no information on the
monitored process, over time (i.e., as the monitoring
campaign progresses), the proposed algorithms have to select
an action (i.e., sampling at a specific time instant) among a
set of available options (i.e., all the possible sampling
instants). Resorting to the description of the above-mentioned
toy example, the proposed algorithms assign each arm of the
slot machine to the action of taking a sample at a specific
time of the day. Every time that one arm is available (i.e., the
time of the day corresponds to the specific sampling time) the
algorithms decide to either pull that arm or not (i.e., sampling
or not at that time instant). Over the monitoring period, the
algorithms estimate a probability distribution of the various
arms using the concentration of the contaminants measured
in the previous samples and, depending on the target, select
the most appropriate sampling instant. Indeed, to optimize
the actions performed (i.e., sampling time instants presenting
the target contaminant concentrations), they balance the
trade-off between sampling the instants that are believed to
correspond to the target concentration (exploitation) and
getting measurements from promising sampling instants
whose concentration estimate is not accurate enough
(exploration). Thanks to these approaches, it is possible to
sample the contaminant concentration only at the time
instants likely to be useful to address the specific goal of the
monitoring campaign, realizing a cost-effective and
informative water quality monitoring system. Remarkably,
this approach does not require any assumption on the
monitored contaminant and, therefore, can be applied to any
contaminant or water matrix of interest. In what follows, we
describe the two novel algorithms and their components, and
apply them in the field of drinking water distribution systems
on: (i) two synthetic scenarios derived from full-scale
monitoring campaigns, and (ii) a real-world scenario directly
employing high-frequency flow-cytometry monitoring data, in
order to show their exploitation for addressing daily
concentration patterns representative of different water
contaminants and two specific monitoring targets (i.e., the
detection of the maximum daily concentration of a given
contaminant, or its maximum daily variation). Then, we
compare their performance against traditional monitoring
schemes. Finally, after a sensitivity analysis of the algorithms'
performances and discussing their use in different water
matrices, we provide guidance on their use in other real-world
scenarios.

2 Materials and methods
2.1 Details of the proposed algorithms

Two algorithms, namely SeqĲGP-UCB-SW) and SeqĲGP-UCD-
CD), have been developed to guide the choice of sampling
instants, framing such a problem following the MAB
framework (see Introduction for details). While the two
algorithms share part of their components, they differ in the
way they adapt to the changes of the contaminant
concentration pattern which can occur over the monitoring
periods. SeqĲGP-UCB-SW) adapts the choice of sampling
instants employing a passive strategy relying on a sliding
window (SW) which provides a continuous adaptation to
eventual pattern changes, while, however, not providing any
explicit alert regarding their occurrence.33 SeqĲGP-UCB-CD),
instead, employs an active change detection (CD) test which
actively monitors for the presence of changes in the
measured contaminant concentrations, providing alerts
regarding pattern changes.34 However, using this strategy,
monitoring schemes are adapted only after the change has
been detected. Both algorithms can select the sampling
instant based on two different target value preferences. More
specifically, the proposed algorithms can target the sampling
instants in which the highest concentration of a target
contaminant is expected to occur or, alternatively, the
sampling instants linked with either maximum and
minimum concentrations of the target contaminant, in order
to estimate the maximum concentration variation, regarded
as a representative of the daily concentration variability.

To better identify sampling instants characterized by the
target contaminant concentrations, both proposed
algorithms take advantage of the temporal correlation which
is present among the contaminant concentration in close
sampling instants. Such a correlation is exploited by the
combination of Gaussian Processes (GPs) and Upper
Confidence Bound (UCB), namely GP-UCB, proposed by
Srinivas et al.:35 GPs are used for modelling purposes and the
UCB as a selection criterion.27

GPs allow unknown functions to be estimated starting
from a set of noisy samples through a collection of Gaussian
random variables governed by a predefined covariance
function (also known as a kernel).36 In the developed
algorithms, a Matérn kernel (ν = 2.5), together with a white
noise kernel, has been used to capture the autocorrelation
among sampling instants and their stochasticity. Moreover,
the GP was adapted to properly capture the temporal
proximity of samples taken at the end (e.g., 23:00) and at the
beginning (e.g., 01:00) of the day.

The UCB criterion, a commonly used policy in MAB
algorithms, selects sampling instants based on the principle
of “optimism in the face of uncertainty”. Following this
criterion, the sampling instants are chosen on a predefined
statistical confidence bound,35 targeting instants in which
the expected concentration is either highly promising or
highly uncertain. When the algorithms are used for targeting
maximum contaminant concentrations, only the time
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instants with the highest confidence bound are selected.
Conversely, when targeting maximum daily variations, the
time instants are chosen based on the highest and lowest
confidence bounds.

To exploit the possibility to collect and analyse multiple
samples per day provided by advanced online instruments,
the Seq() meta-algorithm37 was adopted. The use of this
meta-algorithm allows multiple actions to be selected per
day. Indeed, as soon as a sample is analysed, its
concentration is used to re-estimate the contaminant
concentration pattern provided by the GP and identify the
new sampling instant as the time with the highest, and
eventually lowest, confidence bounds.

Fig. 1 illustrates the outcome of combining the three
components (GP estimation, UCB criterion, and Seq() meta-
algorithm) of the algorithms when targeting the maximum
daily concentration in two consecutive sampling days. At day
d, based on the concentrations measured in samples collected
during previous days, the selected sampling time is at around
20:00, since it corresponds to the time having the highest
confidence bound. Once the new measurement is available,
the uncertainty bound is re-estimated by the GP, leading to a
reduction of the uncertainty regarding the concentration at
that time of the day. After such reduction, the next sampling
instant is selected as the new time corresponding to the
largest confidence bound. In Fig. 1, this happens at around
11:00 of the next day d +1, but, in case the largest UCB would
have resulted at a later time (e.g., 22:00), this time instant
would have been sampled during the same day d.

