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A unique physics-inspired deep-learning-based
platform introducing a generalized tool for rapid
optical-response prediction and parametric-
optimization for all-dielectric metasurfaces

Sadia Noureen,a Muhammad Qasim Mehmood, *a Mohsen Ali,b

Bacha Rehman, c Muhammad Zubair *a and Yehia Massoud *d

Metasurfaces are composed of a two-dimensional array of carefully engineered subwavelength structures.

They provide a novel compact alternative to conventional voluminous optical components. However,

their design involves a time-consuming hit and trial procedure, requiring many iterative electromagnetic

simulations through expensive commercial solvers. To overcome this non-practical design strategy,

recently, various deep-learning-based fast and low computational cost networks have been proposed to

design and optimize individual meta-atoms and complete metasurfaces. Most of them focus on optimiz-

ing the amplitude response of nanostructures, whereas mapping the phase response is a much more

challenging problem that needs to be addressed. Since the metaatom’s optical response is entirely reliant

on and vulnerable to its geometrical structure, underlying material, and operating wavelength, changing

any of these parameters changes the entire physics of the problem in hand. Here, we propose novel

deep-learning-based generalized forward and inverse design approaches to optimize all-dielectric trans-

missive metasurfaces. The proposed forward predicting neural networks take all the geometrical para-

meters and the physical properties of the bar-shaped dielectric nano-resonators as the input and predict

the cross-polarized transmission amplitude and modulated phase at eight distinct rotation angles of the

nano-bar. These networks are generalized to predict the electromagnetic (EM) response of different

dielectric materials at different operating wavelengths. An inverse design neural network is also proposed

that takes the target transmission amplitude and phase at eight discrete orientation angles of the nano-

bar as the primary input. The underlying physics of the problem is also incorporated by feeding the intrinsic

material properties and the operating wavelength of the nano-bar as a second input to the inverse neural

network. It predicts the optimum set of geometrical parameters to achieve maximum cross-polarized trans-

mission and complete Pancharatnam–Berry (PB) phase coverage from 0 to 2π. The average test data mean

square error (MSE) achieved for the forward predicting neural network is 1.8 × 10−3 and that of the inverse

design neural network is 2.8 × 10−1. The average MSEs for different material’s test samples are demonstrated

to validate the generalizability of the proposed models in terms of seen and unseen materials. A comparative

analysis of the proposed approach with conventional EM software optimization tools is performed to prove

that the proposed inverse design works much faster than the conventional methods, also it can handle a

comparatively larger range of parameters and predicts the results in a single run with high accuracy.

1 Introduction

Metasurfaces, emerged as the planar counterparts of bulky
optical components,1,2 can tailor the phase, polarization, and
amplitude of incident electromagnetic waves3,4 in a desired
manner. Metasurfaces can be engineered to realize different
meta-optical phenomena such as ultra-thin flat lenses,5

filters,6,7 orbital angular momentum generation,8 optical
vortex generation,9,10 holograms,11–13 absorbers,14–17 metamir-
rors,18 optical imaging,19 non-diffracting beams,20,21 etc.
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Recently, metasurfaces having all-dielectric unit elements
have come forth as the more efficient and less lossy (due to
negligible ohmic losses in the optical domain) counterparts
for metallic metasurfaces.22–24 This high efficiency is due to
the formation of complex electric and magnetic multipole
resonances. Electromagnetic dipoles, quadrupoles, and other
higher-order poles formed in dielectric resonators have a sig-
nificant yet unpredictable effect on the output EM response
and they cause abrupt discontinuities in the phase response,
i.e., 0°–180° and 180°–0°. Also, these resonances are directly
dependent on a metasurface’s unit cell geometry.25 Therefore,
it is very difficult to map the effect of a unit cell’s structural
parameters and the resulting resonances on the phase and
amplitude of the incident EM wave. In this regard, traditional
analytical modeling tools for nano-structures26–29 and meta-
surfaces such as the GEM (generalized effective-medium
theory) model30 and the Lewin model31 also fail to provide
accurate results when the operating wavelength becomes com-
parable to a unit cell’s size. Therefore, we need a fast and
efficient solution to accurately predict the EM response of an
all-dielectric unit element and to perform the inverse, i.e., find
an all-dielectric unit element’s optimized geometrical para-
meters and orientation to match with specific design targets
for specific applications. The conventional approach to
address this problem is to perform iterative full-wave electro-
magnetic simulations using expensive commercial software,
resulting in a highly time-tedious and computationally exhaus-
tive procedure, although it results in a model with accurate
response predictions. Keeping in view the vast potential of
deep neural networks (DNNs) to solve complex scientific
problems,32,33 various models of DNNs have been suggested to
expedite dielectric metasurface modeling34–36 and explore the
dormant connection between a nano resonator and its EM
response.37,38 The related work in this field is discussed in the
next paragraph.

