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vel metal–organic framework [Zr-
UiO-66-PDC-SO3H]FeCl4 in the synthesis of
dihydrobenzo[g]pyrimido[4,5-b]quinoline
derivatives†

Fatemeh Jalili, Mahmoud Zarei, * Mohammad Ali Zolfigol * and Ardeshir Khazaei*

In the current paper, we produce a new metal–organic framework (MOF) based on Zr metal, [Zr-UiO-66-

PDC-SO3H]FeCl4, via an anion exchangemethod, which is fully characterized by FT-IR, SEMwith elemental

mapping and EDX, FE-SEM and TEM. Furthermore, the use of [Zr-UiO-66-PDC-SO3H]FeCl4 as a porous

catalyst was examined for the one-pot synthesis of novel dihydrobenzo[g]pyrimido[4,5-b]quinoline

derivatives by reaction of 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione, 2-hydroxynaphthalene-

1,4-dione and various aldehydes at 100 �C with good to excellent yields.
Introduction

Nowadays, porous materials such as metal–organic frameworks
(MOFs) are of great interest to scientists.1,2 These crystalline
materials comprise metal and organic compounds as the
nucleus and ligands, respectively. MOFs are multifunctional
materials that have been used as adsorbents for the storage and
separation of gas, drug delivery, catalyst, proton conductivity
and heavy metal adsorbents.3–9 Post- modication and synthesis
of MOFs with acid functional groups and metal have been re-
ported for the transportation of organic compounds, oxidation,
and synthesis of biological compounds.10 Lillerud et al. reported
the rst MOFs based on Zr, such as Zr-UiO-66-PDC.11 Consid-
ering this, the new class of porous catalyst with sulfonic and
phosphorus acid tag-MOFs have been applied in the prepara-
tion of pyrimido[4,5-b]quinolones and dicyanomethylene pyri-
dine derivatives – N-amino-2-pyridone and pyrano [2,3-c]
pyrazole derivatives.12–15

Anion exchange is an architectonic method for the prepa-
ration of ionic liquids (ILs) and/or molten salts (MSs) with
several opposing ions that cannot be synthesized directly. Our
research group has introduced MSs with N–S bonds as a new
category of catalyst and reagent based on organic materials.16–24

Now, we combine the porous materials MOF Zr-UiO-66-PDC
with ClSO3H, to prepare [Zr-UiO-66-PDC-SO3H]Cl as a novel
porous catalyst for ILs.

Recently, N-heterocyclic scaffold compounds have been
considered as candidates for the design and discovery of new
y of Chemistry, Bu-Ali-Sina University,

oud8103@yahoo.com; zol@basu.ac.ir;

o.com

tion (ESI) available. See DOI:

68
biologically active compounds. It is very important to supply new
and easy methods for the preparation of target compounds with
unique features. In this regard, 1,4-dihydropyridine structures
containing uracil and henna (2-hydroxynaphthalene-1,4-dione)
moieties are suitable candidates for biological and pharmacolog-
ical purposes.25–29 These molecules have been used as drugs in
furnidipine and alogliptin (Fig. 1).30,31 Also, scaffolds with uracil
moieties have been reported as having antitumour,32 cardiotonic,33

hepatoprotactive,34 antihypertensive,35 antibronchitic36 and anti-
fungal activity.37 Therefore, the appearance of novel and simple
organic synthetic approaches for the efficient preparation of this
type of heterocycle is an interesting challenge. Since scaffolds with
uracil and henna moieties are of biological interest,38,39 we
synthesize 1,4-dihydropyridine with uracil and henna moieties.

In continuation of our investigation on the development and
preparation of MOFs with sulfonic acid tags and organic
molecules with henna moieties,40 in this paper, we prepare [Zr-
UiO-66-PDC-SO3H]FeCl4 as an efficient and novel porous cata-
lyst for new dihydrobenzo[g]pyrimido[4,5-b]quinoline deriva-
tives by condensation reaction of 2-hydroxynaphthalene-1,4-
dione, 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione and
various aldehydes (mono and bis) under solvent free conditions
at 100 �C (Fig. 2).
Experimental
Preparation of [Zr-UiO-66-PDC-SO3H]FeCl4

Initially, our MOFs [Zr-UiO-66-PDC] were synthesized according
to a previously reported methodology.41 In a round-bottomed
ask, 50 mL, a mixture of ClSO3H (2 mmol, 0.134 mL) and
[Zr-UiO-66-PDC] (0.564 g) in dry CH2Cl2 (30 mL) at 0 �C was
stirred for 2 hours. Aer this, a white precipitate appeared
which was separated (by centrifugation) and dried under
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Biological compounds containing uracil, henna and dihydropyridine moieties in their structures.

