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Recent trends in computational tools and
data-driven modeling for advanced materials

Varshika Singh,abc Santanu Patra,ab Natarajan Arul Murugan, de
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The paradigm of advanced materials has grown exponentially over the last decade, with their new

dimensions including digital design, dynamics, and functions. Materials modeling such as that of their

properties and behavior in various environments using ab initio approaches, force-field methods and

machine learning represents a key step in advanced research. Computational techniques and theoretical

models pave the way for establishing the structure–property relationship for designing advanced materi-

als with novel properties and improving their performances. Likewise, high accuracy and fewer compu-

tational resources of machine-learning approaches have been widely considered for materials design in

the recent years. Furthermore, the information derived from materials studies needs to be properly

stored and re-analyzed, making big data analysis an essential requirement for further investigations. The

information thus generated has also led to the evolution of the genome of materials for the fostering of

advanced materials. Thus, various theoretical and computational approaches provide useful predictions

about materials properties and efficiency, ultimately leading to the substantial improvements for new-

age devices.

1. Introduction

Advanced materials sustain their enhanced structural and
functional properties such as biological, electrical, magnetic,
and optical at the macro- and nano-scales, whether they are
polymers, glasses, metals, ceramics, or composites. The com-
putational studies of such materials mainly focus on their
atomic interactions, to understand their unique structure-
derived properties for new technology developments.1–4 The
realistic models used in computer simulation both confirm and
complement experiments. The computational methods allow
the study of the structure, dynamics and properties of materials
and establish useful structural relationships to assist the
design of materials with improved properties.5 The behaviour
of materials at the macroscopic level is generally governed by
atomic interactions and its simulations facilitate a better
understanding of the materials architecture.

Material simulations of larger length and time scales under
different external conditions such as temperature, pressure, pH
and electric and magnetic fields have become a common tool
for technological innovations.6 Ab initio and Monte Carlo
simulations have been widely used for studying the electronic
structure and understanding the key intermolecular forces that
dictate the structure and dynamic properties of materials. By
applying computational methods during initial design and
study, the cost and time of manufacturing, and product testing
and production steps of materials are significantly reduced.7

Recent progress in machine learning, deep learning, the inter-
net of things (IoT), big data, and intelligent optimization has
deeply transformed the computational methodologies used for
materials design and innovation, providing a better under-
standing of their fundamental properties and behavior.8

Materials modeling offers significant information at the
microscopic level and explains their compositional, structural,
and multifunctional properties and, along with the generation
of multidimensional datasets, enables advancements in
materials discovery and application for sustainable energy
and environmental technologies.9 It further provides useful
insight into materials design and fabrication strategies
for novel and improved properties. Nevertheless, such indis-
pensable computational tools, offering prediction of structure
and even elements, as well as interesting properties, are
limited by their accuracy and therefore under continuous
investigation.10
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The quantum mechanics and computational methods allow
the identification of interatomic interactions, while other data-
driven techniques help with knowledge-based models to under-
stand structural properties and their role in the functional
properties of materials.11,12 All these data and analysis proce-
dures reduce time and cost to gain an insight into materials
discovery. In 2011, the Materials Genome Initiative (MGI)
announced the identification of faster, more efficient research
methods that integrate theory, computation, synthesis, and
characterization and accelerate new materials discovery,
design, and deployment.13 Huge datasets of materials are
generated in the process, which can be used to analyze and
share information among the researchers worldwide, to iden-
tify the respective features, which are responsible for the
materials functions in the minute time span.14 Fig. 1 explains
how computational methodologies allow structure modeling
and function prediction of materials while generating big data
and speed up the process from theory to experiment. Computa-
tional approaches provide information from the microscopic
level of materials, relate to their macroscopic properties, and
help modeling and engineering of materials.15

In this review article, we have highlighted the cutting-edge
materials research in the light of computational methods and
modeling by focusing on the developments of advanced and
innovative properties and applications. In silico studies enable
design modification, and functional prototyping would other-
wise imply time-consuming and expensive iteration and

fabrication steps in the case of many materials. Numerous
reviews on computational materials modeling have been pub-
lished in the last few decades (Table 1). Nevertheless, most of
these reviews focus on a particular computational method or
materials. This article enlists many in silico developments and
important technological innovations in advanced materials
that were not discussed or mentioned in any of the previous
reviews.

2. Computational modeling for
materials properties

Materials are the essential part of technology and development
and they have revolutionized the way we live today. The human
life is becoming more and more comfortable thanks to various
materials with useful properties. The computational modeling
of materials provides information about their structures,
dynamics, and properties and also how these materials respond
to external variables like temperature, pressure and electric and
magnetic fields. Such properties of materials to respond to
external conditions make them useful for design of smart
materials and sensors. Successful modeling of materials prop-
erties can be used to establish various structure–property
relationships which then can be used to design materials with
novel properties. Some of the useful materials properties are
listed as follows: (i) optical properties, (ii) magnetic properties,

Fig. 1 The fundamental approaches of computational procedures for structure modeling and property prediction of materials. Computational tools are
faster and cheaper than the high throughput laboratory experiments for assessing the same (Inside atomic structure has been reproduced with
permission from ref. 11).
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(iii) thermal conduction, (iv) electronic conductivity, (v) nega-
tive thermal expansion, (vi) non-linear optical properties, (vii)
energy efficiency in relevance to DSSC application, (viii) super-
ionic conductors (NASICON like materials), and (ix) thermally
and pH responsive materials. We have theories such as classical
mechanics, quantum mechanics and continuum mechanics to
model these properties. There are many detailed studies
reported in the literature to study these properties. With the
use of classical mechanics, one can follow the time evolution of
any system and any thermodynamic properties can be com-
puted from the stored positions and velocities. For example,
transport properties such as the diffusion coefficient of ions in
superionic materials can be computed from the root mean
square displacement or from the velocity autocorrelation
function.

The response of materials to external temperature, pressure
and pH can be modeled by running the simulations in appro-
priate ensembles such as the constant temperature constant

volume ensemble and the constant pH ensemble, and the
systems in these cases are connected to thermostats, barostats
and acidostats. However, the electronic (i.e., absorption and
emission spectra) and magnetic properties can not be com-
puted from the classical mechanics but rather one needs to
employ electronic structure theory which treats electrons expli-
citly. The response of materials to light and other fields can be
modeled using time dependent density functional theory. So,
depending on the system of interest and properties to be
modeled one needs to choose the right level of theory. For
example, we studied a hybrid system made of graphene,
sodium dodecylbenzene sulfonate and glucose oxidase using
force-field molecular dynamics simulations29 (Fig. 2). Since,
this study investigated the stabilizing interactions of this
hybrid system, and given that the length scale of the system
was quite larger, we chose this approach which is computa-
tionally less demanding but still able to provide insight into the
microscopic interactions responsible for the stability of the

Fig. 2 Immobilization of glucose oxidase (GOx) on the graphene: sodium dodecylbenzene sulfonate (SDBS) surface for glucose sensing applications
(reproduced with permission from ref. 29).