Deep learning based metasurface modeling approaches
have turned out to be very effective to predict the EM ampli-
tude response39–41 and performing inverse design for it.
However, the prediction of phase and the optimization of
dielectric resonators for full phase coverage is a much more
challenging problem due to the abrupt discontinuities as dis-
cussed in the previous paragraph. Phase prediction failures
allow us to design only those metasurfaces which don’t require
bending light at various angles by each nanoresonator such as
absorbers, colour filters, etc. It severely restricts the accuracy of
designing phase-based meta-devices such as meta-lenses,
meta-holographs or deflectors using DNNs or related
approaches. Recently, conditional and Wasserstein generative
adversarial networks (GANs) were proposed to predict the
amplitude and phase response of dielectric nanostructures
and perform inverse design optimization as well.42,43 However,
in addition to the complex and data-hungry nature of GANs,
they only predict 2D images of 3D nanostructures, thus the
materials properties, wavelength effects, and the geometrical
attributes of dielectric structures are ignored. Later on,
tandem neural network based approaches were also proposed,

but they require separate networks to predict phase and ampli-
tude responses, also they don’t consider the material pro-
perties and they can handle only a limited number of input
geometrical parameters.44 Some researchers developed neural
network based closed loop models to optimize a single vari-
able at a time by fixing other, which puts a limit on the
number of parameters to be optimized and affects the depen-
dency of one parameter on the other.45 The use of a simple
predicting neural network (PNN) for forward design and
tandem networks for inverse design was also proposed using
the real and imaginary parts of the EM response as labels.46

Although the results were quite promising, again it required
training two separate networks to predict the real and imagin-
ary parts, respectively. To perform inverse design, the two sep-
arate networks need to use the same inputs while having their
respective losses and gradients. This may cause conflict and
optimization may not converge, obstructing the inverse design
procedure. Therefore, we need a simple yet time-efficient
model to predict the collective amplitude and phase response
of all dielectric 3D nanostructures, and to perform their
inverse optimization, while taking all the geometrical para-
meters, material properties and operating wavelengths into
account.

In this paper, we present a unique methodology to design
all-dielectric metasurfaces using deep neural networks, which
addresses all the challenges discussed above. The proposed
forward networks are capable of predicting the amplitude and
phase response of each candidate bar-shaped unit cell at eight
distinct orientation angles. It is demonstrated that inverse
design DNNs are also capable of predicting optimized geo-
metrical parameters of dielectric bar-shaped unit cells to
achieve maximum transmission, and full phase coverage when
the bar is rotated from 0° to 180°. Intrinsic properties of the
dielectrics and the operating wavelengths (covering the whole
visible regime) are also incorporated in the proposed DNNs to
map their effect on the optimized parameters. Adding these
properties in the inverse design network saves us from the
redundant efforts of repeating the conventional iterative
optimization procedure again and again from scratch for any
change in the material or wavelength. Thus it allows fast and
efficient determination of non-intuitive multi-functional
device designs. A comparative analysis of the proposed
approach with conventional EM software optimization tools is
also performed to validate the accuracy and time efficiency of
our model. Table 1 shows the comparison of the salient fea-
tures of the proposed methodology with the previously
reported methodologies for forward and inverse design
approaches of metasurfaces.

2 Methodology

This work focuses on the design development of amplitude
and phase engineered all-dielectric metasurfaces operating in
the visible regime. Fig. 1 shows the prototype unit cell of the
metasurface under consideration. Each unit cell consists of a

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2022 Nanoscale, 2022, 14, 16436–16449 | 16437

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
N

ov
em

be
r 

20
22

. D
ow

nl
oa

de
d 

on
 1

1/
10

/2
02

4 
7:

43
:0

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2nr03644d


dielectric nano-bar laid over a glass substrate. We have particu-
larly chosen a rectangular bar shaped structure as it is easier
to prepare, exhibits birefringence nature, and provides polariz-
ation sensitivity and broadband capacity. Each unit cell is para-
meterized by the bar’s 3D geometrical parameters i.e., height
(H), width (w), length (L), periodicity (P), and the material’s
physical properties i.e., the refractive index (n) and extinction
coefficient (k). An alteration in any of these parameters will
have a direct effect on the multipole resonances excited in the
unit cell, which in turn affects the output amplitude and
phase. Therefore, we present forward predicting neural net-
works, which take into account all these parameters, to map
the dependency of the output on each of these factors. Thus,
our forward predicting NN behaves very similarly to conven-
tional EM software, takes all the inputs in a similar fashion,
but predicts the output amplitude and phase within seconds
and without the need of any iteration simulations to solve the
Maxwell equations on a case-by-case basis.

The proposed DNN-based forward design model is capable
of predicting the optical response of dielectric nano-bars
having different dimensions, composed of different materials
(having different n and k), and operating at different visible
wavelengths, whereas the inverse design model takes the
target optical response, the physical properties of the material,
and the wavelength as an input, and predicts the optimum
geometrical parameters of the nano-bar to achieve the desired
response. Unlike conventional EM software where we have to
rerun the simulations for any change in the bar’s material or

operating wavelength, the proposed forward and inverse
designs are generalized to predict the optical response and the
optimum structural parameters for multiple dielectric
materials and broadband visible wavelengths without retrain-
ing the networks again and again. A pictorial illustration of
the proposed models is shown in Fig. 1.

