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and Dongming Jiangab

In this work, an easy, green, noncovalent surface modification of pristine graphene (GR) was carried out

using a single-step method between sodium carboxymethyl cellulose (CMC) and pristine GR, resulting in

the formation of a modified CMC–GR (CGR) dispersion with 15% nanosheet content, the first reported in

water. Results obtained from thermogravimetry analysis (TGA), Raman spectroscopy, and atomic force

microscopy (AFM) confirm that the CMC modifier is successfully decorated on the pristine GR surface.

Analyses of transmittance spectrum, zeta potential and transmittance electron microscopy (TEM) images

reveal that the modified CGR has a high degree of dispersion. More importantly, the pristine GR is

insoluble, while the modified CGR-3, mixed with 1.1 wt% CMC modifier, is easily well dispersed in water

and has good flowability, and no sedimentation is observed after more than 3 months.
1. Introduction

Waterborne coatings have gained much attention for metal
protection on account of their reduced emission of volatile
organic compounds (VOCs), avoiding serious workplace acci-
dents.1 However, waterborne coatings easily form polar chan-
nels that accelerate water permeation due to their hydrophilic
groups. Thus, waterborne coatings with good corrosion resis-
tance are urgently needed to be developed.

Polymer nanocomposites, including nanollers such as
silica,2,3 montmorillonite,4,5 boron nitride,6–8 and graphene,9,10

are considered more efficient materials that enhance the corro-
sion resistance of coatings by improving their barrier properties.
Graphene, a promising two-dimensional (2D) nanosheet with
only one-atom thickness, has a series of preeminent character-
istics, such as high barrier performance, good mechanical
properties, outstanding thermal stability and high chemical
stability.11–14 At present, it has received increasing attention in
the eld of anticorrosion coatings for ultralight metals, and it
has been used in waterborne anticorrosion coatings to enhance
anticorrosion performance.15,16 However, graphene is not easy to
disperse in water due to its high surface area, strong van der
Waals forces, and intrinsic hydrophobicity. One effectivemethod
is to gain hydrophilic graphene oxide (GO) using chemical
oxidation modication. Unfortunately, the defect sites
ngineering, Hefei University, Hefei, Anhui

u.cn

ter for Green Coatings High-Performance

efei, Anhui 230601, China

the Royal Society of Chemistry
introduced during the process can affect the long-term anticor-
rosion performance. Furthermore, many studies have been done
to improve the wettability of graphene in matrix through facile
noncovalent modication. Chang et al.17 constructed
polyaniline/graphene waterborne epoxy coatings to enhance the
corrosion resistance of steel against O2 and H2O. He et al.18 used
tannic acid (TA) as intercalator to disperse graphene in water via
p–p noncovalent bonds, forming graphene–TA hybrids and
obtaining highly efficient anticorrosive epoxy coatings. Yu et al.19

prepared waterborne epoxy coatings combined with dispersed
sandwiched polyvinyl butyral@graphene@polyvinyl butyral
composites to improve the corrosion resistance of commercial
aluminum alloys, and the effect can last 120 days even when
exposed to simulated seawater.

In recent years, most works have only focused on graphene
dispersion through covalent and noncovalent modication
using a low graphene content, between 0.1% and 5%. However,
it is difficult to use this kind of graphene dispersion as
a corrosion resistance additive for industrial waterborne coat-
ings. Based on the demand for corrosion resistance and mass
production requirements, graphene dispersions with high solid
content and good dispersibility in water need to be designed
and developed.

In this paper, we report an easy, green modication of gra-
phene by using a noncovalent strategy between CMC and gra-
phene, as shown in Scheme 1, to prepare a modied graphene
CGR dispersion with 15% nanosheet content, good dis-
persibility, and long storage stability, the rst reported in water.