Fig. 2 Preparation of dihydrobenzo[g]pyrimido[4,5-b]quinoline using [Zr-UiO-66-PDC-SO3H]FeCl4.
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vacuum. Then, according to the anion exchange method,
a mixture of [Zr-UiO-66-PDC-SO3H]Cl (2 g) and FeCl3 (5 mmol,
0.81 g) was stirred in a mortar at 50 �C for 2 hours. Aer
completion of the reaction, the reaction mixture was cooled
down to room temperature. Finally, acetone was used to purify
the [Zr-UiO-66-PDC-SO3H]FeCl4 via trituration (Fig. 3).
General procedure for the synthesis of dihydrobenzo[g]
pyrimido[4,5-b]quinoline derivatives using [Zr-UiO-66-PDC-
SO3H]FeCl4

In a 15 mL round-bottomed ask, a mixture of 2-
hydroxynaphthalen-1,4-dione (henna, 1 mmol, 0.174 g), 6-amino-
1,3-dimethylpyrimidine-2,4(1H,3H)-dione (1 mmol, 0.155 g) and
aldehyde (1 mmol) in the presence of 10 mg of [Zr-UiO-66-PDC-
SO3H]FeCl4 was stirred at 100 �C under solvent-free conditions.
Aer the completion of the reactions which weremonitored by the
TLC technique (2 : 3 n-hexane : ethyl acetate). The described
catalyst was separated from the reactionmixture by centrifugation
(1000 rpm) aer adding 10 mL of EtOH as solvent. Finally, aer
the evaporation of the solvent at room temperature, pure product
was obtained by washing with hot ethanol and water (Fig. 2).
Spectra data

1,3-Dimethyl-5-(p-tolyl)-5,12-dihydrobenzo[g]pyrimido[4,5-b]
quinolone 2,4,6,11(1H,3H)-tetraone (U1). Red solid; Mp: 280 �C
dec.; FT-IR (KBr) y (cm�1) ¼ 3401, 3245, 1702, 1575, 1510. 1H
NMR (400 MHz, DMSO-d6) d 7.89 (d, J ¼ 7.5 Hz, 1H), 7.80 (d, J ¼
7.1 Hz, 1H), 7.69 (t, J ¼ 8.0 Hz, 1H), 7.62 (s, 1H), 7.57 (t, J ¼
7.6 Hz, 1H), 6.95 (s, 4H), 6.30 (s, 1H), 3.31 (s, 3H), 3.21 (s, 3H),
© 2022 The Author(s). Published by the Royal Society of Chemistry
2.26 (s, 3H). 13C NMR (101 MHz, DMSO) d 180.3, 162.3, 150.6,
135.4, 133.4, 132.5, 131.2, 130.4, 127.9, 126.6, 125.7, 125.4,
125.2, 124.7, 87.0, 34.4, 29.6, 28.1, 20.5. MS: m/z (%) ¼ 413.2.

1,3-Dimethyl-5-(4-nitrophenyl)-5,12-dihydrobenzo[g]pyr-
imido[4,5-b]quinoline 2,4,6,11(1H,3H)-tetraone (U2). Red solid;
Mp: >300 �C; FT-IR (KBr) y (cm�1) ¼ 3396, 3230, 1694, 1656,
1605, 1576, 1342. 1H NMR (400 MHz, DMSO-d6) d 7.86 (d, J ¼
7.6 Hz, 1H), 7.77 (d, J ¼ 6.4 Hz, 1H), 7.66 (t, J ¼ 5.6 Hz, 1H), 7.54
(s, 2H), 7.16 (d, J ¼ 7.4 Hz, 2H), 7.03 (d, J ¼ 6.9 Hz, 2H), 6.27 (s,
1H), 3.27 (s, 3H), 3.18 (s, 3H). 13C NMR (101 MHz, DMSO-d6)
d 180.0, 150.7, 135.4, 133.4, 131.3, 130.3, 128.6, 128.2, 127.6,
127.1, 125.4, 124.7, 119.1, 86.4, 34.5, 29.5, 28.1. MS: m/z (%) ¼
444.1.

5-(4-Chlorophenyl)-1,3-dimethyl-5,12-dihydrobenzo[g]pyr-
imido[4,5-b]quinoline-2,4,6,11(1H,3H)-tetraone (U3). Red solid;
Mp: >300 �C; FT-IR (KBr) y (cm�1) ¼ 3456, 3336, 1693, 1596, 1508.
1HNMR (400MHz, DMSO-d6) d 8.00 (d, J¼ 8.7 Hz, 2H), 7.86 (d, J¼
7.5 Hz, 1H), 7.77 (d, J¼ 7.3 Hz, 1H), 7.66 (t, J¼ 7.2 Hz, 1H), 7.53 (t,
J ¼ 7.3 Hz, 1H), 7.47 (s, 1H), 7.26 (d, J ¼ 8.4 Hz, 2H), 6.39 (s, 1H),
3.26 (s, 3H), 3.17 (s, 3H). 13C NMR (101 MHz, DMSO) d 185.8,
179.6, 161.7, 154.3, 152.6, 150.8, 144.4, 135.4, 133.4, 131.3, 130.3,
127.9, 127.8, 125.4, 124.7, 122.6, 118.6, 85.8, 35.8, 29.5, 27.9. MS:
m/z (%) ¼ 433.1[M], 435.2 [M + 2].