For the composition of the nano-bars, we have selected six
of the most suitable high refractive index dielectric materials
which exhibit transparency over some part or the entire wave-
length range of the visible domain. The materials selected are
hydrogenated amorphous silicon (a-Si : H), titanium dioxide
(TiO2), hydrogenated phosphorus-doped modified amorphous
silicon, silicon nitride (Si3N4), gallium phosphide (GaP) and
gallium nitride (GaN). Rectangular bars with optimized dimen-
sions made up of any of these materials can be periodically
placed over a glass substrate to achieve the desired meta-
optical phenomenon. Among these materials, silicon nitride is
used as an unseen material for the DNN, all the other
materials are a part of both the training and the test datasets
but Si3N4 is part of the test dataset only. Since the material
properties are a function of the operating wavelength, the
target wavelength is also fed as an input to the proposed
models. For instance, we have considered six different optical
wavelengths to represent six different colors i.e., 633 nm – red,
600 nm – orange, 580 nm – yellow, 550 nm – green, 480 nm –

blue, and 404 nm – violet. The intrinsic properties, n, and k of
selected materials with respect to the wavelengths are pre-
sented in Table 2.

Table 1 Comparison of the proposed DL enabled models with previously reported models for forward and inverse design approaches of
metasurfaces

Forward prediction approach
Methodology Input features considered Output predictions

Geometrical
parameters

Diverse materials’
intrinsic
properties

Different
operating
wavelengths

Amp Phase

Deep neural network37 (FC
layers + transposed conv. +
conv. layers)

✓ ✗ ✗ ✓ ✗

DNN CNNs + FC-NNs39 ✗ Only shape ✗ ✗ ✓ ✗
DNN40 Only half of the

parameters
considered

✗ ✗ ✓ ✓

DNN41 ✓ ✓ ✓ ✓ ✓
Proposed forward model:
multi input multi output
DNN

✓ ✓ ✓ ✓ ✓

Inverse design approach
Methodology Input Output

Target amp Target phase Diverse target
material
properties

Diverse target
wavelength

Simultaneous prediction
of the geometrical
parameter

Fast forward dictionary
search37

✓ ✗ ✗ ✗ ✓

cGAN39 ✓ ✗ ✗ ✗ ✗
Tandem neural network40 ✗ ✓ ✗ ✗ Limited number of

parameters predicted
Modified version of tandem
learning approach41

✗ ✓ ✓ ✓ ✗ Predicts one parameter
at a time by fixing others.

Proposed inverse design multi
input multi output DNN

✓ ✓ ✓ ✓ ✓
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A forward design regression based deep neural network is
proposed to replace the time-consuming and computationally
exhaustive EM simulations for evaluating the performance of
metasurfaces. The proposed network is a unique data-driven
model capable of accurately predicting both the amplitude

and phase response of 3D all-dielectric nanostructures. The
structural dimensions (height, width, length and periodicity),
the intrinsic properties (n and k), and the operating wavelength
of the nano-bars define their output electromagnetic response.
Keeping the incident light the same and varying any of these

Fig. 1 A pictorial representation of the proposed forward and inverse design models. The forward predicting network takes the structural dimen-
sions, dielectric intrinsic properties and operating wavelength as the input and predicts the cross-polarized transmission amplitude and phase. The
inverse model takes the target EM response as the input, along with the material and desired wavelength specifications as the input, to predict
optimum geometrical parameters as the output.

Table 2 Intrinsic properties of the dielectric materials used for a nano-bar with respect to the operating wavelengths

Wavelength

a-Si : H TiO2 GaN GaP Mod. a-Si : H Si3N4

N K N k n K n k N k n k

633 nm 3.25 0.047 1.88 0.001 2.38 0 3.31 0 2.88 0.001 2.039 0
600 nm 3.29 0.06 1.89 0.0017 2.39 0 3.36 0 2.92 0.003 2.044 0
580 nm 3.33 0.076 1.9 0.0018 2.40 0 3.4 0 2.96 0.005 2.047 0
550 nm 3.39 0.101 1.91 0.002 2.41 0 3.45 0 3.02 0.008 2.05 0
480 nm 3.59 0.19 1.94 0.003 2.45 0 3.67 0.01 3.23 0.065 2.068 0
404 nm 4.06 0.49 2.01 0.005 2.55 0 4.16 0.26 3.59 0.311 2.098 0
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parameters will vary the output response, therefore all these
parameters are considered as the input variables of the pro-
posed forward design multi-input multi-output regression
neural network. Each input sample is a 1D column vector with
7 rows representing L, W, H, P, n, k, and λ as shown in Fig. 1.
Output labels will be the phase and amplitude response of the
sample unit cell. Thus, the forward problem can be mathemat-
ically expressed as:

½ϕ; A� ¼ f L;W ;H;P;n;k;λðEincidentÞ ð1Þ

where Eincident is the incident electromagnetic wave, and A and
ϕ are the amplitude and the phase response, respectively.
Optimization of a nano-bar for phase-based meta-devices has
two major requirements; (i) maximum cross-polarized trans-
mission amplitude, that remains uniform regardless of the
bar’s orientation angle and (ii) full Pancharatnam–Berry (PB)
phase coverage from 0 to 2π, when the bar is rotated from 0°
to 180°. To cater for these requirements, the output electro-
magnetic amplitude and phase response of each unit cell is
sampled and 8 distinct samples are selected corresponding to
the 8 distinct rotation angles (θ) of the bar ranging from 0° to
180° as shown in Fig. 2. These samples, i.e., [Aθ1, Aθ2, Aθ3, Aθ4,
Aθ5, Aθ6, Aθ7, Aθ8] and [ϕθ1, ϕθ2, ϕθ3, ϕθ4, ϕθ5, ϕθ6, ϕθ7, ϕθ8]
(where θ is the orientation angle of the bar, θ = 0°–180°, and
Aθi and ϕθi represent the transmission amplitude and phase
response at θi, respectively), taken at the operating wavelength

are used as the target labels for our forward design model and
the primary input labels for our inverse design model which is
pictorially shown in Fig. 2. This approach allows us to down-
sample the output points, thus reducing the output tensor
dimension which results in solving the input–output dimen-
sional mismatch problem.

The upper part of Fig. 2 shows the schematic of the pro-
posed forward design model. Each input sample is a [7 × 1]
vector containing L, W, H, P, n, k, and λ of the corresponding
unit cell. Apart from n and k which are dimensionless quan-
tities, all the other features are measured in nanometers. The
forward neural network is separately trained for transmission
amplitude and phase. Input parameters are the same in both
the cases whereas the output labels are 1D arrays of size [8 ×
1], representing amplitude samples at distinct orientation
angles of the bar, i.e., [Aθ1, Aθ2,...., Aθ8], for transmission ampli-
tude training and the phase samples at distinct orientation
angles of the bar, i.e., [ϕθ1,ϕθ2,....,ϕθ8], for transmission phase
training, respectively. Here the problem at hand is a regression
problem. Typically, a regression task involves predicting a
single numeric value but here we need to predict more than
one numeric value with two different categories (A and ϕ) so
this problem is referred to as multiple-output regression.
Therefore we have designed a multi-input multi-output
regression based forward deep neural network whose detailed
architecture is shown in Fig. 3(a). The proposed network con-
tains six fully connected hidden layers with Leaky ReLU (Leaky

Fig. 2 Structural outline of the proposed forward and inverse design models.
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Rectified linear unit) as the non-linear activation function.
First three hidden layers perform up-sampling to explore
maximum linear combinations and extract maximum infor-
mation from the input, whereas the rest of the hidden layers
perform down-sampling to keep only the important infor-
mation and map it to the output. Different numbers of layers
and the number of neurons per layer were tried before finaliz-
ing the proposed architecture.

The forward predicting neural network is trained using a
Nesterov Adam optimizer with a learning rate of 10−3 to mini-
mize the loss function between the label transmission ampli-
tude (T ) or phase (ϕ) and the predicted transmission ampli-
tude (T′) or phase (ϕ′). Since we are dealing with a regression

problem, the loss function here is defined as the mean
squared error (MSE) between T and T′, and ϕ and ϕ′:

MSE ¼ 1
N

XN
i¼1

ðT ′i � TiÞ2 ð2Þ

MSE ¼ 1
N

XN
i¼1

ðϕ′i � ϕiÞ2 ð3Þ

The lower part of Fig. 2 shows the schematic of the pro-
posed inverse design model which is our eminent contribution
to provide an optimization tool for the nanostructures to
achieve the desired optical response. For the inverse model,
the desired transmission amplitude and phase at eight distinct
orientation angles of the nano-bar will be fed as the primary
input to the model, whereas the refractive index and extinction
coefficient of the material we want to use and the desired oper-
ating wavelength are fed as the second input to the model. As
a result, the network will provide the optimized structural
parameters i.e., L, W, H, and P to achieve the desired response.
Mathematically the inverse problem can be expressed as:

½L;W ;H; P� ¼ fn; k; λ½ϕ; Amp� ð4Þ
The detailed architecture of the proposed multi-input

multi-output regression based inverse design neural network
is shown in Fig. 3(b). This neural network consists of seven
hidden layers with a Leaky ReLU activation layer with α = 0.1.
Since the input here is multi-dimensional, after 6 six
hidden layers, a flattening layer is applied, followed by batch
normalization layers, and the resulting 1D array is concate-
nated with a second input array. The second input contains
three features which are the refractive index (n), extinction
coefficient (k), and operating wavelength (λ). Each of these
input features is independently normalized by subtracting its
respective mean from all the samples and dividing by its var-
iance. Thus, we have an array with normalized features for
concatenation.

The inverse design network is trained using a Nesterov
Adam optimizer with a learning rate of 10−3 to minimize the
loss function between the set of label structural parameters (P)
and the predicted structural parameters (P′). Since we are
dealing with a regression problem, so the loss function here is
defined as the mean squared error (MSE) between P and P′:

MSE ¼ 1
N

XN
i¼1

ðP′i � PiÞ2 ð5Þ

where P = [Llabel, wlabel, Hlabel, Plabel] and P′ = [L′pred, w′pred,
H′pred, P′pred].

