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upling modulation of a g-C3N4/
WTe2 heterostructure for solar cell applications

Peng Lin,a Nengshen Xu,a Xiaolin Tan,a Xuhui Yang, *b Rui Xiong,a Cuilian Wen, a

Bo Wu,a Qilang Lin*a and Baisheng Sa *a

Constructing van der Waals (vdW) heterostructures has been proved to be an excellent strategy to design or

modulate the physical and chemical properties of 2D materials. Here, we investigated the electronic

structures and solar cell performances of the g-C3N4/WTe2 heterostructure via first-principles

calculations. It is highlighted that the g-C3N4/WTe2 heterostructure presents a type-II band edge

alignment with a band gap of 1.24 eV and a corresponding visible light absorption coefficient of

�106 cm�1 scale. Interestingly, the band gap of the g-C3N4/WTe2 heterostructure could increase to

1.44 eV by enlarging the vdW gap to harvest more visible light energy. It is worth noting that the

decreased band alignment difference resulting from tuning the vdW gap, leads to a promotion of the

power conversion efficiency up to 17.68%. This work may provide theoretical insights into g-C3N4/WTe2
heterostructure-based next-generation solar cells, as well as a guide for tuning properties of vdW

heterostructures.
Introduction

From graphene, two-dimensional (2D) materials open a new
gate to the material society and provide us with unprecedented
insight to understanding and exploring materials.1,2 Generally
speaking, 2D materials could show distinguished physical and
chemical properties due to their giant specic surface areas.3

For example, as the rst discovered two-dimensional material,
graphene has been demonstrated to be an outstanding candi-
date in tremendous applications such as Li-ion batteries,
supercapacitors, and beyond.4–6 So far, the applications of
various typical 2D materials have been investigated, involved in
MXene, graphene-based materials, transition metal oxides, and
so on.7–10 Besides, 2D materials present high performance not
only in energy storages but also in catalysts, thermoelectric
devices, electronic devices, and optoelectronic devices.11–14

Especially, many 2D semiconducting materials show dramatic
light harvesting properties, inspiring global researchers to
explore their applications in solar cells.15 Currently, the 2D
transition metal dichalcogenides materials (TMDs) have been
a research hotspot.16,17 TMDs are a class of materials with the
formula MX2, where M is a transition metal element, and X
presents for S, Se, and Te. These materials form layered struc-
tures with the X–M–X stacking conguration, where the
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chalcogens in two hexagonal planes are separated by a plane of
transition metal atoms.18 The bulk TMDs have various proper-
ties ranging from insulators, semiconductors, semi-metals, and
metals; meanwhile, their corresponding monolayers or few
layers essentially preserve these properties.19 Multitudinous
researches illustrated that TMDs could be a class of excellent
materials in applications of photovoltaics and solar cells.20 On
the other hand, the g-C3N4 and its isomers have been widely
explored aiming at solar energy converting because of their high
surface activities and easily modulated surface chemistry by
means of surface engineerings.21,22 Monolayer g-C3N4 presents
a suitable band gap leading to its favorable absorption proper-
ties in the visible light spectrum.23,24 However, the high
recombination rate of electrons and holes in these individual
2D materials limits their performance in photocatalysts and
solar cells.25,26 Hence, promoting the efficiency of carrier sepa-
rations in 2D materials is of great interest and importance.27,28

Constructing van der Waals (vdW) heterostructures with
different types of 2D materials stacking in a vertical direction
has been proved an accessible approach to tune the properties
and performance of 2D materials,29–32 which have been proved
to be one of the most efficient categories to enhance the
performance of TMDs and g-C3N4. It is noted that hetero-
structure solar cells, considered as next-generation solar cell
technology, have attracted great attention because of their
fascinating properties in solar cell application.33,34 For example,
compared to single-layer structures, the optical properties
under visible-light irradiation of Blue_P/TMDs vdW hetero-
structures are signicantly improved combined, which achieves
higher efficiency in solar energy conversions.35 Similarly, the g-
© 2022 The Author(s). Published by the Royal Society of Chemistry
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C3N4 based heterostructures have tunable electric properties,
stronger optical properties as well as higher catalytic activity.36,37

Especially, g-C3N4/WTe2 vdW heterostructure has been proved
to be a potential electrocatalyst for hydrogen evolution reac-
tion.38 At the same time, challenges and opportunities for
exploring advanced g-C3N4 based heterostructure are still
ongoing.