5-(3,4-Diuorophenyl)-1,3-dimethyl-5,12-dihydrobenzo[g]
pyrimido[4,5-b]quinoline-2,4,6,11(1H,3H)-tetraone (U4). Red
solid; Mp:>300 �C; FT-IR (KBr) y (cm�1) ¼ 3392, 3061,
1691,1669, 1591, 1510. 1H NMR (400 MHz, DMSO-d6) d 7.88–
7.85 (m, 1H), 7.77–7.74 (m, 1H), 7.68–7.64 (m, 1H), 7.54–7.50
(m, 1H), 7.44 (s, 1H), 7.16–7.09 (m, 1H), 6.90 (d J ¼ 9.1 Hz, 1H),
6.83–6.77 (m, 1H), 6.27 (s, 1H), 3.25 (s, 3H), 3.16 (s, 3H). 13C
RSC Adv., 2022, 12, 9058–9068 | 9059
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Fig. 3 Preparation of [Zr-UiO-66-PDC-SO3H]FeCl4.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
M

ar
ch

 2
02

2.
 D

ow
nl

oa
de

d 
on

 1
2/

4/
20

24
 7

:5
3:

03
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
NMR (100 MHz, DMSO) d 163.9, 154.4, 152.1, 147.9, 140.9,
133.8, 132.5, 129.5, 124.0, 123.3, 121.2, 120.8, 116.9, 114.3, 93.4,
37.2, 30.4, 29.0. MS: m/z (%) ¼ 435.2.

1,3-Dimethyl-5-(4-(triuoromethyl)phenyl)-5,12-dihy-
drobenzo[g]pyrimido[4,5-b]quinoline-2,4,6,11(1H,3H)-tetraone
(U5). Red solid; Mp: 290 �C dec.; FT-IR (KBr) y (cm�1) ¼ 3403,
3247, 1702, 1603, 1575, 1511. 1H NMR (400 MHz, DMSO-d6)
d 7.96 (d, J ¼ 7.5 Hz, 1H), 7.87 (d, J ¼ 7.4 Hz, 1H), 7.76 (t, J ¼
7.3 Hz, 1H), 7.66–7.60 (m, 2H), 7.56 (d, J ¼ 8.1 Hz, 2H), 7.32 (d,
J ¼ 7.9 Hz, 2H), 6.45 (s, 1H), 3.36 (s, 3H), 3.27 (s, 3H). 13C NMR
(101 MHz, DMSO-d6) d 185.6, 162.0, 152.9, 150.7, 135.4, 133.4,
131.3, 130.4, 127.3, 126.2, 125.4, 124.7, 124.2, 118.9, 86.1, 35.2,
29.6, 28.1. MS: m/z (%) ¼ 467.1.

5-(3,5-Diuorophenyl)-1,3-dimethyl-5,12-dihydrobenzo[g]
pyrimido[4,5-b]quinoline-2,4,6,11(1H,3H)-tetraone (U6). Red
solid; Mp: >300 �C; FT-IR (KBr) y (cm�1) ¼ 3393, 3238, 1691,
1659, 1594, 1509. 1H NMR (400 MHz, DMSO-d6) d 8.00 (d, J ¼
7.4 Hz, 1H), 7.89 (d, J ¼ 7.1 Hz, 1H), 7.81–7.77 (m, 1H), 7.66 (t,
J ¼ 7.4 Hz, 1H), 6.94 (s, 1H), 6.77 (s, 1H), 6.75 (s, 1H), 6.41 (s,
1H), 3.38 (s, 3H), 3.29 (s, 3H). 13C NMR (100 MHz, DMSO)
d 183.5, 150.7, 133.8, 133.2, 131.9, 130.9, 128.7, 128.4, 128.1,
125.7, 125.1, 123.3, 121.8, 117.7, 116.4, 115.8, 53.5, 32.5, 29.6,
28.0. MS: m/z (%) ¼ 436.2.

5-(3-Hydroxyphenyl)-1,3-dimethyl-5,12-dihydrobenzo[g]pyr-
imido[4,5-b]quinoline-2,4,6,11(1H,3H)-tetraone (U7). Red solid;
Mp:280 �C dec.; FT-IR (KBr) y (cm�1) ¼ 3397, 3250, 1674, 1609,
1578, 1512. 1H NMR (400 MHz, DMSO-d6) d 8.83 (s, 1H), 7.92 (d,
J ¼ 7.6 Hz, 1H), 7.81 (d, J ¼ 7.2 Hz, 1H), 7.71 (t, J ¼ 7.2 Hz, 1H),
7.60 (s, 1H), 7.57 (d, J ¼ 7.3 Hz, 1H), 6.95 (t, J ¼ 7.7 Hz, 1H), 6.53
(d, J ¼ 7.4 Hz, 2H), 6.45 (d, J ¼ 7.8 Hz, 1H), 6.29 (s, 1H), 3.33 (s,
3H), 3.23 (s, 3H). 13C NMR (101 MHz, DMSO-d6) d 182.1, 156.7,
135.7, 133.4, 131.3, 130.2, 127.9, 125.4, 124.5, 119.6, 117.7,
113.7, 110.8, 87.0, 34.8, 29.5, 28.0. MS: m/z (%) ¼ 415.1.

