Nanoscale Advances ## CORRECTION View Article Online View Journal | View Issue Cite this: Nanoscale Adv., 2022, 4, 619 ## Correction: Addressing challenges in the removal of unbound dye from passively labelled extracellular vesicles Kaisa Rautaniemi,^a Jacopo Zini,^b Emilia Löfman,^a Heikki Saari,^{bc} Iida Haapalehto,^a Johanna Laukka,^a Sami Vesamäki,^a Alexander Efimov,^a Marjo Yliperttula,^b Timo Laaksonen,^{ab} Elina Vuorimaa-Laukkanen^a and Ekaterina S. Lisitsyna*^a DOI: 10.1039/d1na90120f rsc.li/nanoscale-advances Correction for 'Addressing challenges in the removal of unbound dye from passively labelled extracellular vesicles' by Kaisa Rautaniemi et al., Nanoscale Adv., 2022, DOI: 10.1039/d1na00755f. The authors regret that an incorrect version of Table 3 was included in the original article. The correct version is given here: Table 3 EV recoveries R_{EV} , dye recoveries in the EV fractions R_{dye} , and relative purification efficiencies E_{rp} for the labelled and purified EVs. The removal of unbound dye was studied with ultracentrifugation (UC), ultracentrifugation with density gradient without ultrafiltration (UCG), ultrafiltration (UF), size-exclusion chromatography (SEC), and anion exchange chromatography (AEC). The individual values for each replicate are presented in ESI Table S2 | Dye | Method | 110k EVs | | | 20k EVs | | | |---------|--------|---------------------------------------|-----------------------------|---------------------|--|-----------------------------|---------------------| | | | $R_{\mathrm{EV}}{}^{a}\left(\% ight)$ | <i>R</i> _{dye} (%) | $E_{ m rp}{}^{a,b}$ | $R_{\mathrm{EV}}{}^{a}\left(\%\right)$ | <i>R</i> _{dye} (%) | $E_{ m rp}{}^{a,b}$ | | DHPE-OG | UCG | $43.0\pm2.8\dagger$ | 44.6 ± 4.2 | 1.0 | $52.9 \pm 7.5 \dagger$ | 39.6 ± 3.3 | 1.3 | | | SEC | $12.2\pm1.6\dagger$ | 8.7 ± 1.4 | 1.4 | 8.2 ± 0.9 | 9.3 ± 5.0 | 0.9 | | Ptx-OG | UCG | $10.3\pm0.4\dagger$ | 67.8 ± 11.5 | 0.2‡ | 6.5 ± 3.3 | 41.3 ± 38.4 | 0.2‡ | | | SEC | 3.8 ± 1.6 | 2.9 ± 1.3 | 1.3 | 3.7 ± 0.9 | 1.3 ± 0.3 | 2.8† | | BP | UC | 7.6 ± 4.8 | 16.6 ± 1.3 | 0.5‡ | <1 ‡ | 7.0 ± 0.8 | ` | | | UF | 1.2 ± 0.7 ‡ | 1.8 ± 0.9 | 0.7‡ | 2.3 ± 1.0 ‡ | 4.8 ± 3.8 | 0.5‡ | | | UCG | $78.6 \pm 10.3 \dagger$ | 6.2 ± 0.9 | 12.7† | $54.0 \pm 6.0 \dagger$ | 15.5 ± 4.8 | 3.5† | | BPC12 | UC | $12.5\pm6.8\dagger$ | 35.5 ± 37.6 | 0.4‡ | 5.9 ± 6.2 | 17.2 ± 15.3 | 0.3‡ | | | UF | 3.9 ± 2.8 | 7.9 ± 3.4 | 0.5‡ | 8.4 ± 11.2 | $9,5 \pm 15,4$ | 0.9‡ | | DiO | UCG | n.d. | n.d. | | n.d. | n.d | | | | SEC | $1.1\pm0.2\ddagger$ | n.d. | _ | <1‡ | n.d | _ | | | AEC | $10.1\pm12.3\dagger$ | 2.2 ± 2.0 | 4.6† | 6.4 ± 0.3 | 1.8 ± 0.3 | 3.5† | $[^]a$ † – acceptably high; ‡ – unacceptably low; all other values are acceptable with caution. b $E_{\rm rp}$ > 1 indicates successful separation of the labelled EVs from the unbound dye: the greater $E_{\rm rp}$, the better separation; conversely, $E_{\rm rp}$ < 1 indicates unsuccessful removal of the dye. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers. [&]quot;Chemistry and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland. E-mail: ekaterina. Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland Finnish Red Cross Blood Services, Kivihaantie 7, 00310 Helsinki, Finland