We have kept the model as simple as possible to avoid any
additional complexity and make it usable for the researchers
belonging to the field of optics and photonics having
minimum expertise in the field of deep learning.

2.1 Dataset collection

For the forward predicting neural network, the datasets are
defined as DFA = [(XFi, YFAi), i = 0,1,2,....,N] and DFϕ=[(XFi, YFϕi),

Fig. 3 Detailed architecture of (a) forward predicting neural networks.
The architecture consists of six hidden layers, the number of neurons
per layer and the non-linear activation function of each layer are men-
tioned within the layer. Two forward networks with the same architec-
ture are separately trained, one for the transmission amplitude predic-
tions and other for the phase predictions, respectively. (b) Inverse design
neural network. It consists of 7 hidden FC layers and a flattening layer
before the last hidden layer. The number of neurons per layers and their
activation function are mentioned within the layers, whereas the labels
100 × 2, 200 × 2, etc. show the volume of each layer.
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i = 0,1,2,....,N] for amplitude and phase training, respectively.
Here the input XFi remains the same for both amplitude and
phase datasets, and it is defined as XFi = [Li, Wi, Hi, Pi, ni, ki, λi].
XFi represents a [7 × 1] feature vector of the ith data sample and
N is the total number of samples. As mentioned earlier, six
different dielectric materials and six different operating wave-
lengths are used while collecting the dataset. For each material
i.e., each pair of n and k, the geometrical parameters are varied
in the following range:

• Length of the nano-bar (L): 100–400 nm
• Width of the nano-bar (W): 80–350 nm
• Periodicity of the nano-bar (P): 250–500 nm
• Height of the nano-bar (H): 100–400 nm for low aspect

ratio materials, i.e., a-Si : H, and modified phosphorus doped
a-Si : H, Si3N4, and 500–1000 nm for high aspect ratio
materials, i.e., TiO2, GaP and GaN.

• Orientation of the nano-bar (θ): 0°–180°, and step size:
22.5°

Different combinations of different values of the nano-bar’s
geometrical parameters (within the mentioned ranges) are
simulated to collect a dataset having enough variance. The
process is repeated for each of the six wavelengths selected
from the visible regime i.e., 633 nm – red, 600 nm – orange,
580 nm – yellow, 550 nm – green, 480 nm – blue, and 404 nm
– violet. All the simulations are carried out with circularly
polarized incident light and periodic boundary conditions.
The resulting cross-polarized transmission amplitude and
phase at the given wavelength are stored as the output labels
YFi at eight distinct orientation angles of the ith nano-bar
sample under consideration. Thus YFAi = [Ai,θ1,Ai,θ2,....,Ai,θ8] for
amplitude training and YFϕi = [ϕi,θ1,ϕi,θ2,....,ϕi,θ8] for phase
training. The phase angles are modulated by 360° to convert
negative angles into positive angles to avoid dead neurons.
This modulation is performed using the following equation:

½Modulatedϕ� ¼ ϕ� 360� ϕ

360

� �� �
ð6Þ

Overall, YFAi and YFϕi are the arrays of size [8 × 1] each,
where the 8 rows represent 8 definite orientations i.e., θ = 0°,
22.5°, 45°, 67.5°, 90°, 112.5°, 135°, and 157.5°.

The forward neural network model is trained using the
optimization function f (XFi, YFi; w) parameterized by w, where
w is a matrix of weights controlling the function’s mapping
and is optimized to precisely fit the training data while avoid-
ing overfitting and maintaining generalizability for the test
data. L2 regularization is used to avoid overfitting. For the
inverse design neural network, the dataset is defined as DI =
[(XIj, MIj, YIj), j = 0,1,2,....,N] where the primary input labels XIj

represent the target cross-polarization transmission amplitude
and the phase of the jth data sample, and it is the same as the
forward dataset’s combined output labels i.e., XIj = [AIj and ϕIj ]
where AIj = [Aj,θ1,Aj,θ2,....,Aj,θ8] and ϕIj = [ϕj,θ1,ϕj,θ2,....,ϕj,θ8]. Thus
XIj is an array of size [8 × 2], where the 8 rows represent 8 defi-
nite orientations and 2 columns represent the amplitude and
phase. The second input MIj is a [3 × 1] array, which represents

the refractive index (n), extinction co-efficient (k) and the oper-
ating wavelength (λ). The output of the inverse design network
is the most optimum set of geometrical parameters which will
generate the target optical response given at the primary input,
with the material and operating wavelength specified by the
second input n, k and λ. Therefore, the output labels YIj = [Lj,
Wj, Hj, Pj] are a set of [4 × 1] geometrical parameters of the jth

unit cell sample. The inverse neural network model is trained
using the optimization function f([XIj, MIj], YIj; w) parameter-
ized by w, where w is a matrix of weights controlling the func-
tion’s mapping and is optimized to precisely fit the training
data while avoiding overfitting and maintaining generalizabil-
ity for the test data.