Table 1 Previous reviews on computational modeling of materials

Literature review Focus area of research

16 Commonly used methods of electronic structure calculation: ab initio methods,
density functional theory (DFT), some semi-empirical methods

17 Ab initio calculations of optically excited states in 2D materials
18 Fundamental topics of Hartree–Fock theory in quantum chemistry
19 Machine learning in solid-state materials science
20 Density functional theory in materials science
21 Density functional theory in materials research
22 Monte Carlo simulation of microstructural evolution in metals
6 Molecular dynamics computational method in shock wave solid simulation and biopolymers
23 Molecular dynamics in steel performance
24 Multiscale materials modeling
25 Data-driven materials science
26 Artificial intelligence in materials science
27 Artificial intelligence in materials science
28 Advances in modelling and simulation of halide perovskites for solar cell applications
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system. Based on the force-field molecular dynamics, it was
found that the graphene–SDBS interface was stabilized by
hydrophobic interactions, while the SDBS–glucose oxidase
interface was stabilized by hydrophilic interactions. Further,
this also explains why the GOx cannot be immobilized directly
on the graphene surface.

Similarly, the temperature responsive behavior of poly(N-
isopropylacrylamide) (PNIPAM) and its interaction with
Troponin-T were modeled successfully using force-field mole-
cular dynamics. The force-field MD was able to successfully
reproduce the coil-globular structural change in PNIPAM
with increasing temperature.30,31 The pH responsive behavior
of a generation-5 poly(amidoamine)-graft-poly(ethyleneglycol
methacrylate) (PAMAM(G5)–PEGMA) based drug delivery sys-
tem was studied by Zeng et al. using dissipative particle
dynamics simulations32 (Fig. 3). The authors showed that
PAMAM(G5)–PEGMA spontaneously forms unicellular micelles
at normal pH and central hydrophobic core can be loaded with
doxorubicin like drug molecules and the drug molecules can be
released under acidic pH condition present in the cancer cell
like microenvironment.

Therefore, computer simulations can provide valuable
insight into the working mechanism of various biosensor
molecules and to understand the pH and thermally responsive
behavior of smart polymeric materials for various biosensor–
bioelectronic applications. Also, in recent years machine learn-
ing approaches have been applied to establish the relationships
between the structural properties, electronic properties, and
macroscopic properties and the power conversion efficiency of
dye molecules for DSSC applications. With the established
relationships, it is possible to design novel materials with
improved power efficiency.

3. Computational methods in
materials research

Computational methods are driving advanced materials
towards engineering high-performance materials. Nowadays,
computational methods and tools are key components of

research for the design and development of a new class of
materials with advanced applications and properties. They
help in planning and optimizing materials synthesis processes,
including chemical reactions and required routes to follow.
In addition, they also help in the analysis and interpreta-
tion of experimental data regarding materials structure and
properties, offering meaningful insight into energy devices,
composite materials, automobiles, and chemical and biological
sciences.33

3.1. Materials modeling

The materials modeling approach is routinely applied as a cost-
effective and complementary tool for extracting information
about materials at the microscopic level and for explaining
their electrical, optical, and magnetic properties. It also pro-
vides an understanding into design principles and strategies
for the fabrication of materials with novel and improved
properties. Therefore, the use of materials modeling along with
experimental validation opens the possibilities for designing
extremely useful materials that are relevant for various applica-
tions such as energy and healthcare at the industrial level.
Materials properties are highly dependent on structure and
hence structure prediction is considered to be the center of
computational materials research.34 Materials of different
length scales (i.e., nano- and micro- materials) have been
developed with better properties like superplasticity and
enhanced toughness and strength.35–37 Predicting the structure
and properties of these materials using computational tools
before performing experiments has become common practice
in materials research. The development of reliable quantum/
molecular mechanics approaches and atomistic scale calcula-
tions allows such projections. Materials modeling has been
performed by three well-studied modeling approaches, i.e., ab
initio methods, density functional theory (DFT) semi-empirical
methods and force-field methods.

3.1.1. Ab initio methods. Ab initio methods are generally
used for the prediction of the structure, dynamics, and proper-
ties of materials. They were initially limited to studying
the chemical reactions and optical properties of molecular
systems and extended to studying the optical properties of

Fig. 3 pH responsive PAMAM(G5)–PCBA polymer for drug delivery for cancer treatment (reproduced with permission from ref. 32).
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chromophores in biological environments such as green fluor-
escent proteins (GFPs). Since ab initio methods can be only
applied to small sized systems, they need to be integrated with
molecular mechanics approaches, leading to the development
of hybrid QM/MM approaches, which won the Nobel Prize in
2013. But in recent times, these methods have become essential
tools in the study of atoms and molecules in condensed matter
systems and, increasingly, in modeling complex systems in
materials science. Ab initio methods are based on the Schrö-
dinger equation and involve many approximations such as the
Born–Oppenheimer approximation. These involve quantum
mechanical calculations to identify configurational disorder,
lattice vibrations and electronic excitations to predict the lattice
model and associated properties based on compositional
structure.38

The core knowledge achieved through ab initio methods
arises from the computational solution of the electronic Schrö-
dinger equation and helps in calculating and identifying the
electronic energy, electron density, electron transfer, thermal
relaxation, energy transfer, and charge recombination pro-
cesses for applications in the development of cells, batteries,
and other energy devices.39 Ab initio methods can also help in
modeling the relatively small region of materials at the quan-
tum chemistry level, where other modeling methods are treated
on an approximation basis. In drug delivery, for example, ab
initio molecular dynamics simulation followed by geometry
optimization was performed in the gas phase for determining
the binding energies of drug–polymer complexes, leading to the
finding that drug molecules interact with the polymer through

hydrogen bonding, while quantum mechanics/molecular
mechanics simulation showed that ciprofloxacin and metroni-
dazole release patterns follow the zero order kinetic model.40