In this work, we investigated the interlayer interactions,
electronic structures, and optical properties of an articial g-
C3N4/WTe2 vdW heterostructure. It is worth noting that vertical
strains can modify the band gap and further result in a better
light harvest with a light absorption coefficient up to�106 cm�1

in the process. The decreased band alignment difference caused
by the increased vdW gap gives rise to the promotion of power
conversion efficiency are unraveled. Our ndings provide
signicant guidance to design and modulate the performance
of 2D materials applied in next-generation optoelectronic
devices.
Fig. 1 Top and side views for the structure of (a) g-C3N4 monolayer,
(b) WTe2 monolayer, and (c–h) the six different stacking configurations
of heterostructure. (i) The total energy changes and snapshots from
AIMD calculations at 0 and 10 ps of g-C3N4/WTe2 heterostructure.
Computational methods

In our work, we adopted the ALKEMIE platform39 together with
the Vienna ab initio simulation package (VASP) based on density
functional theory (DFT) to perform the rst-principles calcula-
tions.40 The projection-augmented wave (PAW) exchange and
correlation effects potential was used in the term of generalized
gradient approximation (GGA) Perdew–Burke–Ernzerhof
(PBE).41–43 We introduced the DFT-D3 method44 to correct the
vdW interactions. A vacuum space of 20 Å along the z-direction
was built to avoid periodic interactions. Energy cutoff of 500 eV
was set, and 8 � 8 � 1 G-centered k-mesh was used for Brillouin
zone (BZ) integrations. To overcome the underestimation of the
band gap by the standard semilocal DFT functionals, we
introduced the Heyd–Scuseria–Ernzerhof (HSE06) function45 for
the electronic structure calculations. The relaxation conver-
gence for electrons and ions were 1 � 10�6 eV and 1 � 10�5 eV,
respectively. To obtain accurate dielectric functions comparable
to the experimental results, time-dependent Hartree–Fock
calculation (TDHF) was introduced to calculate the response
functions by including the excitonic effects based on the HSE06
wavefunctions.
Results and discussion
Geometry and electronic structure

Firstly, we analyzed the geometry and electronic structures of
monolayer g-C3N4 and WTe2. As shown in Fig. 1(a) and (b), g-
C3N4 consists of N and C atoms in a staggered fashion similar to
graphene with the optimized constant lattice of 6.95 Å, while
monolayer WTe2 shows 2H phase with the optimized constant
lattice of 3.52 Å, which agree well with previous works.46,47 We,
therefore, built a g-C3N4/WTe2 heterostructure by stacking a 2�
2 � 1 supercell of WTe2 upon the unit cell of g-C3N4 together
with a lattice constant mismatch of 1.3%. Furthermore, we
considered 6 possible stacking congurations by shiing g-
C3N4 in a certain direction to explore the energetically favorable
© 2022 The Author(s). Published by the Royal Society of Chemistry
structure of the heterostructure, as illustrated in Fig. 1(c–h).
Herein, the formation energy Eform was dened as

Eform ¼ Etotal
heterostructure � Efree

g-C3N4
� Efree

WTe2
(1)

where Etotalheterostructure, Efree
g-C3N4

and Efree
WTe2 are the total energy of the

g-C3N4/WTe2 heterostructure, freestanding g-C3N4 and WTe2
monolayer, respectively. On the other hand, the vdW binding
energy Eb was dened as48

Eb ¼ �Etotal
heterostructure � Eg-C3N4þWTe2

A
(2)

where A is the interface area of a heterostructure unit cell, Eg-
C3N4+WTe2 is the sum of the total energies of the mutually inde-
pendent g-C3N4 and WTe2 monolayers xed in the
RSC Adv., 2022, 12, 998–1004 | 999

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra08397j


Table 1 The calculated lattice constants a, the vdW gap dlayer,
formation energy Eform and binding energy Eb of g-C3N4/WTe2 het-
erostructure with possible stacking configurations