2.2 Inverse design with fabrication constraints

The inverse design procedure of metasurfaces also suffers
from some practical fabrication constraints. The fabrication of
metasurfaces is a very expensive procedure, requires high-end
machinery, and needs to be performed with great expertise
and exactitude. Therefore its fabrication constraints are man-
datory to be kept in mind to avoid recurring fabrications of the
same device. Among these constraints, the aspect ratio of the
nano-resonators is the most crucial parameter. An aspect ratio
which is defined as the ratio of the height to the smallest
feature of the nano-resonator directly depends upon the
height of the nano-resonator. A larger height means a higher
aspect ratio, which means more material usage, more fabrica-
tion complexity, and more expense. Also, the height should not
be too low that it becomes impossible to prepare. Therefore, we
fix the height of the nano-bar for each material. The height
must remain the same regardless of the operating wavelength to
prepare broadband visible regime meta devices. The optical
constants n and k of the thin films also vary with the height,
so fixing the height according to our fabrication equipment
and its limitations will fix the n and k too for a certain wave-
length. In this way, we can feed very precise values of n and k
measured via ellipsometry by depositing thin films of the
specific height that we have fixed for each material. This can
lead to a good agreement between the measured and the simu-
lated results.

Therefore, some modification is made to the input and
output labels of the proposed inverse design neural network to
cater to the aforementioned limitations. The number of the
nano-bar’s geometrical parameters to be optimized is now
reduced to three, i.e., L, W, and P, instead of four as the height
is now fixed for each material (Table 3) and eliminated from
the parameters that need to be tuned. The primary input of
the inverse design network shown in Fig. 2 and Fig. 3(b)
remains the same, whereas the secondary input now contains
four parameters, i.e., n, k, λ, and H (height fixed). The geo-

Table 3 Numeric values of the height fixed for each material

Material a-Si : H TiO2 GaN GaP Si3N4 Modified a-Si : H

Fixed height (nm) 400 600 600 600 450 400
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metrical parameters of the bar to be optimized, i.e., the output
labels now contain the length, width, and periodicity only.
Fig. 4 shows the fabrication-inspired inverse design neural
network as explained here. The dataset for this network is col-
lected in the same way as described previously, but its defi-
nition is somewhat changed now. The inverse dataset is now
defined as DI = [(XIj, MIj, YIj), j = 0,1,2,....,N] where the primary
input labels, i.e., XIj = [[Aj,θ1,Aj,θ2,....,Aj,θ8] and [ϕj,θ1,ϕj,θ2,....,ϕj,θ8]
], are a set of arrays of size [8 × 2], where the 8 rows represent 8
definite orientations and 2 columns represent the amplitude
and phase. The secondary input MIj = [n, k, H, λ] is a [4 × 1]
array, which represents the refractive index (n), extinction co-
efficient (k), operating wavelength (λ) and height (H). The
output of the inverse design network is the most optimum set
of geometrical parameters which will generate the target
optical response given at the primary input, with the material
specified by the secondary inputs n, k, and H and the operat-
ing wavelength also specified by the secondary input.
Therefore, the output labels YIj = [Lj, Wj, Pj] are a set of [3 × 1]
geometrical parameters of the jth unit-cell sample. This inverse
neural network model is again trained using the same optimiz-
ation function f ([XIj, MIj], YIj; w) parameterized by w, where w
is a matrix of weights controlling the function’s mapping and
is optimized to precisely fit the training data while avoiding
overfitting and maintaining generalizability for the test data.

3 Results and discussion
3.1 Forward predicting neural network

The forward predicting neural network is trained using a
Nesterov Adam optimizer with a learning rate of 10−3 to mini-
mize the mean square error loss functions given by eqn (2)

and eqn (3) for transmission amplitude and phase, respect-
ively. The model is trained optimally in 500 epochs with a
batch size of 32. The average MSE achieved while training is
7.3 × 10−4. A detailed statistical analysis of the MSE over the
test dataset (over 300 samples) is shown in Fig. 5. This analysis
shows that the trained model exhibits a quite low distribution
of errors over the test dataset and the average MSE is 1.8 ×
10−3. The simulated and the DL model predicted results for
some random test samples are shown in Fig. 6 and 7.

Fig. 5 shows the statistical histogram of the MSE between
the predicted and the simulated transmission amplitude of
the test dataset samples. It can be seen that the average mean
square error is 1.8 × 10−3, whereas 99% of the data exhibits an
MSE less than 6 × 10−3 and 96% of the data exhibits an MSE
<4.2 × 10−3.

To analyze the prediction accuracy of the trained forward
predicting neural networks, transmittance amplitude and
phase predictions of some random test data samples and their
comparison with the simulated transmittance are shown in
Fig. 6 (amplitude) and Fig. 7 (phase), respectively. The struc-
tural parameters, operating wavelength, and material pro-
perties of the corresponding nano bar unit cells are mentioned
in the insets in the sequence listed in the captions. These unit
cells are constructed in CST and simulated with circularly
polarized incident light and periodic boundary conditions.
The resulting cross-polarized transmission amplitude and
phase at the given wavelength is taken as the simulated
response. The test samples shown in these figures are selected
at random for different operating wavelengths and materials to
show the diversity of the trained model. These samples show
excellent coherence between the numerical simulations and

Fig. 4 Detailed architecture of the fabrication inspired inverse design
neural network. The secondary input now contains the fixed height as a
new parameter which is eliminated from the output now.