The remarkable advances in ab initio methods provide
benchmark accuracy, used routinely to complement experimental
studies, and effectively calculate a wide variety of properties such
as structure, thermochemistry, various types of spectroscopic
quantities and response to external perturbations. This type of
calculation has practical application in industry for relevant
catalytic processes, semiconductor processing, and modeling of
conductivity for microelectronics applications. In addition, ab
initio methods provide a wealth of details that are not available
from experiments and a degree of confidence in the results that
are not available from a more empirical approach.41

Ab initio calculations of optically excited states in 2D materi-
als derived from the nature of two- and multi-particle excited
states such as strongly bound Wannier excitons and charged
excitons gave valuable insight into many interesting properties,
for instance enhanced light–matter coupling, gate-tunable
photoluminescence, and unusual excitonic optical selection
rules (Table 2).42

3.1.2. Density functional theory. Density functional theory
(DFT) is a quantum modeling method most commonly used for
electronic structure calculations in materials science. Instead of
the wavefunction as adopted in the ab initio electronic structure
theory, DFT relies on electron density, and various properties
including energy are represented as functions of this fundamental
property. DFT calculations are based on molecular structures and
find a local minimum state of molecules or materials.33

Table 2 Comparison of various computational methods used for materials study

Method Advantage(s) Disadvantage(s) Application(s)

Ab initio
methods

Provide very accurate predictions based on
quantum mechanics using wave functions

Intensive computational
requirements

Prediction of structures, thermo-
dynamics, spectroscopic quantities,
external force responses

Density func-
tional theory
(DFT)

Electronic structure calculations, less extensive
computational requirements

Too many approximations Calculation of materials’ interaction
properties and other kinetics
calculations

Semi-empirical
methods

Faster computation Less accurate Modeling of the structure and dynamics
of large systems

Monte Carlo
(MC) simulation

Probability calculations of different outcomes Large computational resources
required

Calculation of the thermodynamic prop-
erties of systems

Molecular
mechanics (MM)

Less complicated, fast, calculates equilibrium
equations of the atomistic system

Can’t predict accurate bond making
and breaking geometries

Prediction of accurate structures and
energies for molecules

Molecular
dynamics (MD)

Predicts materials properties by analyzing
atomic level behavior, visualizes the motion of
the atoms at the nanosecond level

Based on Newtonian mechanics, lack
quantum effects

Prediction of materials properties like
hardness, dissolution rate, toughness,
and reversibility

Quantum
mechanics (QM)

Can model chemical bonds Require extensive computational
facilities; thus applications are
limited to smaller systems

Prediction of macroscopic properties of
materials

Finite element
methods

Beer accuracy, faster, modeling of the entire
structural system rather than components

Reproduce macrostructure levels but
not the atomistic parameters

Analysis of stress, vibration, heat transfer
and other physical analyses

Probabilistic
materials
simulation

Predicts variance in materials properties due to
variance in micro-structural properties

Limited accuracy Machine learning, data mining, pattern
recognition

Multiscale
simulation

Combines the strengths of different mechanical
techniques for predicting the microscopic
model and for macroscale analysis

Noise or fluctuations in microscale
models

New materials design and modeling

Data science Hidden correlations inferred from already
available large datasets

Integration of data from experimental
and computational sources, data
standardization

New materials design
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Further, DFT gives estimations for the total energy and
potential energy of molecules and organic complexes, and band
gaps and optical transitions for metals, semiconductors, and,
with modifications, insulators. This method also allows study-
ing surface phenomena, such as oxidation and catalytic reac-
tions and modeling of nanoparticles and nanocomposites. DFT
has limitations in simulating more than few thousand atoms,
which can be overcome by using empirical potentials. DFT is
based on the Hohenberg–Kohn theorem that states that the
potential of a quantum system can be identified by the func-
tional of its electronic density and an additional constant.43

This theorem was extended for external potentials in an open
set and established as a function of the electronic density for
Coulomb potentials.44

The basic formalism needed for the ground-state quantum
chemical calculations that are typically performed in DFT
analysis comprises the molecular Hamiltonian with a special
set of atomic units that are convenient for simplifying the
equations, the Born–Oppenheimer approximation for electro-
nic and nuclear problems, and the Hartree and Hartree–Fock
equations for the electronic problem.45 DFT limitations can be
overcome by using a new method called holomorphic Har-
tree�Fock theory, where the equations are modified to avoid
the disappearance of the solutions. When applied to the
simplest chemical system H2, the properties of the solutions
resulted without their disappearance with geometry.46

DFT methods have been used for the modeling and simula-
tion of new functional materials for various applications as
energy storage devices, conductors, catalysts, and sensors.47–50

Coupled with experimental study, they assisted the develop-
ment of advanced materials for their respective applications
in the energy, environmental and health sectors.49 DFT

calculations also helped in analyzing possibilities of using
hydrogen as a fuel with new materials enabling catalysis and
hydrogen production.51,52 Nowadays, DFT is actively used for
required property prediction of materials and screening before
synthesis.53

Recently, DFT calculation of electronic properties contribut-
ing to a nanomaterials integrated ‘‘on/off’’ switchable aptasen-
sor system has been reported. The DFT study on the structural
contribution of the monomer of poly(N-isopropylacrylamide)
(PNIPAM) grafted onto a graphene oxide (GO) surface and the
effective adsorption of the nucleobases on it has explained the
effect of PNIPAM on the adsorption of the nucleobases as well
as its biomolecular integration with the GO surface. While the
experimental study proved that the PNIPAM on the nanomater-
ials surface does not contribute much to the full electronic
feature of the system due to the insulating nature of the
polymer, the DFT study showed that the bandgap energy
distribution before and after the functionalization of the PNI-
PAM monomer remained unchanged. The optimized structures
of all nucleobases, GO, the PNIPAM monomer and the GO/
NIPAM structure are presented in Fig. 4.47

Likewise, DFT has also been applied for anionic engineering
of heteroanionic materials,11 mainly incorporating anions with
different properties for designing heteroanionic materials
(Fig. 5). A functional heteroanionic materials is computation-
ally designed by sampling the structural phase space based on
the electronic structure and, as such, the thermodynamic
stability of the materials is further identified. The DFT can
unravel the composition–structure–property relationships in
materials science, contributing significantly to the understand-
ing of the relationship between fundamental physical and
chemical properties governing processes at the atomistic scale