Congurations I II III IV V VI

a (Å) 6.993 7.098 6.989 6.988 6.993 6.986
dlayer (Å) 3.076 3.653 3.312 3.111 3.177 3.325
Ef (eV) �0.652 �0.117 �0.645 �0.640 �0.604 �0.634
Eb (meV Å�2) 15.81 15.33 15.79 14.35 13.46 15.07

Fig. 2 (a) The HSE06 band structure of free-standing g-C3N4 and
WTe2monolayer, respectively. (b) The projected HSE06 band structure
and partial density of states of g-C3N4/WTe2 heterostructure. The size
of pink and blue balls present the contributions from g-C3N4 and
WTe2, respectively. (c) The band alignment diagrams for isolated g-
C3N4, WTe2 monolayer and heterostructure interface.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ja

nu
ar

y 
20

22
. D

ow
nl

oa
de

d 
on

 1
1/

27
/2

02
4 

12
:2

1:
28

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
corresponding heterostructure lattice, respectively. The opti-
mized lattice constant a, the calculated vdW gap dlayer, forma-
tion energy Eform and binding energy Eb are listed in Table 1. It
is interesting to note that the values of Eform for all these 6
congurations are negative, indicating these heterostructures
are energetic favorable. In addition, the calculated Eb between
the g-C3N4 and WTe2 monolayers is around 15 meV Å�2, which
is close to the typical vdW binding energy.49,50 Therefore, the g-
C3N4/WTe2 heterostructure can be dened as a vdW hetero-
structure. We chose conguration-I as the object to study in the
subsequent work since stacking conguration-I exhibits the
most favorable Eform and smallest dlayer.

To prove the thermodynamically stability, Born–Oppen-
heimer ab initio molecular dynamics (AIMD) simulations were
adopted for the proposed g-C3N4/WTe2 heterostructure at 300 K
for 10 ps. A 2 � 2 supercell has been constructed for the AIMD
calculations. Fig. 1(i) displays the energy evolution and struc-
ture snapshots aer 300 K annealing for 10 ps of the g-C3N4/
WTe2 heterostructures. It is noted that the structure snapshots
suggest that atoms just move near their equilibrium location
during the simulations, and there is no structural reconstruc-
tion at 300 K. At the same time, the changes of the total energy
are very small during the simulations from Fig. 1(i), indicating
that the proposed g-C3N4/WTe2 vdW heterostructure is ther-
modynamically stability at 300 K.

Fig. 2(a) shows the band structures of freestanding g-C3N4

and WTe2 monolayers using HSE06 calculations. To compare
clearly, the vacuum level was set to 0 eV as a baseline. It can be
found that g-C3N4 has an indirect band gap of 3.21 eV, where
CBM and VBM locate at the K (1/3, 1/3, 0) and G (0, 0, 0) point,
respectively. Meanwhile, the WTe2 shows the direct gap feature
with the band gap of 1.60 eV, where both CBM and VBM locate
at the K (1/3, 1/3, 0) point. These results agree well with the
previously published studies.46,47 On the other hand, the pro-
jected band structure and partial density of states of g-C3N4/
WTe2 heterostructure is plotted in Fig. 2(b), in which the pro-
jected weight of g-C3N4 and WTe2 are distinguished by size and
color. The pink and blue balls represent the contributions from
g-C3N4 and WTe2, respectively. For g-C3N4/WTe2 hetero-
structure, both CBM and VBM locate at the K (1/3, 1/3, 0) point,
showing the direct band gap feature, with the calculated HSE06
band gap of 1.24 eV. Interestingly, the g-C3N4/WTe2 hetero-
structure shows the band structure feature of a type-II hetero-
structure,51 where CBM is contributed by the g-C3N4 layer and
VBM is occupied by the WTe2 layer. The band alignment
diagrams for isolated g-C3N4, WTe2 monolayer, and
1000 | RSC Adv., 2022, 12, 998–1004
heterostructure interface are illustrated in Fig. 2(c). Obviously,
the work function of the g-C3N4/WTe2 heterostructure lies
between the g-C3N4 and WTe2 monolayers. When g-C3N4 and
WTe2 come into contact, the electrons ow fromWTe2 to g-C3N4

due to the lower work function of WTe2 and vice versa for the
holes. As a result of the increased transfer of electrons, the
Fermi level shis and nally reaches the same energy level. The
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Plane-averaged charge density difference as a function of vdW
gap.
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differences between the band structure of g-C3N4/WTe2 heter-
ostructure and corresponding monolayers indicate that the
vdW interactions play an essential role in the electronic
structures.