Fig. 5 Statistical analysis of MSE over the test dataset (for the forward
trained model). This MSE histogram shows that 96% of the test samples
have an MSE <4.2 × 10−3.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2022 Nanoscale, 2022, 14, 16436–16449 | 16443

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
N

ov
em

be
r 

20
22

. D
ow

nl
oa

de
d 

on
 1

1/
10

/2
02

4 
7:

43
:0

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2nr03644d


Fig. 6 Comparative analysis of the cross-polarized transmission amplitude achieved via simulations and DL model predictions. Here the red line
represents the simulated transmittance amplitude, whereas the blue dots represent the proposed model predicted transmittance amplitude.
Geometrical parameters of the corresponding unit cells and the material properties along with the operating wavelengths are shown in the top right
insets in the following sequence: [length, width, height, periodicity] and [refractive index, extinction coefficient, lambda]. All these samples, randomly
selected from the test dataset, show a good agreement between the simulated and the predicted transmittance phases.

Fig. 7 Comparative analysis of the cross-polarized transmission phase achieved via simulations and DL model predictions. Here the blue star
symbols represent the simulated transmittance phase angles, whereas the red hole symbols represent the proposed model predicted transmittance
angles. Geometrical parameters of the corresponding unit cells and the material properties along with the operating wavelengths are shown in the
top right insets in the following sequence: [length, width, height, periodicity] and [refractive index, extinction coefficient, lambda]. All these samples,
randomly selected from the test dataset, show a good agreement between the simulated and the predicted transmittance phases.
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the forward neural network predicted results for both the
amplitude and phase at all the orientation angles under
consideration.

3.2 Inverse design neural network

The inverse design neural network serves as an optimization
tool providing optimal geometrical parameters to achieve the
desired transmission response. It is trained using a Nesterov
Adam optimizer with a learning rate of 10−3 to minimize the
loss function given by eqn (5). The model is trained optimally
in 1000 epochs with a batch size of 32. The average MSE
achieved while training is 1.1. The evaluation of the trained
inverse model over the test dataset shows that it gives excellent
predictions and the average MSE for the test dataset is 2.8 ×
10−1. The comparative analysis of the label and the DL model
predicted geometrical parameters for some random test
samples is shown in Fig. 8. Here, the primary input target
response is maximum cross-polarized transmission amplitude
and full phase coverage. The material properties and the oper-
ating wavelength which are given as the second input are listed

in the corresponding insets for each sample in Fig. 8. These
samples are randomly selected for different operating wave-
lengths and materials to show the diversity of the trained
model. The comparison between the label and the predicted
parameters show excellent coherence validating the accurate
performance of the inverse design network. Thus, the pro-
posed inverse design model is a generalized model that can be
used to optimize a bar shaped unit cell for different dielectric
materials and wavelengths in the visible regime. It eliminates
the need for conventional EM software, in which we need to
execute the lengthy optimization procedure from scratch for
each different material and wavelength.

Table 4 shows the individual average MSEs for each
material in terms of forward predictions and inverse design
optimization. This table shows that the trained forward
models exhibit quite a low distribution of errors for all the
materials (irrespective of the operating wavelength). For
forward amplitude predictions, the average MSE of all the
materials is less than 5.5 × 10–3; the MSE of Si3N4 is slightly
higher than those of others because it is an unseen material

Fig. 8 Comparative analysis of the predicted and the simulated geometric parameters of some random test samples. Here the blue bars represent
the label (simulated) geometrical parameters, whereas the yellow bars represent the proposed model predicted parameters. The corresponding
material properties and the operating wavelengths are shown in the top insets in the following sequence: [refractive index, extinction coefficient,
lambda]. All these samples, randomly selected from the test dataset show a very good agreement between the label and the predicted parameters.
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that is not a part of the training dataset. For forward phase
predictions, the average MSE of Si3N4 is 9.7 × 10–1, whereas all
the other materials have average MSEs in the order of 10–2 and
10–3. Since the inverse design is more challenging due to its
one to many mapping issue, the MSEs are comparatively
higher. For the inverse predictions of optimum parameters,
the average MSE of the unseen material Si3N4 is 1.24, whereas
the average MSE of the rest of the materials is in the orders of
10–1 and 10–2. These MSEs can be further reduced by collecting
more datasets for each material. Table 4 validates the capacity
of the proposed model to effectively work for multiple
materials.

To further validate the performance of the inverse design
network, we simulated the parameters predicted for some
random samples in Fig. 8 and compared the transmission
response given by the predicted parameters to that given by
the ground truth parameters. All the simulations are per-
formed using the standard solver settings used while extract-
ing the dataset. This comparison, shown in Fig. 9, depicts that
the predicted parameters perfectly achieve the desired target
when simulated in the traditional solver. Therefore, the pro-
posed inverse design network once trained can be used as an

optimization tool to obtain optimal parameters for our design
target within a fraction of seconds.

