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α-Vinyl azide–cysteine click coupling reaction
enabled bioorthogonal peptide/protein
modification†
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α-Alkyl and α-aryl vinyl azides were found to be able to couple with cysteine-derived alkyl thiols chemo-

selectively under mild conditions, providing the corresponding β-ketosulfides with simultaneous extrusion

of N2 and ammonia. This reaction was developed into an effective chemical platform for peptide and

protein modification, which is completely cysteine selective and highly bioorthogonal, that avoids the

interference from other native residues. The in situ formed ketone group can react specifically with

alkoxyamines or hydrazines and therefore can serve as a versatile handle for a second modification. The

modification of bovine serum albumin (BSA) with a dansyl fluorescent probe and the labeling of the

genetically encoded fluorescent protein YPet-ECFP with biotin have been accomplished successfully

through this platform.

Chemical modifications of peptides or proteins, or alterna-
tively bioconjugations, have been proved and continue to be a
powerful means to construct bioconjugates with improved or
desired properties and have thus been widely used not only in
chemical biology to study cellular processes but also in the
medical industry to prepare biopharmaceuticals.1 Current
trends in chemical modification emphasize on chemo-
selectivity, site-specificity and bioorthogonality.2 Cysteine, a pro-
teogenic amino acid that is relatively less abundant yet ubiqui-
tously distributed among mammalian proteins, has a number
of distinct chemical properties related to the characteristic sulf-
hydryl group. Collectively, these merits make cysteine arguably
the most popular endogenous residue for protein bioconjuga-
tion, and a myriad of methods for selective cysteine ligation
have been developed over the years.3 Conventional cysteine
modification reactions include disulfide bond formation,4 SN2
alkylation,5 SNAr (hetero)arylation

6 and the most practiced con-
jugate addition to an array of electrophilic alkenes and alkynes.7

Recently, a number of creative methods have appeared, such as
transition metal mediated cysteine arylation, alkenation, allya-
tion and borylation,8 hypervalent iodine and alkynyl diben-

zothiophenium reagent mediated cysteine functionalizations,9

light, strain or proximity promoted thiol–ene/yne reactions,10

and others.11 Overall, from the mechanistic perspective, the
majority of the aforementioned modification methods involve
the coupling of the nucleophilic cysteine thiol group with a par-
ticular electrophile under certain conditions, which can poten-
tially be interfered by other biological nucleophiles (Fig. 1a).
Disulfide exchange and retro-Michael addition also do harm to
the stability, homogeneity and structural integrity of the rele-
vant bioconjugates. On the other hand, thiol ene/yne reactions
of inactivated alkenes/alkynes usually proceed with exclusive
chemical or site selectivity to give robust products, but their
applications are quite restricted probably because of the slow
kinetics or the requirement for radical initiators (Fig. 1b).10

Therefore, there is an unmet need for a chemoselective and
bioorthogonal chemical cysteine-modifying protocol that can
deliver robust bioconjugates. To this end, we report such a pro-
tocol based on an α-vinyl azide–cysteine click coupling reaction
that affords stable β-ketosulfide adducts through a radical C–S
bond forming event (Fig. 1c).

The reaction of aryl thiol with α-aryl vinyl azide to give a
β-ketosulfide derivative was initially noted by Montevecchi and
co-workers in 1997.12 Recently, our group reinvestigated this
coupling process and expanded the scope of azides to α-alkyl
vinyl azides.13 This thioether forming transformation takes
place smoothly under benign conditions, without the need for
extra additives and releasing ammonia and nitrogen as the
only by-products. In addition, an aryl thiyl radical initiated
radical-chain process was proposed and this process should
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tolerate aqueous medium due to its radical nature. These fea-
tures prompted us to envisage that this reaction could evolve
into an ideal platform for cysteine modification, based on the
assumption that alkyl thiol is also able to participate in this
radical event (Fig. 1c). To examine this premise, cysteine-
derived alkyl mercaptan 2a was reacted with α-phenyl vinyl
azide 1a (Table 1). To our delight, when mixed and stirred with
10 fold of 1a in THF at 40 °C under air, the cysteine derivative
2a disappeared in 30 min, as shown by TLC, and the desired
β-ketosulfide 3aa was isolated in 77% yield (entry 1). An
additional compound was obtained and identified as 4a, an
oxidative homo-coupling product of 2a. Cysteine containing
dipeptide 2b reacted similarly with 1a to deliver conjugate 3ab
in 61% yield (entry 2). Furthermore, thioethers 3ac–an were
obtained successfully from the coupling of 1a with the corres-
ponding dipeptides 2c–n, indicating the good compatibility of
this reaction with various proteogenic side chains such as
thioether, hydroxyl, phenol, indole, and primary amide groups
(entries 3–14). Tripeptide 2o with a cysteine residue in the
middle was also a good substrate for this coupling reaction,
affording adduct 3ao in 61% isolated yield (entry 15). Vinyl
azide 1b, carrying a strong electron donating pivalamido group
at the para position of the phenyl ring, reacted quickly with
protected dipeptides 2b and 2l and tripeptide 2p to give 3bb,
3bl and 3bp, respectively. The relatively lower yields (30–40%)
observed for these three reactions might be attributed to the
use of a much less amount (2.0 vs. 10 equiv.) of vinyl azide
(entries 16–18). With the restoration of the amount of vinyl
azide to 10 equiv., the recovery in yields (50% for 3bj and 61%
for 3bk) was observed for the reactions of 1b with 2j and 2k
(entries 19 and 20). Notably, although the reaction time varied
broadly from less than 1 h to as long as 8 h, the yields were
constantly moderate to good, and in all cases, the dimerization
of the related alkyl thiols via S–S bond formation was more or
less detected, which is a detrimental sideway that competes