Fig. 4 The optimised structures of the nucleobases, GO, NIPAM, and GO/NIPAM (reproduced with permission from ref. 47).
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on one hand, and typically macroscopic properties required in
engineering applications, on the other hand. For a range of
materials, specifically polycrystalline bulk semiconductor materi-
als, metals and ceramics, the physio-chemical relationships are
determined in both chemical compositions and microstructures.
Wisely chosen process conditions (e.g., mechanical forming and
annealing in metallurgy or epitaxial growth in semiconductor
technology) lead to the desired microstructure.20

By describing the interactions between atoms and electrons
governed by the laws of quantum mechanics, DFT has become
an accurate and efficient technique for solving the basic
quantum-mechanical equations for complex many-atom and
many-electron systems, such as structural materials, catalysis
and surface science, nanomaterials, and biomaterials and
geophysics. Despite its challenges in designing, simulations
meaningfully represent physical and chemical properties using
modeling processes including chemical reactions and phase
transformation in materials. DFT is successfully used in alloy
analysis, especially low-modulus, high-strength titanium alloys,
high-strength steels, and aluminium cast alloys with improved
processing and enhanced properties.21

The information obtained by DFT contributed to the crea-
tion of various materials–property databases like the Materials
Project, AFLOWLIB, OQMD (Open Quantum Materials Data-
base), AiiDA (Automated Interactive Infrastructure and Data-
base for Computational Science), JARVIS-DFT, OMDB (Organic
Materials Database), and QM9. A useful system to predict novel
2D materials using DFT databases was generated54 as shown in
Fig. 6.

3.1.3. Semi-empirical methods. Based on the same theore-
tical background as ab initio theory, semi-empirical methods
aim at reducing the computational cost by neglecting smaller
integrals or approximating time-consuming two-electron inte-
grals, which can be fitted to experimental data or replaced by
analytical but approximate expressions. Unlike ab initio meth-
ods, they require parametrization of all elements involved in a
molecular system.16

Semi-empirical methods represent an efficient computa-
tional tool for fast quantitative estimations of many properties,
particularly useful for correlating large sets of experimental and
theoretical data, for establishing trends in classes of related
molecules, and for scanning a computational problem before
proceeding with higher-level treatments. Compared with ab
initio or density functional methods, semiempirical calcula-
tions are much faster, but less accurate, with less systematic,
therefore harder to correct errors. They need improvement in
accuracy and the range of applicability, without compromising
their computational efficiency. In addition, they need new
algorithms for modern computer architectures and extension
to larger molecules.55 The well-known semi-empirical methods
are the underlying theoretical approach, integral approxi-
mation, integral evaluation, and parametrization.

3.2. Computational simulation

With the advancement of supercomputers and the continuous
development of efficient algorithms, computer simulations
have become an integrated part of research and innovation.
Though in silico simulation will never replace the experiment, it

Fig. 5 Construction of the heteroanionic materials Na3MoO3F3. Computational analysis helps in predicting building units NaO3F3 and MoO3F3 and their
arrangements in the cluster. This type of heteroanionic arrangement alters the electronic, magnetic, and optical properties of molecules (reproduced
with permission from ref. 11).
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is playing an important role in the analysis, design, and
optimization of engineering systems. Computer simulations
help in validating theories and predicting expected outcomes
under extreme physical conditions, by reducing the time and
cost for extensive laboratory experiments, including trial and
error steps.56–58 To achieve the full potential of computational
simulation, researchers are confident to get an accurate repre-
sentation of reality. A model for an expected real-world system
is designed and optimized for its performance under different
conditions. Simulations for novel design and testing are readily
done owing to the efficient computational tools available.59

Some of the common simulation tools, along with their applied
methods and applications, are listed in Table 3.

The most common simulation techniques for advanced
materials modeling are molecular mechanics, molecular
dynamics, Monte-Carlo simulation, quantum mechanical cal-
culations, probabilistic materials simulation, and multiscale
simulation techniques (Fig. 7). They have been used in various
studies to identify materials behavior under adverse condi-
tions, such as high-temperature,60,61 wearing and friction,62

welding, joining,63 and crash simulations of composite
materials,64,65 leading to materials design.66

3.2.1. Monte Carlo simulations. Monte Carlo (MC) simula-
tion is a numerical method that determines the average beha-
vior of a stochastic system by repeated sampling, used to
predict sampling and probability statistics results with the

Table 3 Common computational tools available for applications in materials research based on various theories

Software Simulation procedures Applications

Materials Studio DFT, hybrid QM/MM and
semi-empirical methods

Predict the atomic and molecular structures and
properties of materials

ABINIT DFT Calculate the optical, mechanical, vibrational,
and other observable properties of materials

NAMD Molecular dynamics Simulation
GROMACS Molecular dynamics Simulation
LAMMPS Molecular dynamics Modeling and simulation at the atomic, meso,

or continuum scale
Gaussian DFT, molecular mechanics Modeling
VASP DFT Atomic scale materials modelling
SIESTA DFT/molecular dynamics Electronic structure calculations and ab initio

molecular dynamics
CHARMM QM/MM Modeling and simulation
OpenMM Molecular dynamics Simulation
YASARA Molecular dynamics Molecular graphics, modeling, and simulation
TINKER Molecular mechanics Molecular dynamics Modeling and simulation
Amber Molecular dynamics Modeling and simulation
Quantum Espresso DFT calculations Materials modeling and simulation
CPMD Ab initio molecular dynamics Modeling & simulation
Dalton Electronic structure theory Modeling and simulation
DESMOND Molecular dynamics Simulation

Fig. 6 Screening of 2D materials using DFT databases. Materials with reasonably high PBE (Perdew–Burke–Ernzerhof) functionals to experimental
lattice constant difference were filtered and their layered counterparts were prepared manually. Both were used for various DFT calculations and 2D
property prediction (redrawn with permission from,54 inside atomic structure has been reproduced with permission from ref. 11).
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intervention of random variables, with applications in science
and engineering. MC simulation defines a domain and gives
the probability distribution of possible outcomes of different
model assumptions. It allows the calculation of the thermo-
dynamic properties of a system. Using a model of interatomic
or intermolecular quantum interactions, the macroscopic prop-
erties of a materials can be successfully simulated.67 It models
the variation for each possible configuration of the parameter
and determines the average behavior of the system, such as
repositioning of molecules or ions, and gives the probability of
expected outcome. One major difficulty in MC simulation is
that it requires large computational resources to perform
repeated sampling for each configuration.68