This method for green surface modication of pristine GR
can be used to prepare GR/waterborne polymer nano-
composites. The entanglements between the long chains of
RSC Adv., 2022, 12, 6037–6043 | 6037

http://crossmark.crossref.org/dialog/?doi=10.1039/d1ra08520d&domain=pdf&date_stamp=2022-02-18
http://orcid.org/0000-0002-0588-666X
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra08520d
https://rsc.66557.net/en/journals/journal/RA
https://rsc.66557.net/en/journals/journal/RA?issueid=RA012010


Scheme 1 The preparation route for sodium carboxymethyl cellulose (CMC)-modified CGR dispersion.
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CMC and the polymer matrix substantially enhance the inter-
actions between them and accordingly improve their compati-
bility. Importantly, this strategy is available and economical due
to its easy operation in industry. We also believe that this work
will accelerate the development of industrial anticorrosion
coatings for ultralight metals.
2. Experimental
2.1 Materials

Pristine graphene (GR) nanosheets (black powder, D50: <10 mm,
BET: 180–280 m2 g�1) were obtained from Sixth Element
(Changzhou) Materials Technology Co. Ltd Sodium carbox-
ymethyl cellulose (CMC, anionic surfactant) was purchased
from Hefei Aigo Additives Technology Co. Ltd. Deionized water
was prepared using the appropriate equipment.
6038 | RSC Adv., 2022, 12, 6037–6043
2.2 Modication of GR with CMC modier

First, deionized water ((85–n) g) and CMC modier (n g) water
were added to a three-necked ask and stirred with a high-speed
stirrer at 900 rpm for 15 minutes. Then, crude GR (15 g) was
added to the preprepared mixture and sonicated for 1 hour to
obtain a uniform CGR dispersion. For the sake of comparing
different CGR dispersions, four different contents of CMC
modier (n ¼ 0.7, 0.9, 1.1 and 1.3 wt%) were designed to
prepared CGR-x (x ¼ 1, 2, 3 and 4), correspondingly. Then, the
products were puried aer each modication by ultraltra-
tion. The resulting CGR solid powders were dried overnight at
80 �C in vacuum.
2.3 Characterization

Thermogravimetry analysis (TGA) of pristine GR and CGR was
performed under nitrogen on a STA409PC thermogravimetric
© 2022 The Author(s). Published by the Royal Society of Chemistry
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analyzer (Netzsch instruments) with a temperature range of 25–
1000 �C at a heating rate of 10 �Cmin�1. Raman spectroscopy of
pristine GR and CGR was carried out using a Kaiser Holo-Lab
5000 series spectrometer furnished with a 514 nm excitation
laser. The particle size distribution and zeta potential of the
graphene dispersion were characterized by a 90Plus PALS Zeta
Potential (Brookhaven Instruments, USA). The transmittance of
the graphene dispersion was investigated with an ultraviolet
spectrophotometer (UV2600). Morphology of the graphene
dispersion was investigated by eld emission scanning electron
microscopy (FE-SEM, SU8010) and transmittance electron
microscopy (TEM, JEOL JEM2011). Atomic force microscopy
(AFM, Park XE7) was used to characterize the thickness of the
GR nanosheets.
3. Results and discussion
3.1 TGA measurements

Supporting evidence for the noncovalent attachment of CMC
modier on the pristine GR surfaces comes from the ther-
mogravimetry analysis (TGA). Fig. 1 shows TGA curves for the
analysis of pristine GR and modied CGR with different
contents of CMC at a temperature ramp rate of 10 �C min�1,
respectively. The rst stage of mass loss terminates at approxi-
mately 180 �C, which is due to the rejection of the adsorbed
water from the interlayers of the materials. The TGA plot of
CMC indicates a gradual mass loss of around 58.4% as the
temperature reached 600 �C. Furthermore, we noted that CGR
showed a signicant weight loss in the range of 260–600 �C,
corresponding to pyrolysis of the CMC modier. The results
indicate that the CMC modier can be adsorbed on the surface
of graphene.
3.2 Raman spectroscopy

Raman spectroscopy is usually employed to distinguish the
ordered and disordered carbon structures of graphene.18 The D
band and G band are represented in the in-plane vibration of
Fig. 1 TGA curves of pristine GR, modified CGR, and CMC modifier.