To understand the vdW interlayer interaction between the
different parts of the heterostructure, we further investigated g-
C3N4/WTe2 heterostructure with different interlayer distance
dlayer of the vdW gap. As shown in Fig. 3, both Eform and �Eb
follow the Lenard-Jones type relation as a function of dlayer,52

and a lower value of �Eb correspond to a stronger binding.
Clearly, g-C3N4/WTe2 heterostructure with the equilibrium dlayer
holds the most negative Eform and �Eb. As the dlayer decreases,
both Eform and�Eb increase dramatically. As the dlayer increases,
Eform and �Eb gradually increases towards zero. Herein, Eform
and �Eb remain negative among an extensive range of dlayer,
indicating the possibility to tune the interlayer interaction by
varying dlayer. As mentioned before, there is the transfer of
electrons within the vdW gap, which affects the electronic
structure of the g-C3N4/WTe2 heterostructure. Thereby, we
calculated the planar-averaged charge density differences of g-
C3N4/WTe2 heterostructure with different dlayer, as shown in
Fig. 4. Here, the plane-averaged electron density difference Dr

was calculated by

Dr ¼ rg-C3N4/WTe2 � rg-C3N4 � rWTe2 (3)

where rg-C3N4/WTe2 is the charge density of the hetero-
structure, rg-C3N4 and rWTe2 are charge densities of the g-C3N4

and WTe2 parts in the heterostructure, respectively. The
positive and negative values denote charge accumulation and
depletion in the combined system comparing with the two
isolated monolayers, respectively. Fig. 4 clear presents the
charge redistribution in the vdW gap of g-C3N4/WTe2 heter-
ostructure: the charge depletion around the g-C3N4 part and
the charge accumulation around the WTe2 region, indicating
the charge transfer from g-C3N4 to WTe2. As the dlayer
decreases, the stronger interlayer interaction results in the
more obvious charge transfer. Oppositely, the charge transfer
weakens when dlayer increases. The similar shape of Dr for g-
Fig. 3 Formation energy Eform and binding energy�Eb as a function of
interlayer distance dlayer of the vdW gap.

© 2022 The Author(s). Published by the Royal Society of Chemistry
C3N4/WTe2 heterostructure with different dlayer indicates the
excellent stability of the heterostructure from the electronic
structure point of view. This phenomenon suggests
a possible method to tune the band structure of the g-C3N4/
WTe2 heterostructure by modifying the interlayer
interaction.

To further explore the inuence of the vdW interactions on
the electronic structures of the g-C3N4/WTe2 heterostructure, we
plotted the band gap, band alignment, and work function of g-
Fig. 5 (a) Band gap, (b) band edge alignments and work function of g-
C3N4/WTe2 heterostructure as a function of vdW gap.

RSC Adv., 2022, 12, 998–1004 | 1001
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C3N4/WTe2 heterostructure with different dlayer in Fig. 5(a). The
PBE and HSE06 results show similar trends that the band gap
decreases continuously as dlayer decreases. Oppositely, as dlayer
increases, the band gap increases towards a balance value of
1.44 eV (HSE06). In addition, since the band alignment and
work function are crucial in semiconductor heterostructure-
based functional device designs, we plotted the band align-
ment and work function of the g-C3N4/WTe2 heterostructure
corresponding to the vacuum level, as shown in Fig. 5(b).
Correspondingly, the band alignment and work function show
similar trends of band gap with different dlayer. As the dlayer
decreases, CBM shis downward continuously, and VBM shis
upward continuously, which reduces the band gap. On the
contrary, as dlayer increases, CBM and VBM shi oppositely and
towards convergent.