The conventional MC simulation draws samples from a
probability distribution, in most cases the classical Boltzmann
distribution, to obtain thermodynamic properties and mini-
mum energy structures,69 while dynamic MC simulation calcu-
lates non-equilibrium properties like crystallization70–72 and
quantum MC simulation computes various electronic proper-
ties of materials.73,74 All these MC simulations are vastly used
in materials design and engineering, with strong examples
being a valuable python library employing Tree Search (MDTS)
and a database for large silicon–germanium (Si–Ge) alloy
structures.66

MC simulations of lattice models are widely used to com-
pute the thermodynamic properties of substitutional alloys,
despite their difficulty in obtaining the desired quantities.
High-level algorithms that serve as interfaces between the user
and a traditional MC code, allowing the user to postulate the
goals and determine the free energy of an alloy phase over its
entire region of stability within a specified accuracy, without
requiring any user intervention during the calculations, enable
the direct determination of composition–temperature phase

boundaries without requiring the calculation of the whole free
energy surface of the alloy system.75 The MC simulation of
metal grain growth based on the Potts model provides impor-
tant information, such as the kinetics of interface migration in
atomistic ordering of f.c.c., to an LI2 structure in Ni based
alloy.22

3.2.2. Molecular mechanics simulation. The molecular
mechanics (MM) method, also known as the force-field
method, uses the classical type of model to predict the energy
of a molecule as a function of its conformation. It allows the
prediction of equilibrium geometry along with its transition
states and relative energies between and within the molecules.
This method applies Newtonian mechanics to the model mole-
cular interaction to predict a minimum static energy structure
of a system. Despite being able to supply the potential energy
for larger molecules, the MM method is not appropriate for
bond breaking reactions.76

MM atomistic simulations are based on empirical inter-
atomic potentials and can describe the small-amplitude vibra-
tions, torsions, elastic deformation, and electrostatic interac-
tions in materials systems.77 A MM model helped analyze single
layer graphene sheets taking into consideration binary, ternary
and quaternary interactions between the atoms: by solving the
equilibrium equations of the atomistic system through the arc-
length strategy, the critical and post-critical behavior of gra-
phene under compression in zigzag and armchair directions
and shear was highlighted.78 In another MM model, the
equilibrium paths and critical behavior are shown in compar-
ison with available solutions for thin plates.79 MM nanostruc-
ture modeling has been widely applied.80,81

3.2.3. Molecular dynamics simulation. Molecular
dynamics (MD) simulation is a computational simulation
approach used in the analysis of the physical movement of

Fig. 7 Various computational methods involved in materials modeling, simulation, and property prediction. Quantum mechanical methods like ab initio
and DFT are widely used for structure prediction and calculating interatomic interactions and have been applied in the development of energy devices
and sensors. Similarly, various simulation techniques have roles in atomistic, energetic calculations and are applied for new materials designing and
modeling of non-homogenous materials. Big Data analysis approaches like ML and NN are used to train and predict materials structure and properties
using data from various databases.
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atoms and molecules. In a system, atoms and molecules are
only allowed to interact for a particular time span, which gives a
view of the dynamic evolution. MD simulation is a statistical
mechanics method that employs Newton’s law of motion to
represent the movements of atoms and molecules in a defined
system over a period of time. MD simulation represents a
powerful simulation tool for investigating the chemical and
mechanical properties of materials, along with their deforma-
tion and failure mechanisms. MD simulation is one of the
mostly used and accepted methods to perform in silico research
at the Ångström nanoscale. This is one of its advantages, but at
the same time also a drawback, because it is difficult to have an
experimental comparison at this scale. MD simulation is the
only method allowing reproduction of deformation under
extreme conditions such as high strain, which is difficult to
simulate by other techniques or in laboratory experiments.82

MD simulation has varied applications in materials science,
like materials modeling by predicting minimum energy struc-
tures, complementing experimental findings, and predicting
materials properties by analyzing atomic level behavior.83

MD and MC simulations are frequently used for atomic scale
lattice configuration and conformation analysis based on phy-
sical potentials or force fields, derived from the Schrödinger
equations. Major force fields used for MD simulation are
CHARMM, AMBER, OPLS-AA, DREIDING, UFF, GROMS, OPLS,
and COMPASS, which differ in several properties. MD simula-
tion allows atoms and molecules to interact for a period and
provides a trajectory view of the motion of the atoms at the
nanosecond level. MD simulations along with topological con-
cepts are used to predict materials properties like hardness,
dissolution rate, toughness, and reversibility.85 MD simulation
helps in the development of an analytical model of macroscopic
properties of materials to facilitate calculations of electronic
band-structure, elastic properties, and piezoelectric, dielectric,
and ferroelectric properties. Several applications such as ther-
moelectrics, catalysts, and energy devices have been designed
making use of the MD simulation approach. MD analysis helps
in assessing the stability and interaction of materials with
various types of interfaces for the development of sensors and
batteries.86

Furthermore, the MD approach helps in identifying atomic
scale mechanisms controlling structure–property relationships
in materials which would be experimentally exhausting to
identify.87–91 The MD approach was used to understand the
structure–property relationship of supramolecular polymers
and establish the internal structures of the monomers of the
polymers, which are responsible for the adaptivity and stimuli-
responsiveness behavior of the polymers. The simulation
results showed that the re-organization of the supramolecular
structure occurs due to monomer diffusion on the dynamic
fiber surface. Modifying the structure of the monomers results
in the variation in supramolecular configuration and their
response to the respective stimulus (Fig. 8).84

Optimized coarse-grained MD methods are great exploration
tools in complex topological polymer structures including star-
polymers and biomacromolecules such as polyelectrolytes and

polymers with intrinsic stiffness, thus contributing to an
improved understanding of medical applications such as non-
invasive extracorporeal shock wave lithotripsy or tumor
treatment.56 MD in materials microscopic-sized dynamic simu-
lation and its subsequent application of macro-characteristics
and microstructure to steel organization performance
control describes the mechanical behavior of such materials,
especially crack, dislocation, and grain boundaries and their
interaction.23

3.2.4. Quantum mechanics simulation. Quantum
mechanics (QM) simulation is one of the fundamental theories
in physics, which describes the nature of particles at the atomic
level. QM methods accurately represent the behavior of elec-
trons in atoms and molecules and can model chemical bonds.
They help explain the macroscopic properties of materials. QM
simulations are based on the Schrödinger equation and study
nuclear and electronic interactions between particles to identify
interatomic interactions. QM simulation methods imply
obtaining the electron wave function by solving the Schrödin-
ger equation to calculate the probability of an electron being
present in a certain interval. This approach describes the
nonlocalized behavior of electrons outside the nucleus and
can fundamentally and accurately compute the molecular
structure and materials properties. QM methods require exten-
sive computational facilities and thus their applications are
limited to smaller systems of a few hundreds of atoms.77