with the desired C–S bond forming event for the cysteine sulf-
hydryl group.

After realizing and evaluating the ligation of cysteine deriva-
tives with α-aryl vinyl azides, we then turned to the reaction of
the more stable and hence less reactive α-alkyl vinyl azides.
(Benzo)imidazole substituted vinyl azides 1c–j were readily
obtained and reacted with 2a under the above conditions. The
reactions did occur, but we encountered considerable difficulty
in separating the thioether products from the corresponding
vinyl azides through silica gel column chromatography. To
avoid this annoying problem, an excess of cysteine 2a was
employed to ensure complete consumption of vinyl azides,
and the outcomes are presented in Table 2. Vinyl azides 1c–f,
each carrying an imidazole moiety, all coupled successfully
with alkyl thiol 2a to give rise to the related conjugates 3ca–3fa
in high yields (entries 1–4). The lower reactivity of alkyl vinyl
azides was evidenced by the much longer reaction time
needed for their full conversions (20–24 h). With their benzoi-
midazole congeners 1g–j, even their corresponding adducts
3g–j were collected in quantitative yields (entries 5–8, 90–99%
yield). Two equivalents of 2a were found to be capable of con-
suming the alkyl vinyl azide in all instances.

With this robust thioether-forming protocol in hand, our
efforts were directed to evaluate its feasibility in selective
cysteine modification employing phosphate buffered saline
(PBS) as the solvent or cosolvent. Commercially available gluta-
thione (GSH, 2q), a cysteine-containing natural peptide anti-
oxidant, was used as the model substrate (Table 3). In an open
vial, a solution of vinyl azide 1a (2.0 equiv.) in THF and a solu-
tion of glutathione (1.0 equiv.) in PBS (pH 7.4) were mixed and
stirred at 40 °C. GSH 2q disappeared in 4 h and the coupling
product 3aq was isolated in 75% yield through reverse phase
column chromatography (entry 1). Without exception, α-aryl
vinyl azides 1k–m were all proven to be competent agents for
cysteine ligation, furnishing the corresponding conjugates
3kq–mq efficiently in longer reaction times (entries 2–4).
Aliphatic vinyl azides 1n and 1i also demonstrated substantial
potential in cysteine ligation (entries 5 and 6). For vinyl azides
1e, 1f and 1o–q that can dissolve well in water, the coupling
reactions were conducted in PBS buffer without the use of THF
as the co-solvent. For these reactions, the yields were deter-
mined from their LC-mass spectra (entries 7–12). In PBS
buffer, both imidazolyl vinyl azides 1e and 1f underwent this
thiyl radical initiated process faster than parallel events in
THF–PBS cosolvents, affording 3eq and 3fq in 71% and 88%
LC-MS yields, respectively (entries 7 and 8). The benzoimidazo-
lium functionalized homologues 1o and 1p also efficiently
modified GSH at cysteine with high yields in PBS (entries 9
and 10). Glycopeptide 3qq was constructed via the modifi-
cation of GSH with 1q, a glucoside functionalized with a vinyl
azide moiety at the anomeric position (entry 11). As shown in
entry 12, the use of water to replace PBS as the reaction
medium is feasible as well, albeit with a slight decrease in the
yield. Masking the thiol group with trityl protection resulted in
no reaction with 1a under the standard conditions even if
stirred in air for 24 hours, indicating the inertness of the free

Fig. 1 Chemical modification of a peptide or protein at the cysteine
residue.
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amino and carboxyl groups toward this vinyl azide. At this
point, the effectiveness of this reaction for selective chemical
modification at cysteine has been firmly established. It is
worth noting that in 2017, Chiba and colleagues realized site-
specific modification at the cysteine residue in peptides and
proteins using 2-azidoacrylates.14 Although 2-azidoacrylates
also fall in the class of vinyl azides, they serve as Michael

acceptors and undergo 1,4-addition with free cysteinyl thiols, a
mechanism totally different from the radical chain process for
the present method.