To adapt to concentration pattern changes SeqĲGP-UCB-
SW) trains the GP on the last n days, where n is the length of
the sliding window, similar to what has been proposed by
Garivier and Moulines.31 The pseudo-code for SeqĲGP-UCB-
SW) is shown in Algorithm S1.†

SeqĲGP-UCB-CD), instead, similar to what has been
proposed by Liu et al.,32 performs change detection through
an online change-point method38 using the non-parametric

scale-location Lepage test.39 Such a test, being non-
parametric, does not require prior information on the
monitored process and allows control of both changes in the
variability and the central value of the monitored objective.
Furthermore, this change detection test provides already-
defined thresholds to limit the occurrence of false positive
change detection alarms by controlling the average number
of observations (i.e., the number of measured target
contaminant concentrations) between two consecutive
occurrences (commonly referred to as ARL0): it was applied
either to the measured daily maximum concentration or the
measured daily maximum, daily minimum, and daily
maximum variation, depending on the monitoring objective.
SeqĲGP-UCB-CD) requires an initial training period (TW),
during which the samples are assumed as independent and
identically distributed, to let the GP learn the daily pattern
appropriately and correctly identify the instant to sample
before starting the detection of target value changes. To
favour the detection of changes occurring throughout the
whole day, after each sampling event SeqĲGP-UCB-CD)
randomly selects the next sampling instant with probability
α, called exploration percentage. Note that, due to the self-
starting capabilities of SeqĲGP-UCB-CD), before detecting any
change, it requires a minimum number of observations after
the initial TW which are assumed without pattern changes.
The pseudo-code for SeqĲGP-UCB-CD) is shown in Algorithm
S2.†

Notice that both SeqĲGP-UCB-SW) and SeqĲGP-UCB-CD)
provide an unbiased estimate of the maximum (or maximum
and minimum) contaminant concentrations and temporal
location. Such estimates are obtained for each monitoring
day through a Monte Carlo approach drawing 100 GP
realizations to estimate the probability that each time instant
corresponds to the maximum (or minimum) contaminant
concentration and using those probabilities to perform a
weighted average over the concentrations used to train the
GP, similar to what was proposed by D'Eramo et al.40

Fig. 1 Example of sampling time selection in two consecutive sampling days for an algorithm targeting the maximum daily concentration. The
black line and the grey area represent respectively the mean and confidence bounds estimated by the GP implemented in both algorithms. The
red vertical dashed line shows the selected sampling instant at the given day, while the blue dots represent the concentrations in samples
collected previously.
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2.2 Performance evaluation metrics

Two different conflicting metrics have been used to evaluate
the effectiveness of the monitoring strategies employed.

The first performance metric is the relative difference
between the target values observed by a monitoring scheme
and their true values occurring each day (RDOT). Formally:

RDOT = (vobs − vtrue)/vtrue,

where vobs is the value observed for the quantity analysed by a
monitoring scheme during a given day, and vtrue is the true
value for the corresponding quantity in the same day. In our
modelling, we either analyse the maximum concentration or
the maximum concentration variation of a target contaminant,
obtaining respectively RDOTmax and RDOTdelta. Such a metric
allows testing the error performed by the monitoring schemes
to identify the appropriate sampling instants: the closer to
zero the RDOT value, the lower the difference between the
observed and the true target value, and the better the
performance of the selected monitoring strategy.

The second metric is the number of samples per day,
namely SPD [day−1], requested by the monitoring scheme.
Such a metric is used as a proxy for the operating costs due
to both reagents used for the sample analyses and
instrument maintenance. Therefore, the smaller the number
of samples requested, the better the algorithm performs in
terms of operational costs, but, in general, the worse the
estimation task is fulfilled.

2.3 Case studies

The proposed algorithms were tested on: (i) two synthetic
scenarios, derived from high-frequency monitoring campaigns
of full-scale drinking water distribution systems, and (ii) a
scenario employing real-world data directly collected from an
automatic instrument installed in a distribution system. These
scenarios were selected to test daily concentration patterns and
daily pattern changes linked with different water contaminants
(chemical and microbiological) and characterized by various
degrees of complexity. In fact, the synthetic scenarios allowed
realistic concentration patterns and pattern changes to be
assessed in a controlled manner. Meanwhile, the real-world
scenario provided the opportunity for an evaluation
characterized with a higher degree of complexity and pattern
stochasticity. While the algorithms' parameters were changed
between experiments, ARL0 was set to the constant value of 500.
Alongside the proposed algorithms, two common traditional
monitoring schemes have been employed for comparison: fixed-
time and random sampling.41,42 Both schemes were tested by
varying the number of samples per day n ∈ {2, 3, 4, 5, 6}. Under
fixed-time sampling, a fixed number of equally spaced instants
are sampled each day. For each number of samples per day, all
the possible combinations of sampling instants were tested.
Meanwhile, random sampling consists of randomly (with
uniform probability) selecting a fixed number of instants each
day.

2.3.1 Synthetic scenarios. Both synthetic scenarios
simulated contaminant concentrations for 180 days by
stochastically perturbing, with a given uncertainty, the daily
concentration patterns retrieved from full-scale monitoring
studies and imposing a variation of the daily pattern after a
selected period. In both scenarios,48 equally distributed
sampling instants (one every 30 minutes over the day) were
considered, randomly selecting the starting sample between
7:00 and 16:00, considered as plausible working hours. As
the data of each simulation day was generated randomly, the
performances of all monitoring strategies were averaged over
100 independent simulations.