To explore the solar light-harvesting ability of the g-C3N4/
WTe2 heterostructure, we calculated the optical absorption
coefficients with a series of dlayer. As presented in Fig. 6, there
are three absorption peaks in the visible light region for the
equilibrium vdW gap dlayer ¼ 3.07 Å. The rst absorption peak
locates at �1.9 eV, and the main peak covers the light energy
region of 2.25–2.6 eV with an ultra-high light absorption
coefficient up to 1.22 � 106 cm�1. And the third absorption
peak locating at �2.8 eV presents the absorption coefficient of
about �1 � 106 cm�1. It is worth noting that the light-
harvesting ability in the entire visible solar spectrum is
elevated when the dlayer increases. Interestingly, the absorp-
tion peaks shi weakly towards the lower energy region as the
dlayer rises, and the absorption coefficient increases the
maximum value up to 1.34 � 106 cm�1 when dlayer ¼ 3.47 Å.
Due to the direct band gap feature being benecial for sepa-
rating photo-excited electron–hole pairs and strong light
absorption, the g-C3N4/WTe2 heterostructure could be
a promising material for efficient photovoltaic solar cells and
optoelectronic devices.

Furthermore, we estimated the power conversion effi-
ciency (PCE) by the method proposed by Scharber et al.,53

which is widely used in efficiency estimation. The upper
limited PCE of the g-C3N4/WTe2 heterostructure is described
by54,55
Fig. 6 Absorption coefficient of g-C3N4/WTe2 with different vdW gap.

1002 | RSC Adv., 2022, 12, 998–1004
h ¼
0:065

�
Eopt;d

g � DEc � 0:3
� ÐN

E
opt;d
g

JphðħuÞ
ħu

dðħuÞ
ÐN
0

JphðħuÞ
ħu

dðħuÞ
(4)

where 0.65 is the ll factor (bFF), P(ħu) is the AM1.5 solar energy
ux at the photon energy ħu, Eg andDEc are the band gaps of the
donor and conduction band offset between donor and acceptor
respectively. The (Eopt,dg � DEc �0.3) term is an estimation of the
open-circuit voltage (Voc). The integral term in the numerator is
the short-circuit current density (Jsc) assuming external
quantum efficiency to be 100%, while the energy integral from
0 to innity in the denominator is the power of incident solar
radiation. Fig. 7(a) illustrates the donor band gap Gapdonor and
conduction band offset DEc, which are critical to the maximum
PCE, as well as simulated PCE of heterostructures with different
dlayer. Interestingly, due to a suitable band gap of about 1.4 eV
with a Gapdonor of about 1.65 eV, the g-C3N4/WTe2 hetero-
structure shows an excellent solar spectrum absorption.
Furthermore, the Gapdonor hardly changes, but the DEc
decreases about 70% in the process of compression and
stretching. The reduced band offset differences in the stretch-
ing process lead to a higher PCE. Dramatically, the PCE
improves considerably with a maximum value of 17.68% for the
Fig. 7 (a) The donor band gap Gapdonor, conduction band offset DEc
and PCE of g-C3N4/WTe2 heterostructure as a function of vdW gap. (b)
Contour plots for PCE as a function of the donor band gap and
conduction band offset DEc.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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g-C3N4/WTe2 heterostructure. Fig. 7(b) depicts PCE variation
with the Gapdonor and DEc. Therefore, we concluded that the g-
C3N4/WTe2 heterostructure could show a better performance in
solar cell applications by modifying the vdW gap.
Conclusion

To conclude, based on the rst-principle calculations, we have
constructed the g-C3N4/WTe2 heterostructure and systemati-
cally analyzed the corresponding electronic band structure,
optical properties with different dlayer. As the dlayer increases, the
band gap rises from 1.24 to 1.44 eV when the interlayer inter-
actions become weaker, which brings an augmented light
harvest in the visible range. Signicantly, the maximum optical
absorption coefficient can reach �106 cm�1 level. Furthermore,
the larger band gap and smaller band alignment difference
make it better for light absorption and energy conversion.
Finally, we found that the PCE of g-C3N4/WTe2 heterostructure
has been promoted obviously during vdW gap tuning. The
optimized PCE can reach up to 17.68%. Our results show that
the g-C3N4/WTe2 heterostructure is favorable in solar cell
applications. Here, we gave a tasteful way to realize the better
performances of heterostructures, which is vital in the future
study of vdW heterostructures.
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