3.3 Comparison of optimization performed by the inverse
design neural network and traditional CST microwave studio
optimization tools

Some common and widely used traditional optimization tools
in commercial software like CST MICROWAVE STUDIO®† are
trust region framework, genetic algorithm, and particle swarm
optimization (PSO). We have compared the performance of our
inverse design-based optimization with these optimization
tools with respect to the number of optimization parameters,
time consumption, the number of solver runs, and the accu-
racy achieved by each of these approaches. This comparison is
presented in Table 5. All the CST optimization tools require
some prior knowledge of the range of the parameters to define
a search space and find the optimized values within that space
to avoid directionless searching. So here, in Table 5 the
maximum range refers to the size of the search space of geo-

Table 4 Average MSE of each material for forward amplitude and phase predictions and inverse design parameter predictions. It can be seen that
the overall distribution of MSE is quite low for all the materials. The average MSE of Si3N4 is slightly higher than those of others because it is an
unseen material that is not a part of the training dataset

Material a-Si : H TiO2 GaN GaP Mod. a-Si : H Si3N4

Avg. MSE for forward amplitude predictions l.89 × 10−4 1.3 × 10−4 3.2 × 10−3 1 × 10−3 1.1 × 10−4 5.5 × 10−3

Avg. MSE for forward phase predictions 2.24 × 10−3 5.2 × 10−2 4.3 × 10−2 6.7 × 10−2 l.44 × 10−3 9.7 × 10−2

Avg. MSE for inverse design parameter predictions 0.087 0.105 0.104 0.104 0.09 l. 24

Fig. 9 Comparative analysis of the target transmission amplitude and phase with the transmission amplitude and phase given by the predicted
design parameters. (a) The red line shows the target amplitude and the blue holes represent the simulated amplitude by the predicted parameters.
The corresponding material properties and the operating wavelengths are given insets listed as [refractive index, extinction coefficient, lambda]. (b)
The red line shows the target phases and the blue holes represent the simulated phases by the predicted parameters. The corresponding material
properties and the operating wavelengths are given as insets in the following sequence: [refractive index, extinction coefficient, lambda].

†https://www.3ds.com/products-services/simulia/products/cst-studio-suite/.
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metric parameter values. For example, if we want to optimize
the value of the period P, we will calculate an approximate
value using the formula P = λ/2NA21 and then define a search
space with ± 250 nm around this value. So the total range of
the search space will be 500 nm. Increasing the range of the
search space will increase the population of candidate solu-
tions, thus delays the prediction of the optimum value of para-
meters. On the other hand, once our inverse model is trained
for optimization, we can simply input the target response
and obtain the optimized parameters without requiring any
prior knowledge or numerical calculation of the range of
parameters.

Table 5 also shows that the DL-based inverse design network
works much faster and requires only a single run as compared
to the other optimization algorithms which require more time
and a lot of solver runs. Each time even if we have a slight
change in the target response, the CST optimization algor-
ithms will need to perform a large number of solver runs from
scratch. The accuracy of the proposed model is also compar-
able to the conventional algorithm’s accuracy; this accuracy is
measured with respect to the target transmission and the
transmission given by the predicted (optimized) parameters.

Optimization accuracy ¼ target trans:�
ðtarget trans:� predicted parameters trans:Þ

target trans:

ð7Þ

From Table 5, it is evident that the proposed inverse neural
network optimization tool is faster than traditional optimiz-
ation tools. If the number of parameters to be optimized and
their range are increased, it will further increase the time con-
sumed and the number of solver runs to provide the optimized
parameters, making the traditional tools inefficient and
sluggish.

4 Conclusion

This paper presents the modeling and optimization of all-
dielectric transmissive metasurfaces via deep neural networks.
A forward predicting multi-input multi-output regression
neural network is demonstrated to accurately map the cross-
polarized transmission amplitude and phase, while simul-
taneously taking all the geometric parameters, the material

properties, and the operating wavelength of the nano-resona-
tors as the input. The trained model predicts the transmission
amplitude and phase of the bar-shaped nano-resonators at dis-
tinct orientation angles of the bar to ensure the uniformity of
the amplitude regardless of the orientation and a 2π phase cov-
erage. Results show that the trained forward model exhibits a
quite low distribution of errors over the test dataset for all the
materials and wavelengths and achieves an average MSE of
1.8 × 10−3. Thus it can replace the iterative, time-consuming,
and computationally exhaustive EM simulations to evaluate
the performance of a metasurface unit cell. An inverse design
neural network serving as an optimization tool is also demon-
strated, which takes the target electromagnetic response (both
amplitude and phase), material constitutive parameters, and
working wavelength as the input and provides optimized struc-
tural dimensions as the output to match the target response.
The evaluation of the trained inverse model over the test
dataset shows that it gives excellent predictions and the
average MSE for the test dataset is 2.8 × 10−1. A detailed com-
parison of the proposed optimization inverse design and the
traditional commercial software optimization algorithms is
performed. This comparison validates that the proposed deep
learning based inverse optimization is faster which requires
comparatively less computational power, and provides results in
a single run, in contrast to traditional approaches which require
lots of solver runs, memory, and computational resources.
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