The first scenario was derived from the hourly Intact Cell
Count (ICC) measurements provided by Nescerescka et al.43

The measured pattern shows a constant baseline
concentration with two short-lived ICC peaks which were
modelled using a constant baseline and two Gaussian-shaped
peaks (Fig. S1†). An uncertainty equal to the analytical
uncertainty specified by the authors of the study was used to
introduce stochasticity in the simulated patterns. An abrupt
shift of 1 h in the occurrence of the ICC peaks was manually
imposed on the daily pattern after 90 simulation days to
mimic a possible change caused by variations in the pump
scheduling, water demands or drinking water treatment plant
operations3,11,21 (Fig. S1†). In this scenario, the monitoring
schemes were evaluated targeting the maximum variation in
terms of concentration, as the ICC is not linked to
consequences on human health44 and legislations often focus
purely on its variations.19 This scenario can be considered as
representative of real-world involving complex daily
concentrations patterns, presenting rapid concentration
variations, multiple contaminant peaks throughout the day
and abrupt pattern changes. Such characteristics occur
commonly in microbiological concentrations in drinking
water due to treatment plant management changes and
peaks in water demands.3,4,6,11,12,43

In the second synthetic scenario, trihalomethanes (THMs)
are considered as the target contaminant. The stochastic
daily concentration pattern used in this scenario was
generated based on the model formulated by Chaib and
Moscandreas,9 derived from 7 weeks of THM analyses
performed every 4 hours in a full-scale system. This daily
pattern presents a continuous variation of the THM
concentration throughout the day with a single broad peak
around midday (Fig. S2†). Stochasticity in the daily
concentration pattern was obtained considering both the
uncertainty regarding the amplitude of the daily THM
fluctuations and their periodicity, as indicated in the original
study. Furthermore, a gradual seasonal change in the daily
pattern shape was simulated by shifting the THM
concentration peak gradually by 6 h between the 70th and
120th simulation days in accordance with the seasonal
differences found in Wang et al.45 (Fig. S2†). Due to the
presence of a legislative maximum allowed for THM
concentrations and the presence of a direct human health
risk,46,47 in this scenario the monitoring schemes were
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evaluated for the identification of the sampling instant
revealing the maximum concentration. This latter scenario,
characterized by more gradual concentration changes, can be
considered representative of simple contaminant
concentration patterns resulting from the variation of
environmental conditions (e.g., temperature, light).7,9,45

2.3.2 Real-world scenario. The algorithms have also been
tested using the real-world data presented by Gabrielli et al.6

In brief, total cell counts were measured in a non-chlorinated
drinking water distribution system with a bi-hourly frequency
for around 5 months (from May to October) with an online
flow-cytometer (Fig. S3†). As highlighted in the mentioned
paper, the dataset presents an overall increase in total cell
counts during the central summer months (July and August)
and different daily patterns during the monitored period.
The dataset presents few gaps due to technical issues that
occurred during the monitoring campaign. In our
simulations, such gaps have been ignored, directly linking
the last day before their occurrence to the first day after the
restart of the measurements, mimicking what would be
observed by an unattended automatic algorithm in case a
malfunctioning of the online instrument occurs. As for the
previous microbiological scenario, the algorithms have been
evaluated on the identification of the concentration
variations. Similar to what was done for the synthetic
datasets, the algorithm performances have been averaged
over 100 simulations where the starting sample was chosen
randomly between the ones in the first monitoring day.

2.4 Data and code availability

The implementation of both SeqĲGP-UCB-SW) and SeqĲGP-
UCB-CD), together with the code used to simulate the
synthetic scenarios and a test script, is publicly available at:
https://github.com/mgabriell1/SeqMAB-environmental-
monitoring. The algorithms and synthetic scenarios have
been implemented in Python (https://www.python.org/),
using the libraries Numpy,48 pandas,49 Matplotlib50 and
Scikit-learn.51 The change detection test was based on the R
package cpm,52 which was integrated into the Python script
through the rpy2 library (https://rpy2.github.io/).

3 Results
3.1 Performance comparison against the traditional
monitoring scheme

3.1.1 Synthetic scenarios. Firstly, both the proposed
algorithms and the traditional monitoring schemes have
been tested on the two synthetic scenarios, as shown in
Fig. 2 and 3. Fig. 2 presents the average performance of the
tested monitoring schemes in the identification of the
sampling instants connected to maximum and minimum
concentrations (RDOTdelta) in the ICC synthetic scenario,
which shows an abrupt pattern change mimicking the effects
of either variations in the drinking water management
strategies or water demand patterns. In general, it is possible
to observe the trade-off between the two metrics chosen: an

increase of the RDOTdelta value is generally achievable
analysing a larger number of samples. Noticeably, since
fixed-time sampling requires the manual selection of a given
number of time instants per day at each SPD (e.g., for SPD =
2 d−1: 1 AM and 1 PM, or 2 AM and 2 PM, and so on),
multiple combinations are possible. As shown by the

Fig. 2 Average performances of tested monitoring schemes on the
ICC synthetic scenario before and after the pattern change. For each
monitoring scheme, an arrow connects the points indicating the
performances before and after the pattern change, pointing toward
the one representing the performances after the pattern change.
Regarding fixed-time sampling, for each SPD value, only the sampling
instant combinations which achieve the worst, median and best
performances before the pattern change have been shown and jitter
was applied in order to reduce overlapping. The proposed algorithms'
results have been obtained with the following algorithm
parameterization: SW = 30 d, TW = 30 d, α = 0.075.