To further investigate the applicability of the above system
in protein chemical ligation, dansylated vinyl azide 1r was
obtained and incubated with bovine serum albumin (BSA, 2r,
68 kDa) at 40 °C for 24 in air. In two solvent mixtures, i.e. 1/1

Table 1 Coupling reaction of cysteine derivatives with α-aryl vinyl azidesa

Entry 1 (equiv.) Time Adduct (yield) Entry 1 (equiv.) Time Adduct (yield)

1 1a (10) 30 min 11 1a (10) 8 h

2 1a (10) 50 min 12 1a (10) 40 min

3 1a (10) 6 h 13 1a (10) 40 min

4 1a (2.0) 40 min 14 1a (10) 8 h

5 1a (10) 5 h 15 1a (10) 8 h

6 1a (10) 4 h 16 1b (2.0) 1.0 h

7 1a (10) 3 h 17 1b (2.0) 30 min

8 1a (10) 8 h 18 1b (2.0) 50 min

9 1a (10) 8 h 19 1b (10) 1.0 h

10 1a (10) 3 h 20 1b (10) 30 min

a Conditions: 2 (0.2 mmol, 1.0 equiv.), 1 (2.0 or 10 equiv.), THF (3 mL), 40 °C, 0.5–8 h in air; isolated yields are reported.
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Table 2 Coupling reaction of BocNHCysOMe with α-alkyl vinyl azidesa

Entry Vinyl azide Time Adduct, yield Entry Vinyl azide Time Adduct, yield

1 24 h 5 6 h

2 20 h 6 24 h

3 20 h 7 24 h

4 24 h 8 8 h

a Conditions: 2a (0.4 mmol, 2.0 equiv.), 1 (0.2 mmol, 1.0 equiv.), THF (3 mL), 40 °C, 6–24 h in air; isolated yields are reported.

Table 3 Bioconjugation of glutathione with α-vinyl azidesa

Entry Vinyl azide
Solvent

Adduct, yield Entry Vinyl azide
Solvent

Adduct, yieldTime Time

1b PBS/THF (1/1, v/v) 7c PBS
4.0 h 8.0 h

2b PBS/THF (1/1, v/v) 8c PBS
24 h 8.0 h

3b PBS/THF (1/1, v/v) 9c PBS
24 h 8.0 h

4b PBS/THF (1/1, v/v) 10c PBS
24 h 8.0 h

5b PBS/THF (1/1, v/v) 11c PBS
24 h 8.0 h

6b PBS/THF (1/1, v/v) 12c H2O (pH 7.0)
8.0 h 30 h

aUnless otherwise noted, all reactions were carried out with 0.2 mmol GSH 2q (1.0 equiv.) and 0.4 mmol vinyl azide 1 (2.0 equiv.) at 40 °C, using
2.0 mL PBS (pH 7.4) as the solvent or cosolvent. b Isolated yields are reported. c LC-MS yields are reported.
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and 1/3 EtOH/PBS (v/v), two parallel experiments were con-
ducted, respectively (Fig. 2a). SDS-PAGE (sodium dodecyl
sulfate polyacrylamide gel electrophoresis) analysis of these
reactions was carried out and the results are shown in Fig. 2b.
For each reaction sample, a strong fluorescent-emission band
appears around 70 kDa in the fluorescence image, which can
also be visualized through Coomassie blue staining (lanes R1
and R2). As a comparison, no such band is observed in the
fluorescence image but showed up upon staining for the
control experiment for BSA (lane BSA). As expected, no protein
band appears for the control with vinyl azide 1r (lane 1r). The
fluorescent bands at the bottom correspond to the dansylated
reagent 1r. These experimental outcomes clearly demonstrate
that BSA has been efficiently labeled by the dansyl fluorescent
vinyl azide. And we claim with confidence that the current
methodology can serve as an effective chemical tool for selec-
tive protein modification.