Computational quantum mechanics brought a high demand
for new techniques in theoretical condensed matter physics
that facilitates the understanding of solid materials properties
with details down to the atomic level, bringing theoretical
studies to a higher, though practicable level. Particularly, the
Exact Muffin-Tin Orbitals (EMTO) or Kohn�Sham method
allows establishing a theoretical insight into the electronic
structure of complex engineering materials such as binary,
iron–chromium–nickel, and stainless-steel alloys. The single-
electron Schrödinger equations are solved separately within the
units defined around the lattice sites. The unit cells are chosen
in such a way that they should give a proper description of the
local surroundings for every lattice site.92

3.2.5. Finite element method simulation. The FEM is a
numerical method for finding approximate solutions of partial
differential equations (PDE) within given boundaries.93,94 As
such, a structure is divided into several elements or pieces and
then reconnected at nodes. These nodes hold elements
together and the resultant simultaneous algebraic equations
of finite nature are further solved.95 The FEM can successfully
reproduce macrostructure levels but not the atomistic para-
meters. It allows simulation of any design, product or equip-
ment and helps in analysis of stress, vibration, heat transfer
and other physical analyses, such as modeling of cracks,
dislocations, grain boundaries and the evolution of phase
boundaries of materials.96

In recent decades, the Crystal Plasticity Finite Element
Method (CPFEM) has become an extremely versatile tool for
describing the mechanical response of crystalline materials on
all length scales from single crystals to engineering parts.
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Crystalline matter being mechanically anisotropic, its deforma-
tion depends on the direction of the mechanical loads and
geometrical constraints imposed through the anisotropy of the
elastic tensor and orientation dependence of the activation of
the crystallographic deformation mechanisms (dislocations,
twins, martensitic transformations).

In consequence, associated mechanical phenomena such as
materials strength, shape change, ductility, strain hardening,
deformation-induced surface roughening, damage, wear, and
abrasion are also orientation-dependent, and, for single-crystal
elastic–plastic anisotropy, macroscopically directional proper-
ties are also produced when the orientation distribution (crys-
tallographic texture) of the grains in a polycrystal is not
random. Therefore, finite element approximations have
become relevant for crystal mechanical modeling, as they are
based on the variational solution of the equilibrium of the
forces and the compatibility of the displacements using a weak

form of the principle of virtual work in each finite-volume
element. The entire sample volume under consideration is
discretized into such elements.

The essential step which renders the deformation kine-
matics of this approach a crystal plasticity formulation is
the fact that the velocity gradient is written in dyadic form.
This reflects the tensorial crystallographic nature of the under-
lying defects that lead to shear and, consequently, to both
shape changes (symmetric part) and lattice rotations (skew-
symmetric part), with meaningful results in solving crystal
mechanical problems under complicated internal and/or exter-
nal boundary conditions.97 The FEM proves to be an extremely
useful tool when the problems solved are either boundary value
problems or initial-value problems or both, and the solution
of most of these problems by exact methods of analysis is
not possible. In the FEM problem formulation, the least
squares, collocation, Rayleigh–Ritz and Galerkin methods are

Fig. 8 Obtaining structure–dynamics–property relationships for BTA(1)3+ supramolecular polymers. (A) The BTA monomer (green) diffuses along the z-
direction, the monomer stops on accessible cores (hot spots) on the fiber surface. (B) Movement of the BTA(1)3+ core (points) onto fiber 1 at each step of
the CG-MD simulation. The core is colored based on its z-displacement. The average configuration of the fiber during the CG-MD is shown in
transparent gray (solid beads represent the monomer cores). High-density points identify regions where the diffusing monomer stations for longer times.
(C) The z-displacement (black) of BTA (1)3+ onto fiber 1, the minimum distance between the BTA(1)3+ core, and the closest hot spot (HS) in the fiber
(green) with Ez = 60 mV nm�1. (D) The average BTA(1) drift velocity (vz) as a function of the minimum distance from the closest HS for different intensities
of Ez. (E) Relationship between the relative rate of stimuli-responsiveness (m) and the average exchange rate of monomers on the surface (k1) for the
different fibers. (F) Linear relationship between stimuli-responsiveness rates (m) and the equivalent relative strengths of core�core interaction in the
different fibers (reproduced with permission from ref. 84).
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well-established and provide solution to many engineering
problems.98

3.2.6. Probabilistic materials simulation. For materials
with disordered microstructure and thus fluctuating behavior,
probabilistic simulation predicts the variance of materials
properties based on the variance of microstructural properties
and the variance in component behavior based on the variance
in materials behavior. Probabilistic numerical models applied
to predict the effect of microstructural disorder of long fiber
reinforced thermoplastics (LFT) on the macroscopic response
of structures and structural components revealed the variability
of the mechanical response of materials due to the variability in
fiber orientation and fiber density.99 Probabilistic methods can
also be used to determine the predicted environmental con-
centrations (PECs) of any materials, as they provide informa-
tion regarding environmental fate, exposure, emission, and
transmission characteristics.100

3.2.7. Multiscale simulation. Many materials exhibit multi-
scale behavior, i.e., their properties on a macroscopic length
scale are a result of activity on much smaller length or time
scales. Multiscale simulations help in obtaining a microscopic
model using computational and numerical methods from a
macroscopic model. Multiscale simulations at different scales
allow obtaining the efficiency of macroscopic models and relate
it accurately to microscopic models. Commonly used multi-
scale simulation methods are concurrent and sequential meth-
ods. The concurrent method uses a combined model developed
by linking several computational methods together, while the
sequential method uses a string of hierarchical computational
methods linked together.101 In the concurrent method, differ-
ent scales of materials behavior are considered simultaneously;
and in the sequential model, simulation is performed one by
one, and the quantity calculated at one scale is used to define
the parameters for the next. The sequential method is more
convenient as compared to the concurrent multiscale method.
Other examples of multiscale modeling methods are the quasi-
continuum (QC) method,102 the macroscopic, atomistic, ab
initio dynamics (MAAD) method,101 the coarse-grained molecu-
lar dynamics (CGMD) method,103 the bridging domain method
(BDM)96 and the bridging scale method (BSM).73,104