Fig. 3 Average performances of tested monitoring schemes along the
THM synthetic scenario (rolling mean, n = 25). To show the temporal
variation of the RDOTmax obtained by the traditional schemes along
the gradual pattern change a vertical displacement was applied at each
SPD value. For each SPD value, the temporal RDOTmax evolution is to
be read vertically moving from the lower to the higher SPD values. To
avoid clutter only the fixed-time sampling instant combination with
median performances before the pattern change was shown. The
proposed algorithms' results were obtained with the following
algorithm parameterization: SW = 30 d, TW = 30 d, α = 0.1.
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difference between the RDOTdelta of the best, median and
worst sampling time instant combinations at each SPD value,
each combination provides different performances. Such an
issue is particularly evident in the case of low sampling
frequencies (i.e., in our case lower than 6 samples per day),
where coincidentally the number of possible sampling
instant combinations increases. As indicated by the arrows'
length, the RDOTdelta of fixed-time sampling varies greatly
between before and after the pattern change (up to 5 times
approximately). Compared to fixed-time sampling, random
sampling offers an average RDOTdelta which, however, does
not vary before and after the pattern change. The two
proposed algorithms achieve a RDOTdelta, which would be
obtained by random sampling only with SPD > 6 d−1 and is
matched only temporarily (i.e., before or after the pattern
change) by fixed-time sampling instant combinations.
Indeed, only one fixed-time sampling instant combination
with SPD = 6 d−1 provides a comparable estimate of the daily
concentration variation throughout the whole simulation,
although requiring more than twice the number of samples
per day. Both algorithms successfully adapt to the pattern
change, showing no difference in both SPD and RDOTdelta
values before and after the pattern change. SeqĲGP-UCB-CD),
in addition, correctly identifies the time of its occurrence
(Fig. S4†).

Similar to Fig. 2, the results obtained in the THM
synthetic scenario are shown in Fig. 3 and S5 and S6,† with
the RDOT being evaluated against the maximum daily
concentration (RDOTmax). Different from the previous
synthetic scenario, the daily THM pattern is subjected to a
gradual change, representing a possible seasonality45 and, for
this reason, the evolution of the evaluation metrics obtained
by each monitoring scheme during the whole period is
shown. In general, compared to the previous scenario, a
higher RDOT (i.e. a more accurate estimate of the target
value) is achieved by all monitoring schemes. In addition,
fixed-time sampling instant combinations at higher SPD
values show a reduced variation of the RDOTmax values
throughout the simulations, due to the broadness of the
concentration peak. However, the results of this scenario
agree with what has been observed previously: (i) the
performance of the traditional monitoring schemes increases
with larger SPD values, (ii) random sampling provides
average performances, but is resilient to pattern changes and
(iii) fixed-time sampling, RDOTmax is not resilient to pattern
dynamicity and presents performances which vary
significantly among different sampling instant combinations
(Fig. S5 and S6†). The proposed algorithms obtain very
similar performances in terms of both RDOTmax and SPD
values, resulting in a RDOTmax which is matched by
traditional schemes only using more than two times the
number of samples per day. It is possible to see how, during
the gradual pattern change, both algorithms suffer from a
slight decrease in RDOTmax and increase temporarily their
SPD in order to readapt the pattern estimate performed by
the GP to the new pattern. However, while SeqĲGP-UCB-SW)

results in a smooth change of RDOTmax and SPD values
during the simulation, SeqĲGP-UCB-CD) adapts to the gradual
change only after detecting its presence (Fig. S7†), resulting
in a stepwise adaptation to the pattern change.

3.1.2 Real-world scenario. The results of the monitoring
scheme performances targeting the maximum concentration
variation in the real-world scenario, over the entire
monitoring period, are shown in Fig. 4 and 5. While Fig. 4
displays the RDOTdelta obtained by the proposed algorithms
and the traditional monitoring schemes allowing its
fluctuations to be observed, Fig. 5 focuses on the trade-off
between SPD and RDOTdelta values, showing their average
computed over the whole monitoring period. Similar to what
has been observed for the two synthetic scenarios, both
traditional monitoring schemes obtain better performances
at the expense of higher SPD values, with random sampling
showing stable RDOTdelta and fixed-time sampling resulting
in large variations of its value as observed, for example,
between day 50 and 100 (Fig. 4), in which the concentration
pattern changes dramatically (Fig. S3†) likely due to a
variation in the water consumption caused by the onset of
summer vacations.6 Finally, also the presence of large
performance differences between fixed-time sampling
combinations is confirmed, as indicated by the broad gap
between the best, median and worst sampling combinations.
The RDOTdelta of both developed algorithms, instead, while
still fluctuating more than random sampling, shows in most
cases smaller variations compared to fixed-time sampling
(Fig. 4). Except for the monitoring schemes with SPD = 6 d−1,
the average RDOTdelta of SeqĲGP-UCB-SW) and SeqĲGP-UCB-
CD) is outperformed significantly by only the best
combination of fixed-time sampling (Fig. 5), despite both
algorithms selecting only around 2.7 samples per day.
However, without a priori information, the chance of
selecting such best-performing fixed-time sampling instant
combination is only 16%, 25%, and 33%, considering
respectively 2, 3, and 4 samples per day. Indeed, considering
the sampling combinations with the median performance for
each SPD value as representative of the fixed-time monitoring
performance in case of no a priori information, it is possible
to note how traditional monitoring schemes are Pareto-
dominated by the proposed algorithms, i.e. they have worse
characteristics on all the performance metrics analysed.
Actually, neither median fixed-time nor random sampling
can provide a RDOTdelta comparable to the one displayed by
the proposed algorithms with a similar SPD, as such
performances are achievable only at the expense of a higher
SPD, highlighting the potential of the proposed algorithms to
handle complex daily patterns and their dynamics.