1,3-Dimethyl-5-phenyl-5,12-dihydrobenzo[g]pyrimido[4,5-b]
quinoline-2,4,6,11(1H,3H)-tetraone (U8). Red solid; Mp: 255–
256 �C; FT-IR (KBr) y (cm�1) ¼ 3407, 3244, 1699, 1605, 1578,
1509. 1H NMR (400 MHz, DMSO-d6) d 13.21 (s, 1H), 8.03 (d, J ¼
7.4 Hz, 1H), 8.00 (d, J ¼ 8.5 Hz, 1H), 7.87–7.80 (m, 2H), 7.22 (dt,
J ¼ 16.9, 5.6 Hz, 5H), 5.86 (s, 1H), 3.38 (s, 3H), 3.15 (s, 3H). 13C
9060 | RSC Adv., 2022, 12, 9058–9068
NMR (101 MHz, DMSO-d6) d 181.1, 163.6, 154.3, 150.1, 138.4,
134.3, 133.9, 133.5, 132.0, 131.7, 130.5, 128.0, 127.7, 126.7,
126.0, 125.7, 125.1, 124.8, 123.4, 85.6, 34.7, 30.4, 28.2. MS: m/z
(%) ¼ 399.2.

5-(2-Methoxyphenyl)-1,3-dimethyl-5,12-dihydrobenzo[g]pyr-
imido[4,5-b]quinoline-2,4,6,11(1H,3H)-tetraone (U9). Red solid;
Mp: 288 �C dec.; FT-IR (KBr) y(cm�1) ¼ 3442, 3355, 1696, 1633,
1657, 1504. 1H NMR (400 MHz, DMSO-d6) d 9.02 (s, 1H), 8.06 (s,
1H), 7.99–7.71 (m, 3H), 7.25 (d, J ¼ 100.1 Hz, 2H), 6.96–6.75 (m,
2H), 5.31 (s, 1H), 3.70 (s, 3H), 3.61 (s, 3H), 3.09 (s, 3H). 13C NMR
(101 MHz, DMSO-d6) d 181.8, 160.4, 150.6, 139.4, 135.0, 133.5,
131.6, 128.1, 125.9, 125.8, 125.8, 122.5, 119.7, 111.8, 88.3, 55.4,
33.8, 29.7, 27.6. MS: m/z (%) ¼ 429.2.

5-(2,4-Dichlorophenyl)-1,3-dimethyl-5,12-dihydrobenzo[g]
pyrimido[4,5-b]quinoline-2,4,6,11(1H,3H)-tetraone (U10). Red
solid; Mp: >300 �C; FT-IR (KBr) y (cm�1) ¼ 3456, 3336, 1693,
1596, 1508. 1H NMR (400 MHz, DMSO-d6) d 7.96 (s, 2H), 7.89 (s,
1H), 7.77 (s, 1H), 7.69 (s, 1H), 7.41 (s, 1H), 7.35 (s, 1H), 7.27 (s,
1H), 6.51 (s, 1H), 2.90 (s, 3H), 2.74 (s, 3H).13C NMR (101 MHz,
DMSO-d6) d 177.9, 176.9, 158.9, 158.6, 156.4, 153.0, 151.8, 150.5,
150.4, 136.6, 136.6, 135.4, 134.9, 132.6, 132.4, 132.3, 132.1,
131.9, 128.8, 128.2, 127.8, 127.7, 127.2, 127.0, 126.8, 121.3,
104.2, 79.3, 31.3, 30.0, 28.0. MS:m/z (%)¼ 466.8 [M], 469 [M + 2].

5-(4-Methoxyphenyl)-1,3-dimethyl-5,12-dihydrobenzo[g]pyr-
imido[4,5-b]quinoline-2,4,6,11(1H,3H)-tetraone (U11). Red
solid; Mp: 232–234 �C; FT-IR (KBr) y (cm�1) ¼ 3398, 3238, 1702,
1607, 1580, 1511.1H NMR (400 MHz, DMSO-d6) d 8.04–7.99 (m,
1H), 7.98 (d, J¼ 7.3 Hz, 1H), 7.86–7.78 (m, 2H), 7.20 (s, 1H), 7.09
(d, J ¼ 8.3 Hz, 2H), 6.79 (d, J ¼ 8.7 Hz, 2H), 5.80 (s, -1H), 3.71 (s,
3H), 3.36 (s, 3H), 3.14 (s, 3H). 13C NMR (101 MHz, DMSO-d6)
d 163.4, 157.2, 154.2, 150.2, 134.3, 133.8, 133.3, 130.5, 127.7,
126.0, 125.6, 113.4, 85.9, 54.9, 34.0, 30.3, 28.1. MS: m/z (%) ¼
429.1.