The main advantage of multiscale modeling is that it
combines the strengths of different computational mechanics
techniques like quantum mechanics, molecular dynamics, and
FE for micro- and macroscale analysis. While MS materials
modeling combines existing and emerging methods from
diverse scientific disciplines to bridge the wide range of time
and length scales that are inherent in a number of essential
phenomena and processes in materials science and engineer-
ing, it needs to be properly linked to the electronic structure
theory and statistical methods to describe the physics and
chemistry that govern the properties and processes of materials
under realistic temperature and pressure conditions.105 The
effect of MS transformation on materials science is well repre-
sented by its ability to discover new materials and their
phenomena for acquiring insight into the processes that rule
the materials behavior, as well as for quantitative predictions

useful in materials design, completing the experimental synth-
esis and characterization.24

4. Data science

Data science methods are heavily promoted in materials
science and data storage, re-shaping analysis. Materials dis-
covery through conventional research including experimental,
theoretical or computational implies long times and high costs,
while data science accelerates the process from materials
discovery to deployment.25 It includes data management with
the help of reliable storage and retrieval databases and data
analytics comprising data mining and analysis.106 For materi-
als, data can include experimental information with details of
test conditions. The common data science methods in materi-
als research, i.e., big data analytics, machine learning algo-
rithms and artificial intelligence, are discussed below.

4.1. Big data analysis

Big Data usually refers to a large dataset, structured or unstruc-
tured, that can be used to extract information about definite
patterns or parameters using computational algorithms. It is
defined by large magnitudes of five vs. volume, velocity, variety,
veracity, and value.106,107 Due to advanced computational and
experimental studies, a large amount of materials data is
available, leading materials research into the big data domain.
Big data research of materials is relatively new and requires
more robust approaches and databases for analysis, as well as
huge computer data storage capability.

The peer-reviewed journals are now demanding the materi-
als science community to provide data availability statement
for publications, allowing data accessibility and reuse by the
community.108 Data can be submitted in standard databases,
such as the NoMaD repository for materials property calcula-
tions, caNanoLab for nanomaterials in biomedical applica-
tions, the Cambridge Structural Database for crystallogra-
phic data, and PubChem for characterization of chemical
substances.

In materials research, most of the information on quantum
mechanics remains unutilized and is ultimately discarded, but
storing this detail helps in big data analysis and allows learning
more about materials properties and processes. New tools,
algorithms and approaches are required to access trends or
patterns among materials and their properties, and for compar-
ing different data. Big data approaches lead to efficient struc-
ture–property relationship analysis at different length or time
scales. Progress in large materials databases and machine
learning algorithms helps materials research tremendously.

The development and incorporation of mathematical and
statistical methods for the study of high dimensional, sparse,
and noisy big data and extraction of patterns from them are
now major challenges of materials research.109 These methods
can be used for materials discovery by identification of key
factors and exploration of their functionality in design and
processing. Big data analysis of materials mainly involves

Review Materials Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
M

ar
ch

 2
02

2.
 D

ow
nl

oa
de

d 
on

 7
/1

8/
20

25
 7

:0
6:

07
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ma00067a


© 2022 The Author(s). Published by the Royal Society of Chemistry Mater. Adv., 2022, 3, 4069–4087 |  4081

extracting patterns and determining relationships between
data with the aid of data mining, evolutionary algorithms,
and other statistical methods. It is expected that, with recent
advances in experiment and in silico, big data will result in
significant materials advancements as they did for genomics,
revolutionizing not only the outstanding outcomes, but also the
way researchers work.110 The big data contribute to a signifi-
cant acceleration in the design of new materials, from discovery
to market release and even patenting such innovations, becom-
ing a platform for the scientific practice of systematically
extracting knowledge from materials datasets (Fig. 9). As such,
it ultimately benefits the quality of life for the public.25,111

4.2. Artificial intelligence

Artificial intelligence involves acquiring information and using
it with reasoning and self-correction, like human intelligence
with the help of computer systems. In the case of materials
science, AI makes use of the data derived from theoretical and
experimental works and stored in various materials databases
like AFLOWLIB, JARVIS-DFT, Polymer Genome, Citrination,
and Materials Innovation Network. This helps in accelerating
the synthesis and optimization processes, and in identifying
materials with similar behavior.112 The Materials Genome
Initiative helped accelerating materials discovery and the devel-
opment of databases from theoretical studies, which further
catalyzed the progress. AI tools consist of machine-learning,
deep-learning and other optimization techniques, and algo-
rithms to evaluate materials performance. AI is a very active
area, with many challenges, accelerating research in design,
synthesis, characterization and application of molecules and
materials in the near future.

AI overcame the inherent limitations of the human cognitive
ability with its primary algorithm framework, powerful hard-
ware foundation, and excellent data mining ability. Its applica-
tions in materials science and engineering accelerated the
simulation of the structure-related performance of materials,
though with discrepancies from the experimental findings,
towards a superior level, reduced the amount of computation
in nano-clustered alloys, predicted properties for new materials

in mapping the structure–property relationship, and allowed
new technologies for innovative materials synthesis.26,113

Despite being described as the next scientific paradigm in
materials discovery and optimization, the recent success of AI
came from the combination with experimental research, with
subsequent creation of new and creative modes of measuring
properties and visualizing and interpreting data. Nevertheless,
the next step in AI development requires closing the gap with a
robust system that combines ML techniques with physical
mechanisms within innovative scientific application.27,114

4.3. Machine learning

ML models help in predicting complex materials properties
with advantageous accuracy.115 They benefit modeling and
optimization for heat treatment, resistance, microstructure
models, etc., for materials by using data from previous experi-
mental and theoretical studies.116 ML methods use atoms as
vectors for algorithms input, to design and predict materials
properties with significant accuracy.117 ML techniques extract
knowledge and insight from datasets and identify correlations
and patterns. Data from both successful and failed experiments
are used to train ML models and extract information, to further
predict new properties of materials. These include prediction of
crystalline structures, vibrational properties, transition tem-
peratures, mechanical properties, band gaps, total energy, the
enthalpy of formation, decomposition energies, etc. The ML
approach was successfully used to discover the bandgap transi-
tion from indirect to direct and semiconductor to metal transi-
tion in silicon, by combining machine learning and ab initio
calculations.118