Focusing exclusively on the two proposed algorithms, the
sliding window approach implemented in SeqĲGP-UCB-SW)
achieved a higher RDOTdelta (approximately 7%) than the
active change detection test adopted by SeqĲGP-UCB-CD),
employing on average only 19.5 more samples over the entire
5-months period. On the other hand, SeqĲGP-UCB-CD)
provides pattern change alerts, detecting in most simulations

Environmental Science: Water Research & Technology Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
A

pr
il 

20
22

. D
ow

nl
oa

de
d 

on
 1

1/
10

/2
02

4 
1:

39
:1

0 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ew00089j


2106 | Environ. Sci.: Water Res. Technol., 2022, 8, 2099–2113 This journal is © The Royal Society of Chemistry 2022

their occurrence (Fig. S8†) before and after the monitoring
gaps, as confirmed by the inspection of the full original
dataset (Fig. S3†).

3.2 Sensitivity analysis

The robustness of the performance of the proposed
algorithms was tested by varying the values of the parameters
to assess the effect of a suboptimal parameterization, both in
the synthetic and the real-world scenarios. Table 1 presents
the mean RDOT values obtained with different parameter
combinations tested in the two synthetic scenarios.

Focusing on the results of SeqĲGP-UCB-SW), we can see
how a significantly different behaviour exists in the two
scenarios, as such scenarios represent pattern changes with
different complexities and change types. In fact, the
performance of SeqĲGP-UCB-SW) continues to increase as the
sliding window length increases in the ICC scenario, while

such performance peaks with a sliding window equal to 15
days in the THM scenario.

About SeqĲGP-UCB-CD), short training windows reduce the
obtained RDOT, since they affect the estimation of the
pattern shape leading to an increased presence of false-
positive change detection (Fig. S9†). Similar to what has been
observed for SeqĲGP-UCB-SW), this effect is less evident for
the THM scenario, due to its lower complexity. Instead, an
increase in the values of α is connected to worse
performances, as SeqĲGP-UCB-CD) will choose more
frequently a sampling instant not connected to either
maximum or minimum concentrations.

The sensitivity analysis of the algorithm parameters in the
real-world scenario is shown in Fig. 6. As discussed
beforehand, an excessive or an overly short SeqĲGP-UCB-SW)
sliding window length impacts both the RDOTdelta achieved
and the number of samples per day analysed. Regarding
SeqĲGP-UCB-CD), an excessively long training window TW

Fig. 4 Comparison of the average RDOTdelta obtained in the real-world scenario (rolling mean, n = 10) obtained by SeqĲGP-UCB-SW), SeqĲGP-
UCB-CD), and the traditional schemes for different SPD values: the performance of fixed-time is shown in subplots (a)–(d), while that of random
sampling in subplots (e)–(h). SeqĲGP-UCB-CD) and SeqĲGP-UCB-SW) results have been shown in all subplots to aid the visual comparison with
traditional strategies. Only the fixed-time sampling combinations with overall maximum, minimum (dashed line) and median (solid line) RDOTdelta
have been shown to avoid excessive clutter. The proposed algorithms' results have been obtained with the following algorithm parameterization:
SW = 15 d, TW = 20 d, α = 0.075.
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results in decreased performances, as different patterns
might be included in this window. In addition, as no change
detection is performed during this initial period, an excessive
training period will also limit the possibility to detect
changes and adapt accordingly. As already noted, a clear
decrease in the average RDOTdelta is obtained in the case of
an excessively large α value. However, an appropriate
percentage of exploratory samples is needed to improve the
worst-case performance of the algorithm and to properly
control the concentration throughout the whole day. Indeed,
while the difference between the average RDOTdelta with α

equal to 0.05 and 0.075 is small due to the limited α

variation, the worst-case performance, represented by the 5th
quantile, shows a larger difference (i.e., −0.56 with TW = 20 d
and α = 0.05; −0.54 with TW = 20 d and α = 0.075).

4 Discussion
4.1 Monitoring scheme performances

In general, both synthetic and real-world scenarios highlight
how to obtain a RDOT closer to zero, indicating a better

characterization of maximum and/or minimum
concentrations (see section 2.2), and SPD values should
generically be increased, leading to higher operating costs. In
any case, other than just the monitoring frequency, the
importance of the selection of the sampling instants is
critical to properly monitor daily contaminant concentration
patterns. As it can be observed by comparing the results of
the two synthetic scenarios, this is especially true in case the
monitoring target is the maximum daily concertation
variation, and complex patterns with high concentration
variability and impulse-like contaminant peaks are present.