© 2022 The Author(s). Published by the Royal Society of Chemistry
sp2 carbon atoms and the vibration of sp3 carbon atoms from
the functional groups, respectively. It can be seen from Fig. 2
that pristine GR exhibited two characteristic peaks at 1342 cm�1

(D band) and 1586 cm�1 (G band), ID/IG ¼ 1.03. The ID/IG ratio
presents a slight increase from 1.03 for pristine GR to 1.06 for
CGR-4, indicating that no more defects are introduced aer the
modication of pristine GR with CMC modier, and the gra-
phene preserves its basic structural properties.
3.3 Size and distribution

The diluted dispersions of pristine GR and CGR with obvious
Tyndall effect in water were prepared through mechanical
dispersion for 15 min. On the basis of the dynamic light scat-
tering (DLS) principle, the average diameter and size distribu-
tion of the graphene dispersions were analyzed using a zeta
potential analyzer, as shown in Fig. 3.

According to the result, the pristine GR was dispersed poorly
in water, and serious agglomeration was formed because of the
high surface area, strong van der Waals forces, and intrinsic
hydrophobicity of GR. Its average diameter (D50) is about
4560 nm, as shown in Fig. 3B. Compared with pristine GR, the
CGR modied with CMC showed good dispersibility in water,
especially CGR-2 (920 nm), which is mixed with 0.9 wt%
modier. It was suggested that the dispersion effect of graphene
using ultrasonic exfoliation in water can be improved aer
modication with a macromolecular modier. Because of the
new noncovalent modication between CMC and GR nano-
sheets, the agglomeration was controlled effectively. With the
increasing content of CMC modier, the average diameter of
graphene decreased gradually, but aer the content of CMC
modier exceed 0.9 wt%, the average diameter increased again.
This may be because when the content of CMC is insufficient,
the uncoated graphene will be likely to agglomerate, while if the
CMC content is superabundant, the average diameter of the
modied CGR may increase again because of thickening of the
CMC coating layer and entanglement among the long and
exible chains of the macromolecular modier.
Fig. 2 Raman spectroscopy of pristine GR and modified CGR.
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Fig. 3 (A) Size and distribution of pristine GR and modified CGR
dispersions. (B) Relation between D50 and content of CMC modifier in
the GR nanosheets.

Fig. 4 Transmittance spectra of the dispersions of pristine and
modified CGR samples with incident light wavelength ranging from
400 nm to 800 nm. The data in the figure indicate the optical trans-
mittance with incident 550 nm visible light.
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3.4 Transmittance spectrum

For quickly evaluating the dispersion effect of graphene, it is
necessary to compare the optical transmittance. Fig. 4 shows
the transmittance spectra of dispersions of pristine GR and
modied CGR, with incident light wavelength ranging from
400 nm to 800 nm. The number in the gure indicates the
optical transmittance at 550 nm incident light. We extracted the
experimental data at 550 nm from pristine andmodied CGR in
Fig. 4. As seen from the enlarged inset, we can conclude that the
four modied CGR dispersions have similar optical trans-
mittance values, at around 39.2%. Compared to 64.4% at
550 nm for pristine GR dispersion, the optical transmittance of
the modied CGR is lower, indicating that the dispersibility of
GR has been improved by the CMC modier.
Fig. 5 Relation between zeta potential and content of CMC modifier
for the GR nanosheets. The inset photo shows the dispersibility of
pristine GR and modified CGR in water.
3.5 Dispersibility and stability

The most important parameter dening surface properties of
electrostatically stabilized nanomaterials in aqueous solutions
6040 | RSC Adv., 2022, 12, 6037–6043
is the zeta potential value. The relation between zeta potential
and CMC modier content in the GR nanosheets is shown in
Fig. 5. This plot shows that the zeta potential decreases with
increasing CMC until the content of CMC modier reached
1.1 wt%. The plot seems to keep balance when the content of
CMC modier was increased; then, the zeta potential reaches
the maximal absolute value at 29.3 mV. Therefore, it can be
presumed that there are more carboxylate groups of the CMC
modier on the surface of the GR nanosheets when the absolute
value of the zeta potential is high. In other words, the stability of
GR dispersions has been improved due to high zeta potential.