The most commonly applied ML approach in materials
research is supervised learning that requires a good amount
of quality data. Regression models like LASSO (least absolute
shrinkage and selection operator), Gaussian process regres-
sion, support vector regression, artificial neural networks,
and kernel ridge regression stimulate discovery of new materi-
als with the desired structures and properties by utilizing
established relationships between properties and input
descriptors.19,119 For properties with defined categories, like
crystal structure types and magnetic property type, classifica-
tion learning methods are used. These include support vector
machines, decision trees, random forests, and Bayesian infer-
ence. All ML methods can be used for both regression and
classification learning for materials physics problems.12,120

The high-impact research areas in ML for materials science,
which simultaneously represent remarkable opportunities for
research, have been identified as: validation by experiment of
physics-based simulations (useful in predicting new materials
properties), ML approaches tailored for materials data and
applications (regarding both small and big-scale materials
problems, with immediate applicability in new materials
design), high-throughput data acquisition capabilities (accel-
erating materials synthesis, characterization and simulation),
ML that makes better scientists (relevant for progress in mate-
rials characterization), and integration of physics within ML,
and ML with physics-based simulations (by developing

Fig. 9 Materials discovery schematic, differentiating between the tradi-
tional approach, based on experimentation, theory, or computation, and
the data-driven approach (reproduced with permission from ref. 25).
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desirable methods, reducing discrepancies between simulation
and experiments, and linking physics-based models).121

In solid-state materials science, ML has led to numerous
quantitative structure–property relationships, such as crystal
graphs and chemical composition, building or pair-block poly-
mers, band gap calculations, component and structure predic-
tions, anticipation of materials properties (such as dielectric
breakdown strength, glass transition temperature, thermal
expansion coefficient, magnetocaloric effects, and interface
energy).122

The potential of coupling approaches from materials
science, modeling, and simulation with data mining and
machine learning offers exciting perspectives for solving
challenging problems, such as decoding and computational
modeling of complex structure–process–property relationships,
replacement of computationally demanding submodels in
multiscale simulations, and classification and interpretation
of imaging data.107

5. Materials Genome Initiative

The Materials Genome Initiative (MGI) is a US multi-agency
initiative for creating resources and infrastructure to discover,
manufacture, and deploy advanced materials.13,14 Advanced
materials have applications in energy, security, and human
development, and are crucial for national economy. The MGI
realizes that these developments, if fostered, can lead to a rapid
shift in the time required to find and boost new materials. Its
purpose is to facilitate ‘‘discovery, development, manufactur-
ing, and deployment of advanced materials at least twice as fast
as possible today, at a fraction of the cost’’.123

It takes more than a decade to bring a new materials to
market and commercial use.124,125 Accelerating the pace of
discovery and deployment of advanced materials is the goal
of the MGI, as it promotes the use of data generated through
numerous mathematical modeling and statistical analysis stu-
dies. These data range from atomic coordinates and structural
features to physical and other properties, and result during the
development of numerous databases generated from the sig-
nificant advancement of materials science. In the same way

that the genome of a species or individual holds all the secrets
of its existence and benefits mankind, decoding a materials
genome will help in identifying every single aspect of micro-
scopic buildup, leading to all its properties.126

The MGI stimulates use of data science for faster processes
of discovery and storage of new materials information.127,128 As
exemplified in Fig. 10, data sharing can significantly curtail the
materials research phase by (i) lowering the problem of data
collection for specific research groups and (ii) allowing more
economical progress of scientific suppositions and property
projection standards.127

Promotion and funding for the MGI by the US government
have led to the speed up of the process for new materials
discovery everywhere.129 With the launch of the MGI,
other organizations and worldwide committees, like The Eur-
opean Commission and the Psi-k Community, started investing
in and promoting materials discovery through computa-
tional modeling.130,131 It fostered collaborations throughout
Europe for developing computational methods for materials
research among industrialists, theoreticians, and software
developers.132

6. Conclusions and outlook

With the progress in high computational facilities, hardware,
and new algorithms, innovation in materials science has
significantly progressed in the last decade. Initially, computa-
tional methods dealt with single to fewer atoms and molecules
to study their properties and interactions, but now simulate
thousands of atoms with high throughput calculations and
algorithms. Materials research has now shifted to data science.
One of the first computational methods in materials science
was density functional theory (DFT), followed by better simula-
tion techniques for multiatomic systems. DFT determines the
electronic density of a system and predicts the energy of the
system. Other simulation and molecular dynamics methods
allow exploration of the structure, space, and composition of
systems more efficiently. Simulation and experimental studies
generated a huge amount of data, bringing data science
approaches to materials science. Large databases are rapidly

Fig. 10 Representation to demonstrate differences between standard, single-group research (left) and new opportunities afforded by large materials
databases (right) (Reproduced with permission from ref. 127).
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developed for vast information storage so that they can be
further analyzed and classified using big data analysis
approaches. The current theoretical methods reveal the inter-
nal properties of materials without taking into consideration
their actual environment. The development of ML approaches
will allow the identification of better descriptors.

Although various modeling and simulation tools are avail-
able, materials research still requires more advanced and
efficient tools for screening millions of compositions of new
materials with desirable properties to reduce the time and cost
of production for individual compositions. Most of the avail-
able tools lack efficiency in dealing with materials properties at
varying length and time scales. Further advances in computa-
tional capabilities, the development of novel algorithms, and
the availability of data storage infrastructures present promis-
ing progress for new materials discovery and a reduced time to
reach market. Materials modeling is now a key step in short-
ening the manufacturing time of advanced materials, further
boosting the industrial and economic developments through
innovation of new improved applications. It helps tailor and
design new materials for various structures and systems. Never-
theless, most of these modeling and designing processes are
computationally extensive and expensive, needing hours to
weeks for the desired results. Hence improvement and upgrad-
ing are further necessary.

The developments of synthetic and composite materials will
diversify advanced applications. Materials innovation is also
critical for socio-economic development and big data and AI
will accelerate the design, synthesis, and characterization of
new materials. The huge amount of materials data from
theoretical, in silico and experimental studies is stored and
regularly analyzed. Further modeling and simulation of
complex networks and systems will assist the prediction of
materials for renewable energy and other applications. The
multiscale, multi-physics modeling at several different scales
and levels will encourage novel engineering applications. It is
necessary to develop precise computational models for multi-
scale modeling and simulations, as well as new descriptors for
multiscale problems in ML and more databases for materials
properties. When produced, newly discovered materials will
benefit from the internet of things, which enables empowered
connection between manufacturers and machines, smarter
business decision-making, and improved management of the
global supply chain, but is not without its challenges in needs,
security, standards, and human interfaces.120
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