Selecting every possible time instants with equal
probability, as done by random sampling, provides an
estimate of the target values resilient to pattern changes;
anyway, it does not allow their true value to be properly
characterized, as noted by Gabrielli et al.6 and highlighted by
the mediocre RDOT values in Fig. 2–5. In practical terms,
although changes in target contaminant concentrations are
detected by a monitoring scheme implementing the random
sampling, looking at the average values of the analysed
samples, it is not possible to accurately observe the
contaminants' target value every day. Consequently,
erroneous evaluations of the process stability and water
quality could be drawn, for example, regarding the temporal
stability of ICC concentrations affected by treatment or
distribution.3

Focusing exclusively on selected sampling instants and
neglecting the others, as done by fixed-time sampling, might
lead to the true target contaminant concentration being
missed, due to: (i) misspecified sampling instants (e.g., fixed-
time sampling instant combinations with poor performances
both before and after the pattern change in Fig. 3), or (ii)
inconclusive information on the observed variation which
cannot be attributed to a change in the maximum and
minimum daily concentrations or just to a change in the
time of their occurrence (e.g. fixed-time sampling is unable to
catch the shift of the maximum THM concentrations due to
differences in water retention times and temperature profiles
as in Fig. 3 and S2, S5 and S6†).9,45 Such erroneous
evaluations might result in inadequate, or even harmful,
interventions. For example, erroneously-observed reductions
in THMs, as highlighted in Fig. 3, might lead drinking water
treatment plant managers to relax the treatment steps
dedicated to their removal, potentially increasing consumers
health risk. Similar results could occur in case of increases in

Fig. 5 Average performances obtained by the proposed algorithms
and the traditional schemes over the entire monitoring period in the
real-world scenario. Regarding fixed-time sampling, multiple
performances at each SPD value refer to the several sampling instant
combinations tested. The dashed green and blue lines connect,
respectively, the dots representing fixed-time sampling instant
combinations with the median RDOTdelta and random sampling. Mean
confidence bars are not reported as negligible. The proposed
algorithms' results were obtained with the following algorithm
parametrization: SW = 15 d, TW = 20 d, α = 0.075.

Table 1 Mean RDOTdelta and RDOTmax obtained by the proposed algorithms in the ICC and THM synthetic scenarios as a function of the parameters'
values. Mean 95% confidence intervals are included in brackets

SeqĲGP-UCB-SW) SeqĲGP-UCB-CD)

SW = 10 d SW = 15 d SW = 30 d TW = 10 d TW = 30 d

ICC scenario −0.575 (0.005) −0.453 (0.006) −0.337 (0.006) α = 0.05 −0.235 (0.007) −0.223 (0.007)
α = 0.075 −0.250 (0.009) −0.236 (0.007)
α = 0.15 −0.297 (0.007) −0.284 (0.007)

THM scenario −0.055 (0.001) −0.053 (9 × 10−4) −0.058 (0.001) α = 0.05 −0.049 (9 × 10−4) −0.048 (8 × 10−4)
α = 0.075 −0.049 (9 × 10−4) −0.048 (8 × 10−4)
α = 0.15 −0.051 (0.001) −0.051 (9 × 10−9)
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THM concentrations at times different from the ones
sampled and which might go undetected. In fact, selecting a
sampling combination with the best performance during one
period (e.g., selected using a preliminary sampling campaign
as proposed by Gabrielli et al.6) does not solve this problem,
as daily patterns might change unpredictably. Furthermore,
these issues are particularly relevant when employing low
sampling frequencies (i.e., in our scenarios SPD < 6 d−1), as
the increasing number of possible sampling instant
combinations reduces the probability of selecting the best
combination without a priori information.

The proposed algorithms, instead, actively make use of
the collected samples to select the successive sampling
instants, resulting in performances resilient to pattern
changes, but ensuring lower operating costs (with SPD being
a proxy, see section 2.2). For example, comparable RDOT
could be achieved only by more than two times higher SPD
values (i.e., operating costs) in the scenarios investigated.
Noteworthily, such performances are obtained without any a
priori or external information on the monitoring process,
removing the need for explicit human intervention. In case of
pattern changes, their performance will temporarily drop, as
shown in Fig. 3 and 4, but with a limited number of samples
the new pattern would be successfully learned, resulting in
again high performances which, in the tested scenario, allow
the total cell concentration to be effectively monitored and
anomalous variations to be properly assessed, which could
have been missed otherwise. Comparing the two algorithms,
the better RDOTdelta obtained by SeqĲGP-UCB-SW) in the real-
world scenario highlights the flexibility of the sliding window
approach for the adaptation to generic changes in the data.53

In fact, active approaches, as the one used by SeqĲGP-UCB-
CD), are usually not well suited for gradual or complex
pattern changes and can possibly lead to a significant delay
before the change detection and the subsequent
adaptation.38 However, such loss in RDOTdelta is
compensated for by the ability to actively detect changes in
the daily concentration pattern and to provide alerts (e.g.,
Fig. S8†), which could trigger additional investigations to

reveal the cause of the change, aiding the management of
the infrastructure. Nonetheless one must take care to avoid
an excessive number of false alarms, as such events could be
problematic for water utilities and environmental protection
agencies both due to the costs for the verification of the
change origin and the decrease of the trust in the events'
detection.54

4.2 Algorithm parameter selection guide

Based on the results of the sensitivity analysis, some
guidance for the application of the proposed algorithms can
be obtained. It should be stressed that the best algorithms'
parametrization depends on both the daily pattern
complexity and its type of change. In any case, by comparing
x-axis scales of the real-world scenario results in Fig. 5 and 6,
it is possible to note the robustness of these algorithms to
the use of suboptimal parameter values, as even the worst
parameterization tested still outperforms the median
performances of the traditional schemes. Since theoretical
results regarding the optimal sliding window length cannot
be used in real-world environmental monitoring
application,33 based on the results of the real-world
sensitivity analysis, we suggest the use of a sliding window of
limited length. While such a setting will lead to a slight
increase in monitoring costs due to the larger number of
samples per day analysed, such an option allows more
intense sampling of the entire set of sampling instants and
faster adaptation of the monitoring scheme to pattern
changes. In fact, a shorter-than-optimal sliding window
achieved a higher RDOTdelta than using one of excessive
length, as this latter option can lead to the inclusion of
samples which do not represent the current pattern,
especially in gradual (e.g., seasonal) changes,53 as simulated
in the THM scenario. Beware that excessively short sliding
windows might still hamper performances, as they would not
allow SeqĲGP-UCB-SW) to effectively learn the daily pattern,
as highlighted by the length required to improve RDOTdelta
in the ICC scenario.