5-(4-(Dimethylamino)phenyl)-1,3-dimethyl-5,12-dihy-
drobenzo[g]pyrimido[4,5-b]quinoline-2,4,6,11(1H,3H)-tetraone
(U12). Red solid; Mp: 230 �C dec.; FT-IR (KBr) y (cm�1) ¼ 3402,
3357, 1671, 1597, 1574, 1515. 1H NMR (400 MHz, DMSO-d6)
d 7.92 (d, J ¼ 7.7 Hz, 1H), 7.82 (d, J ¼ 7.3 Hz, 1H), 7.75–7.68 (m,
1H), 7.61–7.56 (m, 1H), 6.90 (d, J¼ 8.4 Hz, 1H), 6.86 (s, 2H), 6.62
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 FT-IR spectra of ZrCl4, [Zr-UiO-66-PDC], [Zr-UiO-66-PDC-
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(d, J ¼ 8.5 Hz, 1H), 4.77 (s, 1H), 3.31 (s, 3H), 3.24 (s, 3H), 3.14 (s,
3H), 2.87 (s, 3H). 13C NMR (101 MHz, DMSO-d6) d 185.4, 180.6,
163.1, 158.0, 153.9, 149.7, 145.1, 135.1, 133.9, 133.0, 131.2,
130.1, 126.1, 125.5, 125.2, 123.2, 85.2, 40.6, 34.0, 30.0, 27.7. MS:
m/z (%) ¼ 441.2.

5-(4-Isopropylphenyl)-1,3-dimethyl-5,12-dihydrobenzo[g]pyr-
imido[4,5-b]quinoline-2,4,6,11(1H,3H)-tetraone (U13). Red
solid; Mp: >300 �C; FT-IR (KBr) y (cm�1) ¼ 3408, 3130, 2925,
1668, 1590, 1511. 1H NMR (400 MHz, DMSO-d6) d 7.85 (d, J ¼
7.5 Hz, 1H), 7.73 (d, J¼ 7.6 Hz, 1H), 7.64 (t, J¼ 7.4 Hz, 1H), 7.53–
7.47 (m, 2H), 6.96 (d, J ¼ 8.1 Hz, 2H), 6.90 (d, J ¼ 7.9 Hz, 2H),
6.24 (s, 1H), 3.25 (s, 3H), 3.15 (s, 3H), 2.82–2.74 (m, 1H), 1.17 (d,
J ¼ 6.8 Hz, 6H). 13C NMR (101 MHz, DMSO-d6) d 185.9, 181.1,
163.6, 158.5, 154.4, 150.1, 145.5, 135.6, 134.3, 133.5, 131.7,
130.6, 126.6, 126.1, 126.0, 125.7, 123.7, 85.6, 34.4, 32.9, 30.4,
28.2, 24.0, 23.9. MS: m/z (%) ¼ 441.2.

5-(4-Hydroxyphenyl)-1,3-dimethyl-5,12-dihydrobenzo[g]pyr-
imido[4,5-b]quinoline-2,4,6,11(1H,3H)-tetraone (U14). Red
solid; Mp: 220 �C dec.; FT-IR (KBr) y (cm�1) ¼ 3393, 3229, 1671,
1654, 1509. 1H NMR (400 MHz, DMSO-d6) d 8.49 (s, 1H), 7.86 (d,
J ¼ 7.7 Hz, 1H), 7.75 (d, J ¼ 7.6 Hz, 1H), 7.65 (t, J ¼ 7.5 Hz, 2H),
7.52 (d, J ¼ 7.5 Hz, 2H), 7.43 (s, 1H), 7.17–7.07 (m, 2H), 6.90 (d,
J ¼ 7.8 Hz, 2H), 6.26 (s, 1H), 3.24 (s, 3H), 3.16 (s, 3H). 13C NMR
(101 MHz, DMSO-d6) d 180.0, 150.7, 142.9, 135.4, 133.4, 131.3,
130.3, 128.6, 128.2, 127.1, 125.4, 124.7, 86.4, 34.5, 29.5, 28.1.
MS: m/z (%) ¼ 415.2.

1,3-Dimethyl-5-(3-nitrophenyl)-5,12-dihydrobenzo[g]pyr-
imido[4,5-b]quinoline-2,4,6,11(1H,3H)-tetraone (U15). Red
solid; Mp: 300 �C dec.; FT-IR (KBr) y (cm�1) ¼ 3334, 3508, 1717,
1682, 1562, 1529. 1H NMR (400 MHz, DMSO-d6) d 7.90 (d, J ¼
7.9 Hz, 1H), 7.87 (d, J ¼ 8.2 Hz, 1H), 7.78 (s, 1H), 7.67 (t, J ¼
7.1 Hz, 1H), 7.56–7.51 (m, 1H), 7.49–7.39 (m, 3H), 6.39 (s, 1H),
3.27 (s, 3H), 3.17 (s, 3H). 13C NMR (101 MHz, DMSO-d6) d 185.8,
179.8, 161.7, 152.7, 150.8, 147.6, 147.3, 135.4, 133.8, 133.4,
131.4, 130.3, 128.7, 125.4, 124.7, 121.2, 119.1, 118.4, 85.8, 35.2,
29.5, 28.0. MS: m/z (%) ¼ 444.1.

