Nanoscale Advances

CORRECTION

View Article Online
View Journal | View Issue

Cite this: Nanoscale Adv., 2022, 4, 619

Correction: Addressing challenges in the removal of unbound dye from passively labelled extracellular vesicles

Kaisa Rautaniemi,^a Jacopo Zini,^b Emilia Löfman,^a Heikki Saari,^{bc} Iida Haapalehto,^a Johanna Laukka,^a Sami Vesamäki,^a Alexander Efimov,^a Marjo Yliperttula,^b Timo Laaksonen,^{ab} Elina Vuorimaa-Laukkanen^a and Ekaterina S. Lisitsyna*^a

DOI: 10.1039/d1na90120f

rsc.li/nanoscale-advances

Correction for 'Addressing challenges in the removal of unbound dye from passively labelled extracellular vesicles' by Kaisa Rautaniemi et al., Nanoscale Adv., 2022, DOI: 10.1039/d1na00755f.

The authors regret that an incorrect version of Table 3 was included in the original article. The correct version is given here:

Table 3 EV recoveries R_{EV} , dye recoveries in the EV fractions R_{dye} , and relative purification efficiencies E_{rp} for the labelled and purified EVs. The removal of unbound dye was studied with ultracentrifugation (UC), ultracentrifugation with density gradient without ultrafiltration (UCG), ultrafiltration (UF), size-exclusion chromatography (SEC), and anion exchange chromatography (AEC). The individual values for each replicate are presented in ESI Table S2

Dye	Method	110k EVs			20k EVs		
		$R_{\mathrm{EV}}{}^{a}\left(\% ight)$	<i>R</i> _{dye} (%)	$E_{ m rp}{}^{a,b}$	$R_{\mathrm{EV}}{}^{a}\left(\%\right)$	<i>R</i> _{dye} (%)	$E_{ m rp}{}^{a,b}$
DHPE-OG	UCG	$43.0\pm2.8\dagger$	44.6 ± 4.2	1.0	$52.9 \pm 7.5 \dagger$	39.6 ± 3.3	1.3
	SEC	$12.2\pm1.6\dagger$	8.7 ± 1.4	1.4	8.2 ± 0.9	9.3 ± 5.0	0.9
Ptx-OG	UCG	$10.3\pm0.4\dagger$	67.8 ± 11.5	0.2‡	6.5 ± 3.3	41.3 ± 38.4	0.2‡
	SEC	3.8 ± 1.6	2.9 ± 1.3	1.3	3.7 ± 0.9	1.3 ± 0.3	2.8†
BP	UC	7.6 ± 4.8	16.6 ± 1.3	0.5‡	<1 ‡	7.0 ± 0.8	`
	UF	1.2 ± 0.7 ‡	1.8 ± 0.9	0.7‡	2.3 ± 1.0 ‡	4.8 ± 3.8	0.5‡
	UCG	$78.6 \pm 10.3 \dagger$	6.2 ± 0.9	12.7†	$54.0 \pm 6.0 \dagger$	15.5 ± 4.8	3.5†
BPC12	UC	$12.5\pm6.8\dagger$	35.5 ± 37.6	0.4‡	5.9 ± 6.2	17.2 ± 15.3	0.3‡
	UF	3.9 ± 2.8	7.9 ± 3.4	0.5‡	8.4 ± 11.2	$9,5 \pm 15,4$	0.9‡
DiO	UCG	n.d.	n.d.		n.d.	n.d	
	SEC	$1.1\pm0.2\ddagger$	n.d.	_	<1‡	n.d	_
	AEC	$10.1\pm12.3\dagger$	2.2 ± 2.0	4.6†	6.4 ± 0.3	1.8 ± 0.3	3.5†

 $[^]a$ † – acceptably high; ‡ – unacceptably low; all other values are acceptable with caution. b $E_{\rm rp}$ > 1 indicates successful separation of the labelled EVs from the unbound dye: the greater $E_{\rm rp}$, the better separation; conversely, $E_{\rm rp}$ < 1 indicates unsuccessful removal of the dye.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

[&]quot;Chemistry and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland. E-mail: ekaterina.

Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland

Finnish Red Cross Blood Services, Kivihaantie 7, 00310 Helsinki, Finland