Fig. 6 Variation of RDOTdelta and SPD values obtained by SeqĲGP-UCB-SW) and SeqĲGP-UCB-CD) in the real-world scenario, due to different
sliding window (SW) or training window (TW) lengths and exploration percentage (α) values.
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The training window length TW must be set accordingly
to the complexity of the daily pattern expected in order to
allow the SeqĲGP-UCB-CD) algorithm to properly learn the
pattern and avoid excessive false positive alarms, as
highlighted by the sensitivity analysis on the ICC scenario. It
should be stressed that any operation which might affect the
monitored contaminant or its pattern should be avoided
during this period (e.g., change filters and/or its backwash
schedule), since uncontrolled conditions during the initial
training might limit the algorithm's ability to learn the water
quality pattern and the change detection performances.38

The value of α should reflect the degree of stochasticity in
the pattern occurrence and should not be set too small to
prevent excessively low worst-case performances.
Hypothetically, if the time instants of the maximum (and
minimum) concentration were known to be fixed, the best
performances would be obtained with α = 0. On the other
hand, in the case of a completely random concentration
pattern, the most appropriate value should be 1, as no single
time instant could be considered as having the maximum (or
minimum) concentrations. Such consideration explains the
different results of the sensitivity analysis conducted on α:
the optimal value of α lies below 0.05 in the synthetic
scenarios due to their lower pattern stochasticity (i.e., the best
sampling locations are more repetitive due to the simpler
pattern changes) (Table 1), while to properly account the real-
world data stochasticity a value of 0.075 is needed (Fig. 6).

Regarding the choice between the two algorithms, in our
opinion, SeqĲGP-UCB-SW) is more suited when complex
pattern dynamicity might be present, or in the case where it
is not possible to provide controlled conditions during the
initial SeqĲGP-UCB-CD) training phase due to its continuous
pattern adaptation. Furthermore, the misspecification of the
sliding window length appears to affect less SeqĲGP-UCB-SW)
performances, compared to the use of suboptimal parameters
for change detection. On the other hand, SeqĲGP-UCB-CD) is
more suited in the case of more controlled situations, e.g., in
drinking water treatment plants, where deviations from the
normal conditions must be actively identified and notified as
soon as possible to minimize possible negative outcomes
(e.g., the distribution of contaminated water).

In any case, basic knowledge of the concentration pattern
which is expected aids the algorithm parametrization. In
general, changes in the environmental conditions (e.g., day/
night cycles) generically lead to smooth and simple
concentration patterns of chemical contaminants (e.g., THM
scenario, Wang et al.45), which likely vary gradually
throughout the year, thus requiring shorter sliding and
training windows. On the other hand, concentrations of
microorganisms and of chemicals linked with intermittent
human activities (e.g., ICC and real-world scenarios, Besmer
and Hammes,3 Favere et al.,11 Buysschaert et al.12) can result
in complex patterns (i.e., presenting drastic daily
fluctuations), which might also change abruptly (e.g., within
a few days), requiring the use of longer sliding and training
windows. A general indication on the best algorithms and
suggested parameters' values as a function of the target
value, pattern complexity and change type can be found in
Table 2. The parameter values need to be considered as a
general indication, which needs to be adapted to the
characteristics of each specific case study. In particular, in
the case of high pattern stochasticity, the value of the sliding
window of SeqĲGP-UCB-SW) should be slightly decreased, i.e.
by 2–3 days, in order to sample more often all the possible
sampling instants. The same effect can be obtained in
SeqĲGP-UCB-CD) by increasing the value of α, i.e. 0.025–0.05.
To obtain the best-performing and case-specific parameter
values, it is advised to test the algorithms' performances
using different parametrizations on synthetically generated
time series based on historical data.

4.3 Extension of the applicability of developed algorithms

While all case studies here tested derive from drinking water,
daily contaminant concentration patterns comparable to the
tested scenarios can also be found in surface water and
wastewater for several contaminants, due to the cyclic nature
of anthropic activities,55 environmental conditions (e.g., light
intensity, temperature), and other affecting characteristics.56

For example, contaminants in surface water and both treated
and untreated wastewaters can be highly affected by
variations in environmental conditions (e.g., some metals,

Table 2 Summary of the best algorithms and suggested parameter values for different scenarios

Target value Pattern complexity Pattern change type Algorithm
Suggested parameters'
values

Max concentration Simple Abrupt SeqĲGP-UCB-CD) TW = 10 d
α = 0.05

Gradual SeqĲGP-UCB-SW) SW = 10 d
Complex Abrupt SeqĲGP-UCB-CD) TW = 17 d

α = 0.075
Gradual SeqĲGP-UCB-SW) SW = 15 d

Max concentration variation Simple Abrupt SeqĲGP-UCB-CD) TW = 15 d
α = 0.05

Gradual SeqĲGP-UCB-SW) SW = 13 d
Complex Abrupt SeqĲGP-UCB-CD) TW = 20 d

α = 0.075
Gradual SeqĲGP-UCB-SW) SW = 17 d
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nitrogen-species, photolabile compounds and microbiological
indicators are affected by diurnal light intensity
variation7,57,58), impulse-like contaminant releases, especially
in small catchments,15,50 and daily changes during
wastewater treatment.14,17,59,60 For this reason, traditional
sampling schemes might not be appropriate, while the use of
the proposed algorithms could be beneficial, allowing the
presence of unexpected concentrations to be identified,
which could warrant further investigation.