The inset photo in Fig. 5 shows the dispersibility of pristine
GR and modied CGR in water. The dispersibility of the CMC-
modied GR is much better than that of their physical mixture.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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The sample of physical mixture has obvious black sediments in
water. In contrast to CGR modied with different contents of
CMC coated on the surface of graphene, the pristine GR is
insoluble, while the CGR-3 dispersion mixed with 1.1 wt% CMC
modier was easily well dispersed in water, and no sedimenta-
tion was observed aer more than 3 months. This suggests that
CGR-3 has excellent solubility in water. However, 0.7–0.9 wt%
CMC-modied GR dispersions had a little sediment, indicating
that the content of CMC modier was not enough to bring
mutual exclusion and steric hindrance effects. When the content
of CMC modier is 1.3 wt%, the GR dispersion has bad ow-
ability due to the higher viscosity. The above results demonstrate
that the CGR dispersion is a physically stable system.

3.6 Surface morphology

The surface morphologies of pristine GR and modied GR
dispersed in water were examined by SEM, as shown in Fig. 6.
Fig. 6 (A–E) SEM images of pristine GR (A), CGR-1 (B), CGR-2 (C), CGR

© 2022 The Author(s). Published by the Royal Society of Chemistry
The pristine GR nanosheets dispersed in water at the Si
substrate show tight agglomeration,18,20 which is attributed to
the poor dispersion of GR nanosheets (Fig. 6A). In comparison,
the aggregation of modied CGR is reduced, which is due to the
modication of CMC.

Furthermore, TEM results conrmed the dispersibility of
pristine GR and modied CGR-3 with the best dispersion
stability in Fig. 7. The pristine GR nanosheets dispersed in
water at the Cu grid also show tight agglomeration and exist as
large sheets, which is due to the poor dispersion (marked as red
circles in Fig. 7A) of GR nanosheets. Aer modication with
CMC, the CGR-3 nanosheets are well dispersed in water, show
good dispersibility, and exist as small nanosheets (Fig. 7B),
indicating that CGR dispersion is easy to disperse in waterborne
coatings and builds good barrier properties. The thickness of
pristine GR and modied CGR-3 was further examined by AFM.
As shown in Fig. 7C, the thickness of the GR layers reaches
-3 (D), and CGR-4 (E) drop-casted from the water solutions.

RSC Adv., 2022, 12, 6037–6043 | 6041
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Fig. 7 TEM and AFM images of (A and C) pristine GR and (B and D) modified CGR-3 drop-casted from the water solutions, showing different
dispersion morphologies.
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about 16–20 nm. The thickness of CGR-3 nanosheets with the
thick layer is 40–60 nm, indicating that the increase in thick-
ness is due to the presence of CMC modier on the GR
6042 | RSC Adv., 2022, 12, 6037–6043
nanosheets (Fig. 7D). Thus, it can be inferred from the
increased thickness that the GR surface was successfully
modied with CMC.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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4. Conclusion

In summary, a CMC-modied CGR dispersion was successfully
prepared in aqueous solution by single-step noncovalent func-
tionalization technique. The results show that the optimum
content of CMC modier coated on the surface of graphene is
1.1 wt%. Themodied CGR possesses good dispersibility and good
owability in water. The prepared CGR-3 dispersion, with no sedi-
mentation aer more than 3 months, has potential application as
a functional corrosion resistance additive for waterborne coatings,
providing a new strategy for the high-value-added use of graphene.
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