5,5’-(1,3-Phenylene)bis(1,3-dimethyl-5,12-dihydrobenzo[g]
pyrimido[4,5-b]quinoline-2,4,6,11(1H,3H)-tetraone) (U16). Red
solid; Mp: >300 �C; FT-IR (KBr) y (cm�1) ¼ 3396, 3200, 1682,
1608, 1579, 1508.1H NMR (400 MHz, DMSO-d6) d 8.00 (d, J ¼
7.9 Hz, 2H), 7.97 (d, J ¼ 8.2 Hz, 2H), 7.88 (s, 2H), 7.77 (t, J ¼
7.1 Hz, 2H), 7.66–7.61 (m, 2H), 7.57 (d, J¼ 7.2 Hz, 2H), 7.55–7.50
(m, 2H), 6.49 (s, 2H), 3.37 (s, 6H), 3.27 (s, 6H). 13C NMR (101
MHz, DMSO-d6) d 193.8, 161.7, 152.6, 150.9, 145.8, 135.8, 135.6,
133.4, 131.4, 130.2, 128.1, 127.9, 125.6, 125.4, 124.6, 118.9, 86.2,
35.0, 29.5, 27.9. MS: m/z (%) ¼ 718.1.

5,5’-(1,4-Phenylene)bis(1,3-dimethyl-5,12-dihydrobenzo[g]
pyrimido[4,5-b]quinoline-2,4,6,11(1H,3H)-tetraone) (U17). Red
solid; Mp: 289 �C dec.; FT-IR (KBr) y (cm�1) ¼ 3396, 3200, 1682,
1608, 1579, 1508. 1H NMR (400 MHz, DMSO-d6) d 1H NMR (400
MHz, DMSO-d6) d 9.97 (s, 2H), 7.93 (d, J ¼ 7.5 Hz, 2H), 7.85 (d,
J ¼ 7.4 Hz, 2H), 7.74 (d, J ¼ 7.8 Hz, 4H), 7.31 (d, J ¼ 7.7 Hz, 4H),
6.45 (s, 2H), 3.35 (s, 6H), 3.25 (s, 6H). 13C NMR (101 MHz,
DMSO-d6) d 185.8, 153.7, 144.6, 142.9, 137.8, 127.7, 127.5, 125.3,
123.4, 122.1, 120.1, 119.9, 117.5, 117.3, 116.5, 110.8, 78.2, 26.9,
21.5, 19.9. MS: m/z (%) ¼ 718.1.
© 2022 The Author(s). Published by the Royal Society of Chemistry
Results and discussion

To improve the catalytic application of MOFs, we have designed
and synthesized [Zr-UiO-66-PDC-SO3H]Cl. Post-
functionalization of [Zr-UiO-66-PDC] occurred by preparing
[Zr-UiO-66-PDC-SO3H]FeCl4 using FeCl3 in a mortar at room
temperature (Fig. 3). [Zr-UiO-66-PDC-SO3H]FeCl4 has a dual role
as a Brønsted-Lewis acid catalyst for the preparation of biolog-
ical compounds. For more detail, full characterization of [Zr-
UiO-66-PDC-SO3H]FeCl4 as a catalyst was conducted by FT-IR,
VSM, EDX, FE-SEM, elemental mapping, SEM and TEM
techniques.

Synthesis and characterization of [Zr-UiO-66-PDC-SO3H]FeCl4
as a new metal–organic framework (MOF)

The FT-IR analysis of ZrCl4, [Zr-UiO-66-PDC], [Zr-UiO-66-PDC-
SO3H]Cl and [Zr-UiO-66-PDC-SO3H]FeCl4 is shown in Fig. 4. The
broad peak at 2700–3500 cm�1 is related to the OH of SO3H
functional group. The aromatic C–H and C]C stretching bands
are respectively at 2924 and 1626 cm�1. The absorption bands at
1042 and 1136 cm�1 are related to N–S and O–S bond stretching.
Furthermore, the absorption bands at 587 cm�1 are linked to
the stretching vibrational modes of Fe–Cl groups in FeCl4. The
FT-IR spectrum difference between starting materials and [Zr-
UiO-66-PDC-SO3H]FeCl4 veried the structure of the catalyst.

The materials in the structure of [Zr-UiO-66-PDC-SO3H]FeCl4
were characterized by energy dispersive X-ray spectroscopy
(EDX) (Fig. 5). The [Zr-UiO-66-PDC-SO3H]FeCl4 conrmed the
existence of Zr, C, O, S, Cl, N and Fe atoms. Furthermore, [Zr-
UiO-66-PDC-SO3H]Cl as a well-dispersed material, was deter-
mined and veried by SEM-elemental mapping (Fig. 5).