The validity of this biocompatible chemical tool in protein
modification was further confirmed through the successful
decoration of nickel NTA agarose beads (Ni-NTA) with a fluo-
rescent protein (FP) carrying three fluorophores (Fig. 3a).
Genetically encoded FP YPet-ECFP (2s),15 a 6×His tagged bio-
conjugate comprising a yellow fluorescent protein (YPet) and
an enhanced cyan fluorescent protein (ECFP) linked via a
peptide CPKESCNLFVLKD that bears two cysteine residues,
was incubated with excess biotin-derived vinyl azide Biotin1s at
37 °C under physiological reaction conditions for 40 h. This
reaction mixture, presumably containing the biotinylated FP
3ss, was then shaken with the Ni-NTA resin for 1 h and the
biotin-grafted nickel particles Ni-3ss were obtained through

subsequent centrifugation and washing. A 30 min treatment of
these freshly made biotin-modified nickel beads with the dye
Alexa Fluor® 568 streptavidin (STAV AF568) in PBS completed
the installment of a third chromophore. After the removal of
the unbound streptavidin dye molecules, the thus prepared
nickel complex Ni-YPet-ECFP-AF568 was suspended in PBS
and visualized through fluorescence microscopy (Fig. 3b). The
bright annuli in both ECFP and YPet emission images suggest
the successful attachment of YPet-ECFP (2s) onto the surface
of the Ni-coated NTA resin beads; the identical but red annuli
in the Alex Flor 568 emission microscopy spectrum indicate an
efficient labeling of the Ni-NTA resin surface with the streptavi-
din dye STAV AF568 (Fig. 3b row I). These observations con-
firmed the successful installation of biotin segments on the
nickel beads, which was accomplished via the coupling reac-
tion of YPet-ECFP (2s) with biotin-conjugated vinyl azide
Biotin1s. Following the same protocol but omitting the azide
agent Biotin1s, a control sample was prepared and subjected to
fluorescence imaging too (Fig. 3b row II). The green and yellow
rings were present in its ECFP and YPet emissions, just like
those in row I for Ni-YPet-ECFP-AF568. In contrast, in its Alex

Fig. 2 Labeling of BSA with a dansyl fluorescent probe: (a) coupling
reaction of BSA with 1r; and (b) SDS-PAGE analysis (M: protein marker,
R1: reaction in 1/1 EtOH/PBS (v/v), R2: reaction in 1/3 EtOH/PBS (v/v),
BSA: control experiment without 1r, 1r: control experiment without BSA.

Fig. 3 (a) The labeling of Ni-NTA resin with 6×His-tagged FP conjugate
YPet-ECFP and streptavidin-Alex Flor 568 dye STAVAF568; and (b) fluor-
escence imaging of labeled, unlabeled Ni-NTA resin and control
samples.
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Fluor 568 emission spectrum, the otherwise red rings now
become invisible but with even distribution of the red fluo-
rescence in the beads. This sharp difference might be attribu-
ted to the staining of the whole Ni-NTA resin beads with the
dye STAV AF568 simply via kinetic diffusion when no specific
biotin–streptavidin conjugation took place.

Conclusions

In summary, we have disclosed a coupling reaction of α-vinyl
azides with cysteine-based alkyl mercaptans which gives stable
β-ketothioethers. This reaction possesses several distinct
merits that potentially make it a magnificent chemical plat-
form for protein bioconjugation: (1) the intrinsic radical
nature makes it completely feasible for use in aqueous solvent
systems; (2) the non-electrophilic vinyl azide used prevents the
attack from biological nucleophiles, especially other native
amino acid side chains; (3) there is no need for extra reagents
and the harmlessness of the by-products formed show its
excellent biocompatibility; and moreover (4) the in situ formed
stable β-ketothioether linkage might serve as a second ligating
site specific for primary amine, hydrazine and alkoxylamine.
These merits meet the characteristics of click reactions and we
therefore would like to name this C–S bond forming process as
vinyl azide–cysteine (VA–Cys) click coupling.16 Using this click
reaction, the chemical installation of β-ketothioether on gluta-
thione at cysteine has been realized with an array of α-vinyl
azides under (quasi)physiological conditions. The effective
fluorescent labelling of BSA with a dansylated α-vinyl azide
shows its effectiveness in protein modification. Its avidity is
confirmed unequivocally through the successful introduction
of a biotin functionality to an engineered FP YPet-ECFP. Based
on these solid experimental data, we can claim confidently
that a useful chemical platform for selective and bioorthogo-
nal protein modification at the cysteine residue has been
established. Further studies aiming to extend its application
scenarios are ongoing in our laboratory.
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