As other water matrices might be more affected by
environmental conditions, the developed algorithms could be
extended to include the use of external information to handle
their aperiodic effects. In case a triggering event is known to
affect the concentration of the monitored contaminant,
SeqĲGP-UCB-SW) or SeqĲGP-UCB-CD) could be coupled with
event-based sampling.20,41 In such a case, the proposed
algorithms would indicate the sampling times during normal
conditions (e.g., dry weather), while external information
could trigger a threshold for event-based sampling (e.g.,
rainfall), possibly still calibrated using MAB strategies. In
other cases, where a triggering event is not easily identifiable,
a possible alternative is the use of contextual bandit
techniques,61 which infer the relationship between external
information (e.g., meteorological conditions and/or other
easily-monitorable water parameters) and the targeted
contaminant concentration.

In any case, even though SeqĲGP-UCB-SW) and SeqĲGP-
UCB-CD) have been developed to tackle the presence of daily
contaminant concentration patterns, they can also be used
when no apparent pattern is present (yet) and adapt to its
onset, regardless of the water matrix. In such a case, SeqĲGP-
UCB-SW) results in a mostly uniform sampling of all the
available sampling instants (Fig. S10†). On the other hand,
SeqĲGP-UCB-CD) focuses most of the samples on a single
sampling instant, exploring the remaining ones based on the
specified α (Fig. S11†).

4.4 Adapting the developed algorithms to manual and low-
frequency monitoring

The proposed algorithms are not usable only when applied to
online automatic instrumentation, but also in other
scenarios. The same procedure can be performed with lower
time frequencies, e.g., taking samples only once per week,
without any modification to the algorithms. In fact, the only
difference is the time required by the algorithms to learn the
pattern's shape and, in the case of SeqĲGP-UCB-CD), the time
needed to detect its changes. In addition, one may adopt
delayed bandit techniques, if a significant delay in the
analyses is present.62

Regarding manual sampling, as already noted by Ekklesia
et al.,63 sampling in the same location more than once per
day might not be practical. For monitoring campaigns
targeting the maximum variability, a practical workaround is
to sample the time instant corresponding to the maximum
concentration at a given day and wait for the next sampling

day to sample the time instant corresponding to the
minimum. Finally, it is worth noticing that, as routine
manual sampling is restricted to working hours (e.g., 8:00–
17:00), no information can be obtained for the rest of the
day, possibly neglecting relevant events. Autosamplers,
instead, can be programmed to collect samples at any time of
the day for multiple days.64 However, the analysis is
performed only later, limiting the update of the algorithms.
For this reason, the frequency of the analysis of the collected
samples needs to be adjusted to avoid errors due to the use
of outdated information. While autosamplers could also be
used to collect composite samples, the use of this technique
would lead to the collection of averaged concentrations
without the possibility to identify short-lived concentration
peaks.14

Finally, it can be of interest to monitor at the same time
different contaminants possibly characterized by different
best sampling times (e.g., different concentration peak
times). As the algorithms have been designed to focus on a
single contaminant (either as a single compound or as a sum
of compounds from the same chemical family, e.g., THMs),
two options are available depending on the aim of the
monitoring campaign. In case the concentration of every
single contaminant is of interest, the solution would be to
use one algorithm for each contaminant and take a sample
every time it is suggested by any of the algorithms. Even
though in each sample the target value is expected only for a
few, or even only one, of the monitored contaminants, it is
advisable to carry out the analysis of the entire set of
monitored contaminants in each sample. In fact. This aids
the estimation of the daily concentration patterns of all the
targeted contaminants, resulting in a quicker identification
of the best sampling instants and, overall, a lower number of
samples analysed. To further reduce monitoring costs linked
with the use of different analytical instrumentation, it could
be possible to limit the analyses to only the contaminants
requiring the same analytical method as the one expected at
its target value. The other option consists in the use of the
developed algorithms based on an aggregated index
estimated from the concentrations of the contaminants of
interest. While the sampling instants selected will likely not
be characterized by the target concentration of any specific
contaminant, such a strategy would be suitable for
monitoring campaigns focused on properties which arise
from mixtures of contaminants as, for example, the
cumulative risk.

5 Conclusions

The results of this work have demonstrated how the use of
online learning algorithms permits temporal monitoring
schemes to be designed to sample the time instants
corresponding to the maximum and minimum
concentrations of the target contaminant. In fact, even in the
presence of complex daily contaminant concentration
patterns, the proposed algorithms are able to better describe

Environmental Science: Water Research & TechnologyPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
A

pr
il 

20
22

. D
ow

nl
oa

de
d 

on
 1

1/
10

/2
02

4 
1:

39
:1

0 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ew00089j


Environ. Sci.: Water Res. Technol., 2022, 8, 2099–2113 | 2111This journal is © The Royal Society of Chemistry 2022

contaminant concentrations, while coincidentally analysing
less than half the number of samples compared to traditional
monitoring schemes. In addition, the monitoring schemes
resulting from the application of the proposed algorithms are
resilient to daily pattern changes and require no external
information or human intervention. The application of these
algorithms by water utilities and environmental protection
agencies in fast-responding water matrices will benefit not
only from more detailed information, which could be used to
better understand the effect of technical operations during
water treatment or to provide a more accurate estimate of the
human or environmental risks, but will also achieve the
reduction of the operating costs due to the analyses of the
samples, enabling a more widespread water monitoring.
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