Also, SEM images of [Zr-UiO-66-PDC-SO3H]FeCl4 were
recorded to investigate the morphology (Fig. 6). The obtained
images show the face centred cubic (fcu) structure. In addition,
the topography of [Zr-UiO-66-PDC-SO3H]FeCl4 was studied
more closely using transmission electron microscopy (TEM) as
shown in Fig. 7. We can see that [Zr-UiO-66-PDC-SO3H]FeCl4 is
a fcu topological network with 12-connected Zr clusters.

Aer the preparation of [Zr-UiO-66-PDC-SO3H]FeCl4 via the
anion exchange method, it was tested as a catalyst for the
SO3H]Cl and [Zr-UiO-66-PDC-SO3H]FeCl4.

RSC Adv., 2022, 12, 9058–9068 | 9061
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Fig. 5 Upper: energy dispersive X-ray spectroscopy (EDX) of [Zr-UiO-66-PDC-SO3H]FeCl4. Lower: elemental mapping analysis of [Zr-UiO-66-
PDC-SO3H]FeCl4.

Fig. 6 FE-SEM images of [Zr-UiO-66-PDC-SO3H]FeCl4.

9062 | RSC Adv., 2022, 12, 9058–9068 © 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 TEM of [Zr-UiO-66-PDC-SO3H]FeCl4.
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synthesis of new dihydrobenzo[g]pyrimido[4,5-b]quinoline
derivatives with uracil and henna (2-hydroxynaphthalene-1,4-
dione) moieties. The above-mentioned products were ob-
tained by reaction of 4-methoxy benzaldehyde (1.0 mmol,
0.136 g), 2-hydroxynaphthalen-1,4-dione (1 mmol, 0.174 g),
and 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione
(1 mmol, 0.155 g) as a model for the optimization of the
reaction conditions. The optimized data is listed in Table 1. As
shown in Table 1, the best choice for the synthesis of 5-(4-
methoxyphenyl)-1,3-dimethyl-5,12-dihydrobenzo[g]pyrimido
[4,5-b]quinoline-2,4,6,11(1H,3H)-tetraone was achieved in the
presence of 10 mg [Zr-UiO-66-PDC-SO3H]FeCl4 under solvent-
free conditions (entry 4, Table 1). The model reaction was also
studied under different temperatures and several solvents –

H2O, EtOH, DMF, n-hexane, EtOAc, CH3CN (5 mL) – in the
Table 1 Effect of different amounts of catalyst, solvent and different temp
dihydrobenzo[g]pyrimido[4,5-b]quinoline-2,4,6,11(1H,3H)-tetraone

Entry
Amount of catalyst
(mg) Temp. (o C)

1 — 100
2 5 100
3 7 100
4 10 100
5 15 100
6 10 r.t.
7 10 50
8 10 70
9 15 120
10 10 Reux
11 10 Reux
12 10 100
13 10 Reux
14 10 Reux
15 10 Reux

© 2022 The Author(s). Published by the Royal Society of Chemistry
presence of 10 mg of [Zr-UiO-66-PDC-SO3H]FeCl4. As is shown,
the results of the reaction did not improve (Table 1, entries
10–15).

Aer optimizing the reaction conditions, [Zr-UiO-66-PDC-
SO3H]FeCl4 (10 mg) is applied to synthesize a range of novel
biological and pharmacological candidate compounds using
various aromatic aldehydes such as trephetaldehyde, iso-tre-
phetaldehyde, bearing electron-donating and electron-
withdrawing groups, 2-hydroxynaphthalen-1,4-dione and 6-
amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione. As shown in
Table 2, the obtained results indicated that [Zr-UiO-66-PDC-
SO3H]FeCl4 is appropriate for the preparation of target mole-
cules in high to excellent yield (70–90%) with relatively short
reaction times (70–120 min).
eratures, on the synthesis of 5-(4-methoxyphenyl)-1,3-dimethyl-5,12-

Solvent (10 mL) Time (min) Yield (%)

— 50 Trace
— 50 45
— 50 50
— 50 90
— 50 90
— 50 75
— 50 70
— 50 20
— 50 90
H2O 50 85
EtOH 50 70
DMF 50 40
n-Hexane 50 Trace
EtOAc 50 Trace
CH3CN 50 45

RSC Adv., 2022, 12, 9058–9068 | 9063
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Table 2 Synthesis of dihydrobenzo[g]pyrimido[4,5-b]quinoline derivatives using [Zr-UiO-66-PDC-SO3H]FeCl4
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In the proposedmechanism, the [Zr-UiO-66-PDC-SO3H]FeCl4
catalyst activates the carbonyl functional group of aldehyde. To
investigate the activation of the aldehyde, 4-methoxy
9064 | RSC Adv., 2022, 12, 9058–9068
benzaldehyde was reacted with [Zr-UiO-66-PDC-SO3H]FeCl4 at
room temperature. The FT-IR spectra of the subsequent reac-
tion mixtures were examined.15,42,43 The absorption bond of
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 FT-IR spectra of 4-methoxy benzaldehyde in percent of [Zr-UiO-66-PDC], [Zr-UiO-66-PDC-SO3H]Cl and [Zr-UiO-66-PDC-SO3H]
FeCl4.

Fig. 9 Proposed mechanism for the synthesis of dihydrobenzo[g]pyrimido[4,5-b]quinoline derivatives using [Zr-UiO-66-PDC-SO3H]FeCl4.

© 2022 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2022, 12, 9058–9068 | 9065
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Table 3 Evaluation of various catalysts for the synthesis of 5-(4-
methoxyphenyl)-1,3-dimethyl-5,12-dihydrobenzo[g]pyrimido[4,5-b]
quinoline-2,4,6,11(1H,3H)-tetraone with [Zr-UiO-66-PDC-SO3H]
FeCl4

Entry Catalyst

Amount of
catalyst
(mol%)

Time
(min)

Yield
(%)

1 NaOH 10 60 25
2 Et3N 10 65 —
3 K2CO3 10 70 Trace
4 P-TSA 10 90 —
5 SSA 44,45 10 mg 120 Trace
6 GTBSA 46 10 mg 80 45
7 [PVI-SO3H]FeCl4

19 10 mg 70 70
8 MIL-100(Cr)–

NHEtN(CH2PO3H2)2
15

10 mg 60 65

9 Fe3O4@Co(BDC-NH2)
47 10 mg 50 35

10 CQDs-N(CH2PO3H2)2
48 10 mg 80 43

11 TTPA49 10 100 55
12 MIL-101(Cr)–

N(CH2PO3H2)2
12

10 mg 60 80

13 FeCl3 10 120 50
14 ZrCl4 10 120 55
15 Zr-UiO-66-PDC 10 mg 120 40
16 [Zr-UiO-66-PDC-SO3H]Cl 10 mg 65 75
17 [Zr-UiO-66-PDC-SO3H]FeCl4 10 mg 50 90
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C]O of the 4-methoxy benzaldehyde at 1704 cm�1, was
changed to 1704, 1705 or 1711 cm�1 by [Zr-UiO-66-PDC], [Zr-
UiO-66-PDC-SO3H]Cl and [Zr-UiO-66-PDC-SO3H]FeCl4 (Fig. 8).
Then, the henna (2-hydroxynaphthalen-1,4-dione) moiety reacts
with the carbonyl of the aldehyde by removing one H2O mole-
cule, to give intermediate (I) (Fig. 9). In the next step, 6-amino-
1,3-dimethylpyrimidine-2,4(1H,3H)-dione reacts with interme-
diate (I) to give intermediate (II). In the next two steps, inter-
mediate (II) gives the desired product aer intramolecular
cyclization and the loss of another molecule of H2O.

To evaluate the performance of [Zr-UiO-66-PDC-SO3H]FeCl4
as a catalyst for the synthesis of dihydrobenzo[g]pyrimido[4,5-b]
quinoline derivatives, we tested various acid catalysts (organic
and inorganic) in the reaction of 4-methoxy benzaldehyde
(1.0 mmol, 0.136 g), 2-hydroxynaphthalen-1,4-dione (1 mmol,
0.174 g), 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione
(1 mmol, 0.155 g) as evaluated in Table 3. The obtained results
which are collected in Table 3 show that, [Zr-UiO-66-PDC-SO3H]
FeCl4 is the best catalyst for the synthesis of novel dihydrobenzo
[g]pyrimido[4,5-b]quinoline derivatives. The obtained results of
catalytic activity and reusability of [Zr-UiO-66-PDC-SO3H]FeCl4
are shown in Fig. 10. As mentioned above, [Zr-UiO-66-PDC-
SO3H]FeCl4 was separated by centrifugation and reused without
signicant reduction in its catalytic activity. Recyclability of the
catalyst was also studied using the one-pot reaction of 4-
methoxy benzaldehyde (1.0 mmol, 0.136 g), 2-
hydroxynaphthalen-1,4-dione (1 mmol, 0.174 g), 6-amino-1,3-
dimethylpyrimidine-2,4(1H,3H)-dione (1 mmol, 0.155 g) as
a model under the above-mentioned optimized reaction
conditions. We found that [Zr-UiO-66-PDC-SO3H]FeCl4 can be
Fig. 10 Recyclability of [Zr-UiO-66-PDC-SO3H]FeCl4 in the synthesis
of dihydrobenzo[g]pyrimido[4,5-b]quinoline derivatives.

9066 | RSC Adv., 2022, 12, 9058–9068
reused up to four times without noticeable changes in its
catalytic activity.

Conclusion

In this study, we have designed, synthesized and introduced [Zr-
UiO-66-PDC-SO3H]FeCl4 as a novel mesoporous catalyst, which
was fully characterized using various techniques. To the best of
our knowledge, this catalyst is the rst MOF that was synthe-
sized via the anion exchange method. [Zr-UiO-66-PDC-SO3H]
FeCl4 is an efficient catalyst. It was tested for the preparation of
new dihydrobenzo[g]pyrimido[4,5-b]quinoline derivatives with
henna and uracil moieties which have biological interest.
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